Compare commits

...

24 Commits

Author SHA1 Message Date
Tammo.Weber
9db63d09fa GHA1 numerisch implementiert 2025-12-17 17:59:05 +01:00
Tammo.Weber
cfeb069e29 Zusammenführung 2025-12-16 16:39:33 +01:00
Tammo.Weber
f19373ed82 Merge remote-tracking branch 'origin/main'
# Conflicts:
#	dashboard.py
2025-12-16 16:33:57 +01:00
Tammo.Weber
0f47be3a9f Berechnungsverfahren und Darstellung 2025-12-16 16:31:24 +01:00
Tammo.Weber
30a610ccf6 Hansen Skript roh 2025-12-16 16:25:00 +01:00
bf1e26c98a Code-Verschönerung Dashboard 2025-12-15 12:33:12 +01:00
4139fbc354 kleine Anpassungen 2025-12-14 16:13:55 +01:00
946d028fae GHA1 num und ana richtig. Tests nach Beispielen aus Panou 2013 2025-12-10 11:45:41 +01:00
Tammo.Weber
936b7c56f9 icon 2025-12-10 10:10:14 +01:00
Tammo.Weber
766f75efc1 1 GHA ES 2025-12-10 10:07:27 +01:00
Tammo.Weber
520f0973f0 Dashboard 2025-12-10 10:05:57 +01:00
d76859d17b Koordinatenumrechnungen funktionieren inkl. Randfälle, GHA2_num funktioniert mit Standard Ellipsoid 2025-11-26 11:05:18 +01:00
9031a12312 diverse Änderungen, Versuch der Lösung der zweiten GHA mit Louville 2025-11-25 14:49:06 +01:00
Tammo.Weber
2ff4cff2be Kugel 2025-11-18 13:17:33 +01:00
Tammo.Weber
e545da5cd7 Zweite GHA numerisch 2025-11-15 14:48:11 +01:00
Tammo.Weber
e464e1cb5c Neue Funktion ell2cart nach Panou 2013 2025-11-15 14:31:51 +01:00
4e85eef5d7 analytisch funktioniert, p_q in ellisoid 2025-11-04 15:47:44 +01:00
ff81093d34 Merge remote-tracking branch 'origin/main' 2025-11-04 14:18:40 +01:00
1c56b089f2 analytisch funktioniert noch nicht 2025-11-04 14:18:17 +01:00
Tammo.Weber
1af07e61a9 Funktionstest 2025-11-03 10:13:42 +01:00
610ea3dc28 Aufgeräumt, Grundkonstrukt analytische Lösung 2025-11-01 17:59:57 +01:00
b5ecc50b68 GHA triaxial nach Panou Korakitis 2019 läuft
bei ax=ay Fehler
irgendwas bei gha1 biaxial noch falsch, evtl Umrechnung
2025-10-26 19:01:19 +01:00
b7d437e0ca Umrechnung geod cart 2025-10-22 18:07:17 +02:00
dcf1780f44 Umrechnung ell cart 2025-10-21 14:19:40 +02:00
23 changed files with 2574 additions and 139 deletions

364
1,lambda-ES-CMA.py Normal file
View File

@@ -0,0 +1,364 @@
import numpy as np
import plotly.graph_objects as go
from ellipsoide import EllipsoidTriaxial
def ell2cart(ell: EllipsoidTriaxial, beta, lamb):
x = ell.ax * np.cos(beta) * np.cos(lamb)
y = ell.ay * np.cos(beta) * np.sin(lamb)
z = ell.b * np.sin(beta)
return np.array([x, y, z], dtype=float)
def liouville(ell: EllipsoidTriaxial, beta, lamb, alpha):
k = (ell.Ee**2) / (ell.Ex**2)
c_sq = (np.cos(beta)**2 + k * np.sin(beta)**2) * np.sin(alpha)**2 \
+ k * np.cos(lamb)**2 * np.cos(alpha)**2
return c_sq
def normalize_angles(beta, lamb):
beta = np.clip(beta, -np.pi / 2.0, np.pi / 2.0)
lamb = (lamb + np.pi) % (2 * np.pi) - np.pi
return beta, lamb
def compute_azimuth(beta0: float, lamb0: float,
beta1: float, lamb1: float) -> float:
dlam = lamb1 - lamb0
y = np.cos(beta1) * np.sin(dlam)
x = np.cos(beta0) * np.sin(beta1) - np.sin(beta0) * np.cos(beta1) * np.cos(dlam)
alpha = np.arctan2(y, x)
return alpha
def sphere_forward_step(beta0: float,
lamb0: float,
alpha0: float,
s: float,
R: float) -> tuple[float, float]:
delta = s / R
sin_beta0 = np.sin(beta0)
cos_beta0 = np.cos(beta0)
sin_beta2 = sin_beta0 * np.cos(delta) + cos_beta0 * np.sin(delta) * np.cos(alpha0)
beta2 = np.arcsin(sin_beta2)
y = np.sin(alpha0) * np.sin(delta) * cos_beta0
x = np.cos(delta) - sin_beta0 * sin_beta2
dlam = np.arctan2(y, x)
lamb2 = lamb0 + dlam
beta2, lamb2 = normalize_angles(beta2, lamb2)
return beta2, lamb2
def local_step_objective(candidate: np.ndarray,
beta_start: float,
lamb_start: float,
alpha_prev: float,
c_target: float,
step_length: float,
ell: EllipsoidTriaxial,
beta_pred: float,
lamb_pred: float,
w_L: float = 5.0,
w_d: float = 5.0,
w_p: float = 2.0,
w_a: float = 2.0) -> float:
beta1, lamb1 = candidate
beta1, lamb1 = normalize_angles(beta1, lamb1)
P0 = ell2cart(ell, beta_start, lamb_start)
P1 = ell2cart(ell, beta1, lamb1)
d = np.linalg.norm(P1 - P0)
alpha1 = compute_azimuth(beta_start, lamb_start, beta1, lamb1)
c1 = liouville(ell, beta1, lamb1, alpha1)
J_L = (c1 - c_target) ** 2
J_d = (d - step_length) ** 2
d_beta = beta1 - beta_pred
d_lamb = lamb1 - lamb_pred
d_ang2 = d_beta**2 + (np.cos(beta_pred) * d_lamb)**2
J_p = d_ang2
d_alpha = np.arctan2(np.sin(alpha1 - alpha_prev),
np.cos(alpha1 - alpha_prev))
J_a = d_alpha**2
return w_L * J_L + w_d * J_d + w_p * J_p + w_a * J_a
def ES_CMA_step(beta_start: float,
lamb_start: float,
alpha_prev: float,
c_target: float,
step_length: float,
ell: EllipsoidTriaxial,
beta_pred: float,
lamb_pred: float,
sigma0: float,
stopfitness: float = 1e-18) -> tuple[float, float]:
N = 2
xmean = np.array([beta_pred, lamb_pred], dtype=float)
sigma = sigma0
stopeval = int(400 * N**2)
lamb = 30
mu = 1
weights = np.array([1.0])
mueff = 1.0
cc = (4 + mueff / N) / (N + 4 + 2 * mueff / N)
cs = (mueff + 2) / (N + mueff + 5)
c1 = 2 / ((N + 1.3)**2 + mueff)
cmu = min(1 - c1,
2 * (mueff - 2 + 1/mueff) / ((N + 2)**2 + mueff))
damps = 1 + 2 * max(0, np.sqrt((mueff - 1) / (N + 1)) - 1) + cs
pc = np.zeros(N)
ps = np.zeros(N)
B = np.eye(N)
D = np.eye(N)
C = B @ D @ (B @ D).T
eigeneval = 0
chiN = np.sqrt(N) * (1 - 1 / (4 * N) + 1 / (21 * N**2))
counteval = 0
arx = np.zeros((N, lamb))
arz = np.zeros((N, lamb))
arfitness = np.zeros(lamb)
while counteval < stopeval:
for k in range(lamb):
arz[:, k] = np.random.randn(N)
arx[:, k] = xmean + sigma * (B @ D @ arz[:, k])
arfitness[k] = local_step_objective(
arx[:, k],
beta_start, lamb_start,
alpha_prev,
c_target,
step_length,
ell,
beta_pred, lamb_pred
)
counteval += 1
idx = np.argsort(arfitness)
arfitness = arfitness[idx]
arindex = idx
xold = xmean.copy()
xmean = arx[:, arindex[:mu]] @ weights
zmean = arz[:, arindex[:mu]] @ weights
ps = (1 - cs) * ps + np.sqrt(cs * (2 - cs) * mueff) * (B @ zmean)
norm_ps = np.linalg.norm(ps)
hsig = norm_ps / np.sqrt(1 - (1 - cs)**(2 * counteval / lamb)) / chiN < 1.4 + 2 / (N + 1)
hsig = 1.0 if hsig else 0.0
pc = (1 - cc) * pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * (B @ D @ zmean)
BDz = B @ D @ arz[:, arindex[:mu]]
C = (1 - c1 - cmu) * C \
+ c1 * (np.outer(pc, pc) + (1 - hsig) * cc * (2 - cc) * C) \
+ cmu * BDz @ np.diag(weights) @ BDz.T
sigma = sigma * np.exp((cs / damps) * (norm_ps / chiN - 1))
if counteval - eigeneval > lamb / ((c1 + cmu) * N * 10):
eigeneval = counteval
C = (C + C.T) / 2.0
eigvals, B = np.linalg.eigh(C)
D = np.diag(np.sqrt(np.maximum(eigvals, 1e-20)))
if arfitness[0] <= stopfitness:
break
xmin = arx[:, arindex[0]]
beta1, lamb1 = normalize_angles(xmin[0], xmin[1])
return beta1, lamb1
def march_geodesic(beta1: float,
lamb1: float,
alpha1: float,
S_total: float,
step_length: float,
ell: EllipsoidTriaxial):
beta_curr = beta1
lamb_curr = lamb1
alpha_curr = alpha1
betas = [beta_curr]
lambs = [lamb_curr]
alphas = [alpha_curr]
c_target = liouville(ell, beta_curr, lamb_curr, alpha_curr)
total_distance = 0.0
R_sphere = ell.ax
sigma0 = 1e-10
while total_distance < S_total - 1e-6:
remaining = S_total - total_distance
this_step = min(step_length, remaining)
beta_pred, lamb_pred = sphere_forward_step(
beta_curr, lamb_curr, alpha_curr,
this_step, R_sphere
)
beta_next, lamb_next = ES_CMA_step(
beta_curr, lamb_curr, alpha_curr,
c_target,
this_step,
ell,
beta_pred,
lamb_pred,
sigma0=sigma0
)
P_curr = ell2cart(ell, beta_curr, lamb_curr)
P_next = ell2cart(ell, beta_next, lamb_next)
d_step = np.linalg.norm(P_next - P_curr)
total_distance += d_step
alpha_next = compute_azimuth(beta_curr, lamb_curr, beta_next, lamb_next)
beta_curr, lamb_curr, alpha_curr = beta_next, lamb_next, alpha_next
betas.append(beta_curr)
lambs.append(lamb_curr)
alphas.append(alpha_curr)
return np.array(betas), np.array(lambs), np.array(alphas), total_distance
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
beta1 = np.deg2rad(10.0)
lamb1 = np.deg2rad(10.0)
alpha1 = 0.7494562507041596 # Ergebnis 20°, 20°
STEP_LENGTH = 500.0
S_total = 1542703.1458877102
betas, lambs, alphas, S_real = march_geodesic(
beta1, lamb1, alpha1,
S_total,
STEP_LENGTH,
ell
)
print("Anzahl Schritte:", len(betas) - 1)
print("Resultierende Gesamtstrecke (Chord, Ellipsoid):", S_real, "m")
print("Letzter Punkt (beta, lambda) in Grad:",
np.rad2deg(betas[-1]), np.rad2deg(lambs[-1]))
def plot_geodesic_3d(ell: EllipsoidTriaxial,
betas: np.ndarray,
lambs: np.ndarray,
n_beta: int = 60,
n_lamb: int = 120):
beta_grid = np.linspace(-np.pi/2, np.pi/2, n_beta)
lamb_grid = np.linspace(-np.pi, np.pi, n_lamb)
B, L = np.meshgrid(beta_grid, lamb_grid, indexing="ij")
Xs = ell.ax * np.cos(B) * np.cos(L)
Ys = ell.ay * np.cos(B) * np.sin(L)
Zs = ell.b * np.sin(B)
Xp = ell.ax * np.cos(betas) * np.cos(lambs)
Yp = ell.ay * np.cos(betas) * np.sin(lambs)
Zp = ell.b * np.sin(betas)
fig = go.Figure()
fig.add_trace(
go.Surface(
x=Xs,
y=Ys,
z=Zs,
opacity=0.6,
showscale=False,
colorscale="Viridis",
name="Ellipsoid"
)
)
fig.add_trace(
go.Scatter3d(
x=Xp,
y=Yp,
z=Zp,
mode="lines+markers",
line=dict(width=5, color="red"),
marker=dict(size=4, color="black"),
name="ES-CMA Schritte"
)
)
fig.add_trace(
go.Scatter3d(
x=[Xp[0]], y=[Yp[0]], z=[Zp[0]],
mode="markers",
marker=dict(size=6, color="green"),
name="Start"
)
)
fig.add_trace(
go.Scatter3d(
x=[Xp[-1]], y=[Yp[-1]], z=[Zp[-1]],
mode="markers",
marker=dict(size=6, color="blue"),
name="Ende"
)
)
fig.update_layout(
title="ES-CMA",
scene=dict(
xaxis_title="X [m]",
yaxis_title="Y [m]",
zaxis_title="Z [m]",
aspectmode="data"
)
)
fig.show()
plot_geodesic_3d(ell, betas, lambs)

View File

@@ -1 +0,0 @@
print("Hallo Welt!")

17
GHA/rk.py Normal file
View File

@@ -0,0 +1,17 @@
import Numerische_Integration.num_int_runge_kutta as rk
from numpy import sin, cos, tan
import winkelumrechnungen as wu
from ellipsoide import EllipsoidBiaxial
def gha1(re: EllipsoidBiaxial, x0, y0, z0, A0, s, num):
phi0, lamb0, h0 = re.cart2ell(0.001, wu.gms2rad([0, 0, 0.001]), x0, y0, z0)
f_phi = lambda s, phi, lam, A: cos(A) * re.V(phi) ** 3 / re.c
f_lam = lambda s, phi, lam, A: sin(A) * re.V(phi) / (cos(phi) * re.c)
f_A = lambda s, phi, lam, A: tan(phi) * sin(A) * re.V(phi) / re.c
funktionswerte = rk.verfahren([f_phi, f_lam, f_A],
[0, phi0, lamb0, A0],
s, num)
coords = re.ell2cart(funktionswerte[-1][1], funktionswerte[-1][2], h0)
return coords

0
GHA_triaxial/__init__.py Normal file
View File

View File

@@ -0,0 +1,108 @@
import numpy as np
from numpy import sin, cos, arcsin, arccos, arctan2
from ellipsoide import EllipsoidTriaxial
import matplotlib.pyplot as plt
dbeta_dc = lambda ell, beta, lamb, alpha: -2 * ell.Ey**2 * sin(alpha)**2 * cos(beta) * sin(beta)
dlamb_dc = lambda ell, beta, lamb, alpha: -2 * ell.Ee**2 * cos(alpha)**2 * sin(lamb) * cos(lamb)
dalpha_dc = lambda ell, beta, lamb, alpha: (2 * sin(alpha) * cos(alpha) *
(ell.Ey**2 * cos(beta)**2 + ell.Ee**2 * sin(lamb)**2))
lamb2_sphere = lambda r, phi1, lamb1, a12, s: lamb1 + arctan2(sin(s/r) * sin(a12),
cos(phi1) * cos(s/r) - sin(s/r) * cos(a12))
phi2_sphere = lambda r, phi1, lamb1, a12, s: arcsin(sin(phi1) * cos(s/r) + cos(phi1) * sin(s/r) * cos(a12))
a12_sphere = lambda phi1, lamb1, phi2, lamb2: arctan2(cos(phi2) * sin(lamb2 - lamb1),
cos(phi1) * cos(phi2) -
sin(phi1) * cos(phi2) * cos(lamb2 - lamb1))
s_sphere = lambda r, phi1, lamb1, phi2, lamb2: r * arccos(sin(phi1) * sin(phi2) +
cos(phi1) * cos(phi2) * cos(lamb2 - lamb1))
louville = lambda beta, lamb, alpha: (ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 -
ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2)
def points_approx_gha2(r: float, phi1: np.ndarray, lamb1: np.ndarray, phi2: np.ndarray, lamb2: np.ndarray, num: int = None, step_size: float = 10000):
s_approx = s_sphere(r, phi1, lamb1, phi2, lamb2)
if num is not None:
step_size = s_approx / (num+1)
a_approx = a12_sphere(phi1, lamb1, phi2, lamb2)
points = [np.array([phi1, lamb1, a_approx])]
current_s = step_size
while current_s < s_approx:
phi_n = phi2_sphere(r, phi1, lamb1, a_approx, current_s)
lamb_n = lamb2_sphere(r, phi1, lamb1, a_approx, current_s)
points.append(np.array([phi_n, lamb_n, a_approx]))
current_s += step_size
points.append(np.array([phi2, lamb2, a_approx]))
return points
def num_update(ell: EllipsoidTriaxial, points, diffs):
for i, (beta, lamb, alpha) in enumerate(points):
dalpha = dalpha_dc(ell, beta, lamb, alpha)
if i == 0 or i == len(points) - 1:
grad = np.array([0, 0, dalpha])
else:
dbeta = dbeta_dc(ell, beta, lamb, alpha)
dlamb = dlamb_dc(ell, beta, lamb, alpha)
grad = np.array([dbeta, dlamb, dalpha])
delta = -diffs[i] * grad / np.dot(grad, grad)
points[i] += delta
return points
def gha2(ell: EllipsoidTriaxial, p1: np.ndarray, p2: np.ndarray, maxI: int):
beta1, lamb1 = ell.cart2ell(p1)
beta2, lamb2 = ell.cart2ell(p2)
points = points_approx_gha2(ell.ax, beta1, lamb1, beta2, lamb2, 5)
for j in range(maxI):
constants = [louville(point[0], point[1], point[2]) for point in points]
mean_constant = np.mean(constants)
diffs = constants - mean_constant
if np.mean(np.abs(diffs)) > 10:
points = num_update(ell, points, diffs)
else:
break
for k in range(maxI):
last_diff_alpha = points[-2][-1] - points[-3][-1]
alpha_extrap = points[-2][-1] + last_diff_alpha
if abs(alpha_extrap - points[-1][-1]) > 0.0005:
pass
else:
break
pass
pass
return points
def show_points(ell: EllipsoidTriaxial, points):
points_cart = []
for point in points:
points_cart.append(ell.ell2cart(point[0], point[1]))
points_cart = np.array(points_cart)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(points_cart[:, 0], points_cart[:, 1], points_cart[:, 2])
ax.scatter(points_cart[:, 0], points_cart[:, 1], points_cart[:, 2])
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("Eitschberger1978")
p1 = np.array([4189000, 812000, 4735000])
p2 = np.array([4090000, 868000, 4808000])
p1, phi1, lamb1, h1 = ell.cartonell(p1)
p2, phi2, lamb2, h2 = ell.cartonell(p2)
points = gha2(ell, p1, p2, 10)
show_points(ell, points)

View File

@@ -0,0 +1,111 @@
import winkelumrechnungen as wu
table1 = [
(wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(90), 1.00000000000,
wu.gms2rad([90,0,0.0000]), wu.gms2rad([90,0,0.0000]), 10018754.9569),
(wu.deg2rad(1), wu.deg2rad(0), wu.deg2rad(-80), wu.deg2rad(5), 0.05883743460,
wu.gms2rad([179,7,12.2719]), wu.gms2rad([174,40,13.8487]), 8947130.7221),
(wu.deg2rad(5), wu.deg2rad(0), wu.deg2rad(-60), wu.deg2rad(40), 0.34128138370,
wu.gms2rad([160,13,24.5001]), wu.gms2rad([137,26,47.0036]), 8004762.4330),
(wu.deg2rad(30), wu.deg2rad(0), wu.deg2rad(-30), wu.deg2rad(175), 0.86632464962,
wu.gms2rad([91,7,30.9337]), wu.gms2rad([91,7,30.8672]), 19547128.7971),
(wu.deg2rad(60), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(175), 0.06207487624,
wu.gms2rad([2,52,26.2393]), wu.gms2rad([177,4,13.6373]), 6705715.1610),
(wu.deg2rad(75), wu.deg2rad(0), wu.deg2rad(80), wu.deg2rad(120), 0.11708984898,
wu.gms2rad([23,20,34.7823]), wu.gms2rad([140,55,32.6385]), 2482501.2608),
(wu.deg2rad(80), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(90), 0.17478427424,
wu.gms2rad([72,26,50.4024]), wu.gms2rad([159,38,30.3547]), 3519745.1283)
]
table2 = [
(wu.deg2rad(0), wu.deg2rad(-90), wu.deg2rad(0), wu.deg2rad(89.5), 1.00000000000,
wu.gms2rad([90,0,0.0000]), wu.gms2rad([90,0,0.0000]), 19981849.8629),
(wu.deg2rad(1), wu.deg2rad(-90), wu.deg2rad(1), wu.deg2rad(89.5), 0.18979826428,
wu.gms2rad([10,56,33.6952]), wu.gms2rad([169,3,26.4359]), 19776667.0342),
(wu.deg2rad(5), wu.deg2rad(-90), wu.deg2rad(5), wu.deg2rad(89), 0.09398403161,
wu.gms2rad([5,24,48.3899]), wu.gms2rad([174,35,12.6880]), 18889165.0873),
(wu.deg2rad(30), wu.deg2rad(-90), wu.deg2rad(30), wu.deg2rad(86), 0.06004022935,
wu.gms2rad([3,58,23.8038]), wu.gms2rad([176,2,7.2825]), 13331814.6078),
(wu.deg2rad(60), wu.deg2rad(-90), wu.deg2rad(60), wu.deg2rad(78), 0.06076096484,
wu.gms2rad([6,56,46.4585]), wu.gms2rad([173,11,5.9592]), 6637321.6350),
(wu.deg2rad(75), wu.deg2rad(-90), wu.deg2rad(75), wu.deg2rad(66), 0.05805851008,
wu.gms2rad([12,40,34.9009]), wu.gms2rad([168,20,26.7339]), 3267941.2812),
(wu.deg2rad(80), wu.deg2rad(-90), wu.deg2rad(80), wu.deg2rad(55), 0.05817384452,
wu.gms2rad([18,35,40.7848]), wu.gms2rad([164,25,34.0017]), 2132316.9048)
]
table3 = [
(wu.deg2rad(0), wu.deg2rad(0.5), wu.deg2rad(80), wu.deg2rad(0.5), 0.05680316848,
wu.gms2rad([0,-0,16.0757]), wu.gms2rad([0,1,32.5762]), 8831874.3717),
(wu.deg2rad(-1), wu.deg2rad(5), wu.deg2rad(75), wu.deg2rad(5), 0.05659149555,
wu.gms2rad([0,-1,47.2105]), wu.gms2rad([0,6,54.0958]), 8405370.4947),
(wu.deg2rad(-5), wu.deg2rad(30), wu.deg2rad(60), wu.deg2rad(30), 0.04921108945,
wu.gms2rad([0,-4,22.3516]), wu.gms2rad([0,8,42.0756]), 7204083.8568),
(wu.deg2rad(-30), wu.deg2rad(45), wu.deg2rad(30), wu.deg2rad(45), 0.04017812574,
wu.gms2rad([0,-3,41.2461]), wu.gms2rad([0,3,41.2461]), 6652788.1287),
(wu.deg2rad(-60), wu.deg2rad(60), wu.deg2rad(5), wu.deg2rad(60), 0.02843082609,
wu.gms2rad([0,-8,40.4575]), wu.gms2rad([0,4,22.1675]), 7213412.4477),
(wu.deg2rad(-75), wu.deg2rad(85), wu.deg2rad(1), wu.deg2rad(85), 0.00497802414,
wu.gms2rad([0,-6,44.6115]), wu.gms2rad([0,1,47.0474]), 8442938.5899),
(wu.deg2rad(-80), wu.deg2rad(89.5), wu.deg2rad(0), wu.deg2rad(89.5), 0.00050178253,
wu.gms2rad([0,-1,27.9705]), wu.gms2rad([0,0,16.0490]), 8888783.7815)
]
table4 = [
(wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(90), 1.00000000000,
wu.gms2rad([90,0,0.0000]), wu.gms2rad([90,0,0.0000]), 10018754.1714),
(wu.deg2rad(1), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(179.5), 0.30320665822,
wu.gms2rad([17,39,11.0942]), wu.gms2rad([162,20,58.9032]), 19884417.8083),
(wu.deg2rad(5), wu.deg2rad(0), wu.deg2rad(-80), wu.deg2rad(170), 0.03104258442,
wu.gms2rad([178,12,51.5083]), wu.gms2rad([10,17,52.6423]), 11652530.7514),
(wu.deg2rad(30), wu.deg2rad(0), wu.deg2rad(-75), wu.deg2rad(120), 0.24135347134,
wu.gms2rad([163,49,4.4615]), wu.gms2rad([68,49,50.9617]), 14057886.8752),
(wu.deg2rad(60), wu.deg2rad(0), wu.deg2rad(-60), wu.deg2rad(40), 0.19408499032,
wu.gms2rad([157,9,33.5589]), wu.gms2rad([157,9,33.5589]), 13767414.8267),
(wu.deg2rad(75), wu.deg2rad(0), wu.deg2rad(-30), wu.deg2rad(0.5), 0.00202789418,
wu.gms2rad([179,33,3.8613]), wu.gms2rad([179,51,57.0077]), 11661713.4496),
(wu.deg2rad(80), wu.deg2rad(0), wu.deg2rad(-5), wu.deg2rad(120), 0.15201222384,
wu.gms2rad([61,5,33.9600]), wu.gms2rad([171,13,22.0148]), 11105138.2902),
(wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(0), 0.00000000000,
wu.gms2rad([0,0,0.0000]), wu.gms2rad([0,0,0.0000]), 6663348.2060)
]
tables = [table1, table2, table3, table4]
def get_example(table, example):
table -= 1
example -= 1
return tables[table][example]
def get_tables():
return tables
if __name__ == "__main__":
test = get_example(1, 4)
pass

191
GHA_triaxial/panou.py Normal file
View File

@@ -0,0 +1,191 @@
import numpy as np
from numpy import sin, cos, sqrt, arctan2
import ellipsoide
import Numerische_Integration.num_int_runge_kutta as rk
import winkelumrechnungen as wu
import ausgaben as aus
import GHA.rk as ghark
from scipy.special import factorial as fact
from math import comb
import GHA_triaxial.numeric_examples_panou as nep
# Panou, Korakitits 2019
def gha1_num_old(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, num):
phi, lamb, h = ell.cart2geod(point, "ligas3")
x, y, z = ell.geod2cart(phi, lamb, 0)
p, q = ell.p_q(x, y, z)
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
h = lambda dxds, dyds, dzds: dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
f1 = lambda x, dxds, y, dyds, z, dzds: dxds
f2 = lambda x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / ell.func_H(x, y, z) * x
f3 = lambda x, dxds, y, dyds, z, dzds: dyds
f4 = lambda x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / ell.func_H(x, y, z) * y/(1-ell.ee**2)
f5 = lambda x, dxds, y, dyds, z, dzds: dzds
f6 = lambda x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / ell.func_H(x, y, z) * z/(1-ell.ex**2)
funktionswerte = rk.verfahren([f1, f2, f3, f4, f5, f6], [x, dxds0, y, dyds0, z, dzds0], s, num, fein=False)
P2 = funktionswerte[-1]
P2 = (P2[0], P2[2], P2[4])
return P2
def buildODE(ell):
def ODE(v):
x, dxds, y, dyds, z, dzds = v
H = ell.func_H(x, y, z)
h = dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
ddx = -(h/H)*x
ddy = -(h/H)*y/(1-ell.ee**2)
ddz = -(h/H)*z/(1-ell.ex**2)
return [dxds, ddx, dyds, ddy, dzds, ddz]
return ODE
def gha1_num(ell, point, alpha0, s, num):
phi, lam, _ = ell.cart2geod(point, "ligas3")
x0, y0, z0 = ell.geod2cart(phi, lam, 0)
p, q = ell.p_q(x0, y0, z0)
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
v_init = [x0, dxds0, y0, dyds0, z0, dzds0]
F = buildODE(ell)
werte = rk.rk_chat(F, v_init, s, num)
x1, _, y1, _, z1, _ = werte[-1]
return x1, y1, z1
def checkLiouville(ell: ellipsoide.EllipsoidTriaxial, points):
constantValues = []
for point in points:
x = point[1]
dxds = point[2]
y = point[3]
dyds = point[4]
z = point[5]
dzds = point[6]
values = ell.p_q(x, y, z)
p = values["p"]
q = values["q"]
t1 = values["t1"]
t2 = values["t2"]
P = p[0]*dxds + p[1]*dyds + p[2]*dzds
Q = q[0]*dxds + q[1]*dyds + q[2]*dzds
alpha = arctan2(P, Q)
c = ell.ay**2 - (t1 * sin(alpha)**2 + t2 * cos(alpha)**2)
constantValues.append(c)
pass
def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
"""
Panou, Korakitits 2020, 5ff.
:param ell:
:param point:
:param alpha0:
:param s:
:param maxM:
:return:
"""
x, y, z = point
x_m = [x]
y_m = [y]
z_m = [z]
# erste Ableitungen (7-8)
H = x ** 2 + y ** 2 / (1 - ell.ee ** 2) ** 2 + z ** 2 / (1 - ell.ex ** 2) ** 2
sqrtH = sqrt(H)
n = np.array([x / sqrtH,
y / ((1-ell.ee**2) * sqrtH),
z / ((1-ell.ex**2) * sqrtH)])
u, v = ell.cart2para(np.array([x, y, z]))
G = sqrt(1 - ell.ex**2 * cos(u)**2 - ell.ee**2 * sin(u)**2 * sin(v)**2)
q = np.array([-1/G * sin(u) * cos(v),
-1/G * sqrt(1-ell.ee**2) * sin(u) * sin(v),
1/G * sqrt(1-ell.ex**2) * cos(u)])
p = np.array([q[1]*n[2] - q[2]*n[1],
q[2]*n[0] - q[0]*n[2],
q[0]*n[1] - q[1]*n[0]])
x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
y_m.append(p[1] * sin(alpha0) + q[1] * cos(alpha0))
z_m.append(p[2] * sin(alpha0) + q[2] * cos(alpha0))
# H Ableitungen (7)
H_ = lambda p: np.sum([comb(p, i) * (x_m[p - i] * x_m[i] +
1 / (1-ell.ee**2) ** 2 * y_m[p-i] * y_m[i] +
1 / (1-ell.ex**2) ** 2 * z_m[p-i] * z_m[i]) for i in range(0, p+1)])
# h Ableitungen (7)
h_ = lambda q: np.sum([comb(q, j) * (x_m[q-j+1] * x_m[j+1] +
1 / (1 - ell.ee ** 2) * y_m[q-j+1] * y_m[j+1] +
1 / (1 - ell.ex ** 2) * z_m[q-j+1] * z_m[j+1]) for j in range(0, q+1)])
# h/H Ableitungen (6)
hH_ = lambda t: 1/H_(0) * (h_(t) - fact(t) *
np.sum([H_(t+1-l) / (fact(t+1-l) * fact(l-1)) * hH_t[l-1] for l in range(1, t+1)]))
# xm, ym, zm Ableitungen (6)
x_ = lambda m: -np.sum([comb(m-2, k) * hH_t[m-2-k] * x_m[k] for k in range(0, m-2+1)])
y_ = lambda m: -1 / (1-ell.ee**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * y_m[k] for k in range(0, m-2+1)])
z_ = lambda m: -1 / (1-ell.ex**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * z_m[k] for k in range(0, m-2+1)])
hH_t = []
a_m = []
b_m = []
c_m = []
for m in range(0, maxM+1):
if m >= 2:
hH_t.append(hH_(m-2))
x_m.append(x_(m))
y_m.append(y_(m))
z_m.append(z_(m))
a_m.append(x_m[m] / fact(m))
b_m.append(y_m[m] / fact(m))
c_m.append(z_m[m] / fact(m))
# am, bm, cm (6)
x_s = 0
for a in reversed(a_m):
x_s = x_s * s + a
y_s = 0
for b in reversed(b_m):
y_s = y_s * s + b
z_s = 0
for c in reversed(c_m):
z_s = z_s * s + c
return x_s, y_s, z_s
pass
if __name__ == "__main__":
# ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978")
ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
# ellbi = ellipsoide.EllipsoidTriaxial.init_name("Bessel-biaxial")
re = ellipsoide.EllipsoidBiaxial.init_name("Bessel")
# Panou 2013, 7, Table 1, beta0=60°
beta0, lamb0, beta1, lamb1, c, alpha0, alpha1, s = nep.get_example(table=1, example=5)
P0 = ell.ell2cart(beta0, lamb0)
P1 = ell.ell2cart(beta1, lamb1)
# P1_num = gha1_num(ell, P0, alpha0, s, 1000)
P1_num = gha1_num(ell, P0, alpha0, s, 10000)
P1_ana = gha1_ana(ell, P0, alpha0, s, 30)
pass

View File

@@ -0,0 +1,339 @@
import numpy as np
from ellipsoide import EllipsoidTriaxial
import Numerische_Integration.num_int_runge_kutta as rk
import ausgaben as aus
# Panou 2013
def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, epsilon=10**-12, iter_max=30):
"""
:param ell: triaxiales Ellipsoid
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
:param lamb_1: elllipsoidische Länge Punkt 1
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
:param lamb_2: elllipsoidische Länge Punkt 2
:param n: Anzahl Schritte
:param epsilon:
:param iter_max: Maximale Anzhal Iterationen
:return:
"""
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
def arccot(x):
return np.arctan2(1.0, x)
def BETA_LAMBDA(beta, lamb):
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
LAMBDA = (ell.ax**2 * np.sin(lamb)**2 + ell.ay**2 * np.cos(lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)
# Erste Ableitungen von ΒETA und LAMBDA
BETA_ = (ell.ax**2 * ell.Ey**2 * np.sin(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2
LAMBDA_ = - (ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2
# Zweite Ableitungen von ΒETA und LAMBDA
BETA__ = ((2 * ell.ax**2 * ell.Ey**4 * np.sin(2*beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**3) + ((2 * ell.ax**2 * ell.Ey**2 * np.cos(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2)
LAMBDA__ = (((2 * ell.b**2 * ell.Ee**4 * np.sin(2*lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**3) -
((2 * ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2))
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
F = 0
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
# Erste Ableitungen von E und G
E_beta = BETA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - BETA * ell.Ey**2 * np.sin(2*beta)
E_lamb = BETA * ell.Ee**2 * np.sin(2*lamb)
G_beta = - LAMBDA * ell.Ey**2 * np.sin(2*beta)
G_lamb = LAMBDA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + LAMBDA * ell.Ee**2 * np.sin(2*lamb)
# Zweite Ableitungen von E und G
E_beta_beta = BETA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - 2 * BETA_ * ell.Ey**2 * np.sin(2*beta) - 2 * BETA * ell.Ey**2 * np.cos(2*beta)
E_beta_lamb = BETA_ * ell.Ee**2 * np.sin(2*lamb)
E_lamb_lamb = 2 * BETA * ell.Ee**2 * np.cos(2*lamb)
G_beta_beta = - 2 * LAMBDA * ell.Ey**2 * np.cos(2*beta)
G_beta_lamb = - LAMBDA_ * ell.Ey**2 * np.sin(2*beta)
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
return (BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb)
def p_coef(beta, lamb):
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
p_3 = - 0.5 * (E_lamb / G)
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
p_0 = 0.5 * (G_beta / E)
p_33 = - 0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G ** 2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G ** 2)) - 0.5 * ((E * E_beta_beta - E_beta * E_beta) / (E ** 2))
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2)) - ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2))
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E ** 2))
return (BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00)
def q_coef(beta, lamb):
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
q_3 = - 0.5 * (G_beta / E)
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
q_0 = 0.5 * (E_lamb / G)
q_33 = - 0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E ** 2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E ** 2)) - 0.5 * ((G * G_lamb_lamb - G_lamb * G_lamb) / (G ** 2))
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2)) - ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2))
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G ** 2))
return (BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00)
if lamb_1 != lamb_2:
def functions():
def f_beta(lamb, beta, beta_p, X3, X4):
return beta_p
def f_beta_p(lamb, beta, beta_p, X3, X4):
(BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
return p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
def f_X3(lamb, beta, beta_p, X3, X4):
return X4
def f_X4(lamb, beta, beta_p, X3, X4):
(BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
return (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
return [f_beta, f_beta_p, f_X3, f_X4]
N = n
dlamb = lamb_2 - lamb_1
if abs(dlamb) < 1e-15:
beta_0 = 0.0
else:
beta_0 = (beta_2 - beta_1) / (lamb_2 - lamb_1)
converged = False
iterations = 0
funcs = functions()
for i in range(iter_max):
iterations = i + 1
startwerte = [lamb_1, beta_1, beta_0, 0.0, 1.0]
werte = rk.verfahren(funcs, startwerte, dlamb, N)
lamb_end, beta_end, beta_p_end, X3_end, X4_end = werte[-1]
d_beta_end_d_beta0 = X3_end
delta = beta_end - beta_2
if abs(delta) < epsilon:
converged = True
break
if abs(d_beta_end_d_beta0) < 1e-20:
raise RuntimeError("Abbruch.")
max_step = 0.5
step = delta / d_beta_end_d_beta0
if abs(step) > max_step:
step = np.sign(step) * max_step
beta_0 = beta_0 - step
if not converged:
raise RuntimeError("konvergiert nicht.")
# Z
werte = rk.verfahren(funcs, [lamb_1, beta_1, beta_0, 0.0, 1.0], dlamb, N)
beta_arr = np.zeros(N + 1)
lamb_arr = np.zeros(N + 1)
beta_p_arr = np.zeros(N + 1)
for i, state in enumerate(werte):
lamb_arr[i] = state[0]
beta_arr[i] = state[1]
beta_p_arr[i] = state[2]
(_, _, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
h = abs(dlamb) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
beta0 = beta_arr[0]
lamb0 = lamb_arr[0]
c = np.sqrt(
(np.cos(beta0) ** 2 + (ell.Ee**2 / ell.Ex**2) * np.sin(beta0) ** 2) * np.sin(alpha_1) ** 2
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
)
return alpha_1, alpha_2, s
if lamb_1 == lamb_2:
N = n
dbeta = beta_2 - beta_1
if abs(dbeta) < 10**-15:
return 0, 0, 0
lamb_0 = 0
converged = False
iterations = 0
def functions_beta():
def g_lamb(beta, lamb, lamb_p, Y3, Y4):
return lamb_p
def g_lamb_p(beta, lamb, lamb_p, Y3, Y4):
(BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
return q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
def g_Y3(beta, lamb, lamb_p, Y3, Y4):
return Y4
def g_Y4(beta, lamb, lamb_p, Y3, Y4):
(BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
return (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
return [g_lamb, g_lamb_p, g_Y3, g_Y4]
funcs_beta = functions_beta()
for i in range(iter_max):
iterations = i + 1
startwerte = [beta_1, lamb_1, lamb_0, 0.0, 1.0]
werte = rk.verfahren(funcs_beta, startwerte, dbeta, N)
beta_end, lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
d_lamb_end_d_lambda0 = Y3_end
delta = lamb_end - lamb_2
if abs(delta) < epsilon:
converged = True
break
if abs(d_lamb_end_d_lambda0) < 1e-20:
raise RuntimeError("Abbruch (Ableitung ~ 0).")
max_step = 1.0
step = delta / d_lamb_end_d_lambda0
if abs(step) > max_step:
step = np.sign(step) * max_step
lamb_0 = lamb_0 - step
werte = rk.verfahren(funcs_beta, [beta_1, lamb_1, lamb_0, 0.0, 1.0], dbeta, N)
beta_arr = np.zeros(N + 1)
lamb_arr = np.zeros(N + 1)
lambda_p_arr = np.zeros(N + 1)
for i, state in enumerate(werte):
beta_arr[i] = state[0]
lamb_arr[i] = state[1]
lambda_p_arr[i] = state[2]
# Azimute
(BETA1, LAMBDA1, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(BETA2, LAMBDA2, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0])
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1])
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
h = abs(dbeta) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
return alpha_1, alpha_2, s
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
# beta1 = np.deg2rad(75)
# lamb1 = np.deg2rad(-90)
# beta2 = np.deg2rad(75)
# lamb2 = np.deg2rad(66)
# a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2)
# print(aus.gms("a1", a1, 4))
# print(aus.gms("a2", a2, 4))
# print(s)
cart1 = ell.para2cart(0, 0)
cart2 = ell.para2cart(0.4, 0.4)
beta1, lamb1 = ell.cart2ell(cart1)
beta2, lamb2 = ell.cart2ell(cart2)
a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=2500)
print(s)

119
Hansen_ES_CMA.py Normal file
View File

@@ -0,0 +1,119 @@
import numpy as np
def felli(x):
N = x.shape[0]
if N < 2:
raise ValueError("dimension must be greater than one")
exponents = np.arange(N) / (N - 1)
return float(np.sum((1e6 ** exponents) * (x ** 2)))
def escma():
#Initialization
# User defined input parameters
N = 10
xmean = np.random.rand(N)
sigma = 0.5
stopfitness = 1e-10
stopeval = int(1e3 * N**2)
# Strategy parameter setting: Selection
lambda_ = 4 + int(np.floor(3 * np.log(N)))
mu = lambda_ / 2.0
# muXone recombination weights
weights = np.log(mu + 0.5) - np.log(np.arange(1, int(mu) + 1))
mu = int(np.floor(mu))
weights = weights / np.sum(weights)
mueff = np.sum(weights)**2 / np.sum(weights**2)
# Strategy parameter setting: Adaptation
cc = (4 + mueff / N) / (N + 4 + 2 * mueff / N)
cs = (mueff + 2) / (N + mueff + 5)
c1 = 2 / ((N + 1.3)**2 + mueff)
cmu = min(1 - c1,
2 * (mueff - 2 + 1 / mueff) / ((N + 2)**2 + 2 * mueff))
damps = 1 + 2 * max(0, np.sqrt((mueff - 1) / (N + 1)) - 1) + cs
# Initialize dynamic (internal) strategy parameters and constants
pc = np.zeros(N)
ps = np.zeros(N)
B = np.eye(N)
D = np.eye(N)
C = B @ D @ (B @ D).T
eigeneval = 0
chiN = np.sqrt(N) * (1 - 1/(4*N) + 1/(21 * N**2))
#Generation Loop
counteval = 0
arx = np.zeros((N, lambda_))
arz = np.zeros((N, lambda_))
arfitness = np.zeros(lambda_)
while counteval < stopeval:
# Generate and evaluate lambda offspring
for k in range(lambda_):
arz[:, k] = np.random.randn(N)
arx[:, k] = xmean + sigma * (B @ D @ arz[:, k])
arfitness[k] = felli(arx[:, k])
counteval += 1
# Sort by fitness and compute weighted mean into xmean
idx = np.argsort(arfitness)
arfitness = arfitness[idx]
arindex = idx
xold = xmean.copy()
xmean = arx[:, arindex[:mu]] @ weights
zmean = arz[:, arindex[:mu]] @ weights
# Cumulation: Update evolution paths
ps = (1 - cs) * ps + np.sqrt(cs * (2 - cs) * mueff) * (B @ zmean)
norm_ps = np.linalg.norm(ps)
hsig = norm_ps / np.sqrt(1 - (1 - cs)**(2 * counteval / lambda_)) / chiN < \
(1.4 + 2 / (N + 1))
hsig = 1.0 if hsig else 0.0
pc = (1 - cc) * pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * (B @ D @ zmean)
# Adapt covariance matrix C
BDz = B @ D @ arz[:, arindex[:mu]]
C = (1 - c1 - cmu) * C \
+ c1 * (np.outer(pc, pc) + (1 - hsig) * cc * (2 - cc) * C) \
+ cmu * BDz @ np.diag(weights) @ BDz.T
# Adapt step-size sigma
sigma = sigma * np.exp((cs / damps) * (norm_ps / chiN - 1))
# Update B and D from C (Eigenzerlegung, O(N^2))
if counteval - eigeneval > lambda_ / ((c1 + cmu) * N * 10):
eigeneval = counteval
# enforce symmetry
C = (C + C.T) / 2.0
eigvals, B = np.linalg.eigh(C)
D = np.diag(np.sqrt(eigvals))
# Break, if fitness is good enough
if arfitness[0] <= stopfitness:
break
# Escape flat fitness, or better terminate?
if arfitness[0] == arfitness[int(np.ceil(0.7 * lambda_)) - 1]:
sigma = sigma * np.exp(0.2 + cs / damps)
print("warning: flat fitness, consider reformulating the objective")
print(f"{counteval}: {arfitness[0]}")
#Final Message
print(f"{counteval}: {arfitness[0]}")
xmin = arx[:, arindex[0]]
return xmin
if __name__ == "__main__":
xmin = escma()
print("Bestes gefundenes x:", xmin)
print("f(xmin) =", felli(xmin))

View File

@@ -1,4 +1,4 @@
def verfahren(funktionen: list, startwerte: list, weite: float, schritte: int) -> list:
def verfahren(funktionen: list, startwerte: list, weite: float, schritte: int, fein: bool = True) -> list:
"""
Runge-Kutta-Verfahren für ein beliebiges DGLS
:param funktionen: Liste mit allen Funktionen
@@ -14,19 +14,21 @@ def verfahren(funktionen: list, startwerte: list, weite: float, schritte: int) -
zuschlaege_grob = zuschlaege(funktionen, werte[-1], h)
werte_grob = [werte[-1][j] if j == 0 else werte[-1][j] + zuschlaege_grob[j - 1]
for j in range(len(startwerte))]
if fein:
zuschlaege_fein_1 = zuschlaege(funktionen, werte[-1], h / 2)
werte_fein_1 = [werte[-1][j] + h/2 if j == 0 else werte[-1][j]+zuschlaege_fein_1[j-1]
for j in range(len(startwerte))]
zuschlaege_fein_1 = zuschlaege(funktionen, werte[-1], h / 2)
werte_fein_1 = [werte[-1][j] + h/2 if j == 0 else werte[-1][j]+zuschlaege_fein_1[j-1]
for j in range(len(startwerte))]
zuschlaege_fein_2 = zuschlaege(funktionen, werte_fein_1, h / 2)
werte_fein_2 = [werte_fein_1[j] + h/2 if j == 0 else werte_fein_1[j]+zuschlaege_fein_2[j-1]
for j in range(len(startwerte))]
zuschlaege_fein_2 = zuschlaege(funktionen, werte_fein_1, h / 2)
werte_fein_2 = [werte_fein_1[j] + h/2 if j == 0 else werte_fein_1[j]+zuschlaege_fein_2[j-1]
for j in range(len(startwerte))]
werte_korr = [werte_fein_2[j] if j == 0 else werte_fein_2[j] + 1/15 * (werte_fein_2[j] - werte_grob[j])
for j in range(len(startwerte))]
werte_korr = [werte_fein_2[j] if j == 0 else werte_fein_2[j] + 1/15 * (werte_fein_2[j] - werte_grob[j])
for j in range(len(startwerte))]
werte.append(werte_korr)
werte.append(werte_korr)
else:
werte.append(werte_grob)
return werte
@@ -60,3 +62,23 @@ def zuschlaege(funktionen: list, startwerte: list, h: float) -> list:
k_ = [(k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6 for i in range(len(k1))]
return k_
def rk_chat(F, v0: list, weite: float, schritte: int):
h = weite/schritte
v = v0
werte = [v]
for _ in range(schritte):
k1 = F(v)
k2 = F([v[i] + 0.5 * h * k1[i] for i in range(6)])
k3 = F([v[i] + 0.5 * h * k2[i] for i in range(6)])
k4 = F([v[i] + h * k3[i] for i in range(6)])
v = [
v[i] + (h / 6) * (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i])
for i in range(6)
]
werte.append(v)
return werte

View File

@@ -1,14 +0,0 @@
from numpy import sqrt, cos, sin
import ellipsoide
import ausgaben as aus
import winkelumrechnungen as wu
re = ellipsoide.EllipsoidBiaxial.init_name("Bessel")
eta = lambda phi: sqrt(re.e_ ** 2 * cos(phi) ** 2)
A = wu.gms2rad([327,0,0])
phi = wu.gms2rad([35,0,0])
h = 3500
dA = eta(phi)**2 * h * sin(A)*cos(A) / re.N(phi)
print(aus.gms("dA", dA, 10))

BIN
assets/favicon.ico Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.2 KiB

View File

@@ -10,9 +10,7 @@ def xyz(x: float, y: float, z: float, stellen: int) -> str:
:param stellen: Anzahl Nachkommastellen
:return: String zur Ausgabe der Koordinaten
"""
return f"""x = {(round(x,stellen))} m
y = {(round(y,stellen))} m
z = {(round(z,stellen))} m"""
return f"""x = {(round(x,stellen))} m y = {(round(y,stellen))} m z = {(round(z,stellen))} m"""
def gms(name: str, rad: float, stellen: int) -> str:

516
dashboard.py Normal file
View File

@@ -0,0 +1,516 @@
from dash import Dash, html, dcc, Input, Output, State, no_update
import dash
import plotly.graph_objects as go
import numpy as np
from GHA_triaxial.panou import gha1_ana
from GHA_triaxial.panou import gha1_num
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
from ellipsoide import EllipsoidTriaxial
import winkelumrechnungen as wu
import ausgaben as aus
app = Dash(__name__, suppress_callback_exceptions=True)
app.title = "Geodätische Hauptaufgaben"
def abplattung(a, b):
return (a - b) / a
def ellipsoid_figure(ell: EllipsoidTriaxial, title="Dreiachsiges Ellipsoid"):
fig = go.Figure()
# Darstellung
rx, ry, rz = 1.05*ell.ax, 1.05*ell.ay, 1.05*ell.b
fig.update_layout(
title=title,
scene=dict(
xaxis=dict(range=[-rx, rx], title="X [m]"),
yaxis=dict(range=[-ry, ry], title="Y [m]"),
zaxis=dict(range=[-rz, rz], title="Z [m]"),
aspectmode="data"
),
margin=dict(l=0, r=0, t=40, b=0),
)
# Ellipsoid
u = np.linspace(-np.pi/2, np.pi/2, 80)
v = np.linspace(-np.pi, np.pi, 160)
U, V = np.meshgrid(u, v)
X, Y, Z = ell.para2cart(U, V)
fig.add_trace(go.Surface(
x=X, y=Y, z=Z, showscale=False, opacity=0.7,
surfacecolor=np.zeros_like(X),
colorscale=[[0, "rgb(200,220,255)"], [1, "rgb(200,220,255)"]],
name="Ellipsoid"
))
return fig
def figure_constant_lines(fig, ell: EllipsoidTriaxial, coordsystem: str = "para"):
if coordsystem == "para":
constants_u = wu.deg2rad(np.arange(0, 360, 15))
all_v = np.linspace(-np.pi / 2, np.pi / 2, 361)
for u in constants_u:
xm, ym, zm = ell.para2cart(u, all_v)
fig.add_trace(go.Scatter3d(
x=xm, y=ym, z=zm, mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
all_u = np.linspace(0, 2 * np.pi, 361)
constants_v = wu.deg2rad(np.arange(-75, 90, 15))
for v in constants_v:
x, y, z = ell.para2cart(all_u, v)
fig.add_trace(go.Scatter3d(
x=x, y=y, z=z, mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
elif coordsystem == "ell":
constants_beta = wu.deg2rad(np.arange(-75, 90, 15))
all_lamb = np.linspace(0, 2 * np.pi, 361)
for beta in constants_beta:
xyz = ell.ell2cart(beta, all_lamb)
fig.add_trace(go.Scatter3d(
x=xyz[:, 0], y=xyz[:, 1], z=xyz[:, 2], mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
all_beta = np.linspace(-np.pi / 2, np.pi / 2, 361)
constants_lamb = wu.deg2rad(np.arange(0, 360, 15))
for lamb in constants_lamb:
xyz = ell.ell2cart(all_beta, lamb)
fig.add_trace(go.Scatter3d(
x=xyz[:, 0], y=xyz[:, 1], z=xyz[:, 2], mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
elif coordsystem == "geod":
constants_phi = wu.deg2rad(np.arange(-75, 90, 15))
all_lamb = np.linspace(0, 2 * np.pi, 361)
for phi in constants_phi:
x, y, z = ell.geod2cart(phi, all_lamb, 0)
fig.add_trace(go.Scatter3d(
x=x, y=y, z=z, mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
all_phi = np.linspace(-np.pi / 2, np.pi / 2, 361)
constants_lamb = wu.deg2rad(np.arange(0, 360, 15))
for lamb in constants_lamb:
x, y, z = ell.geod2cart(all_phi, lamb, 0)
fig.add_trace(go.Scatter3d(
x=x, y=y, z=z, mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
return fig
def figure_points(fig, points):
"""
:param fig: plotly.graph_objects.Figure
:param points: Punktliste [(name, (x,y,z), color)]
:return: plotly.graph_objects.Figure
"""
for name, (px, py, pz), color in points:
fig.add_trace(go.Scatter3d(
x=[px], y=[py], z=[pz],
mode="markers+text",
marker=dict(size=6, color=color),
text=[name], textposition="top center",
name=name, showlegend=False
))
return fig
def figure_lines(fig, lines):
"""
:param fig: plotly.graph_objects.Figure
:param lines: Linienliste [((x1,y1,z1), (x2,y2,z2), color)]
:return: plotly.graph_objects.Figure
"""
for (p1, p2, color) in lines:
xline = [p1[0], p2[0]]
yline = [p1[1], p2[1]]
zline = [p1[2], p2[2]]
fig.add_trace(go.Scatter3d(
x=xline, y=yline, z=zline,
mode="lines",
line=dict(width=4, color=color),
showlegend=False
))
return fig
app.layout = html.Div(
style={"fontFamily": "Arial", "padding": "5px", "width": "70%", "margin-left": "auto"},
children=[
html.H1("Geodätische Hauptaufgaben"),
html.H2("für dreiachsige Ellipsoide"),
html.Label("Ellipsoid wählen:"),
dcc.Dropdown(
id="dropdown-ellipsoid",
options=[
{"label": "BursaFialova1993", "value": "BursaFialova1993"},
{"label": "BursaSima1980", "value": "BursaSima1980"},
{"label": "BursaSima1980round", "value": "BursaSima1980round"},
{"label": "Eitschberger1978", "value": "Eitschberger1978"},
{"label": "Bursa1972", "value": "Bursa1972"},
{"label": "Bursa1970", "value": "Bursa1970"},
{"label": "BesselBiaxial", "value": "BesselBiaxial"},
{"label": "Fiction", "value": "Fiction"},
#{"label": "Ei", "value": "Ei"},
],
value="",
style={"width": "300px", "marginBottom": "20px"},
),
html.Label("Halbachsen:"),
dcc.Input(
id="input-ax",
type="number",
min=0,
placeholder="ax...[m]",
style={"marginBottom": "10px", "display": "block", "width": "300px"},
),
dcc.Input(
id="input-ay",
type="number",
min=0,
placeholder="ay...[m]",
style={"marginBottom": "10px", "display": "block", "width": "300px"},
),
dcc.Input(
id="input-b",
type="number",
min=0,
placeholder="b...[m]",
style={"marginBottom": "20px", "display": "block", "width": "300px"},
),
html.Button(
"Ellipsoid berechnen",
id="calc-ell",
n_clicks=0,
style={"marginRight": "10px", "marginBottom": "20px"},
),
html.Div(id="output-area", style={"marginBottom": "20px"}),
dcc.Tabs(
id="tabs-GHA",
value="tab-GHA1",
style={"marginRight": "10px", "marginBottom": "20px", "width": "50%"},
children=[
dcc.Tab(label="Erste Hauptaufgabe", value="tab-GHA1"),
dcc.Tab(label="Zweite Hauptaufgabe", value="tab-GHA2"),
],
),
html.Div(
id="tabs-GHA-out",
style={"marginRight": "10px", "marginBottom": "20px", "width": "50%"},
),
html.Div(id="output-gha1", style={"marginBottom": "20px"}),
html.Div(id="output-gha2", style={"marginBottom": "20px"}),
dcc.Graph(
id="ellipsoid-plot",
style={"height": "500px", "width": "700px"},
),
html.P(
"© 2025",
style={
"fontSize": "12px",
"color": "gray",
"textAlign": "center",
},
),
],
)
@app.callback(
Output("input-ax", "value"),
Output("input-ay", "value"),
Output("input-b", "value"),
Input("dropdown-ellipsoid", "value"),
)
def fill_inputs_from_dropdown(selected_ell):
if not selected_ell:
return None, None, None
ell = EllipsoidTriaxial.init_name(selected_ell)
ax = ell.ax
ay = ell.ay
b = ell.b
return ax, ay, b
@app.callback(
Output("output-area", "children"),
Input("calc-ell", "n_clicks"),
State("input-ax", "value"),
State("input-ay", "value"),
State("input-b", "value"),
)
def update_output(n_clicks, ax, ay, b):
if not n_clicks:
return ""
if n_clicks and ax is None or ay is None or b is None:
return html.Span("Bitte Ellipsoid auswählen!", style={"color": "red"})
if ay >= ax or b >= ay or ax <= 0 or ay <= 0 or b <= 0:
return html.Span("Eingabe inkorrekt.", style={"color": "red"})
ell = EllipsoidTriaxial(ax, ay, b)
return f"ex = {round(ell.ex, 6)}, ", f"ey = {round(ell.ey, 6)}, ", f"ee = {round(ell.ee, 6)}"
@app.callback(
Output("tabs-GHA-out", "children"),
Input("tabs-GHA", "value"),
)
def render_content(tab):
show1 = {"display": "block"} if tab == "tab-GHA1" else {"display": "none"}
show2 = {"display": "block"} if tab == "tab-GHA2" else {"display": "none"}
pane_gha1 = html.Div(
[
dcc.Input(id="input-GHA1-beta1", type="number", min=-90, max=90, placeholder="β1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA1-lamb1", type="number", min=-180, max=180, placeholder="λ1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA1-s", type="number", min=0, placeholder="s...[m]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA1-a", type="number", min=0, max=360, placeholder="α...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Checklist(
id="method-checklist-1",
options=[
{"label": "Analytisch", "value": "analytisch"},
{"label": "Numerisch", "value": "numerisch"},
{"label": "Stochastisch (ES)", "value": "stochastisch"},
],
value=[],
style={"marginBottom": "20px"},
),
html.Div(
[
html.Button(
"Berechnen",
id="button-calc-gha1",
n_clicks=0,
style={"marginRight": "10px"},
),
],
style={"marginBottom": "20px"},
),
],
id="pane-gha1",
style=show1,
)
pane_gha2 = html.Div(
[
dcc.Input(id="input-GHA2-beta1", type="number", min=-90, max=90, placeholder="β1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA2-lamb1", type="number", min=-180, max=180, placeholder="λ1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA2-beta2", type="number", min=-90, max=90, placeholder="β2...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA2-lamb2", type="number", min=-180, max=180, placeholder="λ2...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Checklist(
id="method-checklist-2",
options=[
{"label": "Numerisch", "value": "numerisch"},
{"label": "Stochastisch (ES)", "value": "stochastisch"},
],
value=[],
style={"marginBottom": "20px"},
),
html.Div(
[
html.Button(
"Berechnen",
id="button-calc-gha2",
n_clicks=0,
style={"marginRight": "10px"},
),
],
style={"marginBottom": "20px"},
),
],
id="pane-gha2",
style=show2,
)
return html.Div([pane_gha1, pane_gha2])
@app.callback(
Output("output-gha1", "children"),
Output("output-gha2", "children"),
Output("ellipsoid-plot", "figure"),
Input("button-calc-gha1", "n_clicks"),
Input("button-calc-gha2", "n_clicks"),
State("input-GHA1-beta1", "value"),
State("input-GHA1-lamb1", "value"),
State("input-GHA1-s", "value"),
State("input-GHA1-a", "value"),
State("input-GHA2-beta1", "value"),
State("input-GHA2-lamb1", "value"),
State("input-GHA2-beta2", "value"),
State("input-GHA2-lamb2", "value"),
State("input-ax", "value"),
State("input-ay", "value"),
State("input-b", "value"),
State("method-checklist-1", "value"),
State("method-checklist-2", "value"),
prevent_initial_call=True,
)
def calc_and_plot(n1, n2,
beta11, lamb11, s, a_deg,
beta21, lamb21, beta22, lamb22,
ax, ay, b, method1, method2):
if not (n1 or n2):
return no_update, no_update, no_update
if not ax or not ay or not b:
return html.Span("Bitte Ellipsoid auswählen!", style={"color": "red"}), "", go.Figure()
ell = EllipsoidTriaxial(ax, ay, b)
if dash.ctx.triggered_id == "button-calc-gha1":
if None in (beta11, lamb11, s, a_deg):
return html.Span("Bitte β₁, λ₁, s und α eingeben.", style={"color": "red"}), "", go.Figure()
beta_rad = wu.deg2rad(float(beta11))
lamb_rad = wu.deg2rad(float(lamb11))
alpha_rad = wu.deg2rad(float(a_deg))
s_val = float(s)
p1 = tuple(map(float, ell.ell2cart(beta_rad, lamb_rad)))
out1 = []
if "analytisch" in method1:
# ana
x2, y2, z2 = gha1_ana(ell, p1, alpha_rad, s_val, 70)
p2_ana = (float(x2), float(y2), float(z2))
beta2, lamb2 = ell.cart2ell([x2, y2, z2])
#out1 += f"kartesisch: x₂={p2[0]:.5f} m, y₂={p2[1]:.5f} m, z₂={p2[2]:.5f} m; ellipsoidisch: {aus.gms("β₂", beta2, 5)}, {aus.gms("λ₂", lamb2, 5)},"
out1.append(
html.Div([
html.Strong("Analytisch: "),
html.Br(),
html.Span(f"kartesisch: x₂={x2:.4f} m, y₂={y2:.4f} m, z₂={z2:.4f} m"),
html.Br(),
html.Span(f"ellipsoidisch: {aus.gms('β₂', beta2, 4)}, {aus.gms('λ₂', lamb2, 4)}")
])
)
if "numerisch" in method1:
# num
p2_num = gha1_num(ell, p1, alpha_rad, s_val, 10000)
beta2_num, lamb2_num = ell.cart2ell(p2_num)
out1.append(
html.Div([
html.Strong("Numerisch: "),
html.Br(),
html.Span(f"kartesisch: x₂={p2_num[0]:.4f} m, y₂={p2_num[1]:.4f} m, z₂={p2_num[2]:.4f} m"),
html.Br(),
html.Span(f"ellipsoidisch: {aus.gms('β₂', beta2_num, 4)}, {aus.gms('λ₂', lamb2_num, 4)}")
])
)
if "stochastisch" in method1:
# stoch
p2_stoch = "noch nicht implementiert.."
out1.append(
html.Div([
html.Strong("Stochastisch (ES): "),
html.Span(f"{p2_stoch}")
])
)
if not method1:
return html.Span("Bitte Berechnungsverfahren auswählen!", style={"color": "red"}), "", go.Figure()
fig = ellipsoid_figure(ell, title="Erste Hauptaufgabe - analystisch")
#fig = figure_constant_lines(fig, ell, "geod")
fig = figure_constant_lines(fig, ell, "ell")
#fig = figure_constant_lines(fig, ell, "para")
fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2_ana, "red")])
#out1 = f"kartesisch: x₂={p2[0]:.5f} m, y₂={p2[1]:.5f} m, z₂={p2[2]:.5f} m; ellipsoidisch: {aus.gms("β₂", beta2, 5)}, {aus.gms("λ₂", lamb2, 5)}, {p2_num}"
return out1, "", fig
if dash.ctx.triggered_id == "button-calc-gha2":
if None in (beta21, lamb21, beta22, lamb22):
return html.Span("Bitte β₁, λ₁, β₂, λ₂ eingeben.", style={"color": "red"}), "", go.Figure()
p1 = tuple(ell.ell2cart(np.deg2rad(float(beta21)), np.deg2rad(float(lamb21))))
p2 = tuple(ell.ell2cart(np.deg2rad(float(beta22)), np.deg2rad(float(lamb22))))
out2 = []
if "numerisch" in method2:
alpha_1, alpha_2, s12 = gha2_num(
ell,
np.deg2rad(float(beta21)), np.deg2rad(float(lamb21)),
np.deg2rad(float(beta22)), np.deg2rad(float(lamb22))
)
out2.append(
html.Div([
html.Strong("Numerisch: "),
html.Span(f"{aus.gms('α₁₂', alpha_1, 4)}, {aus.gms('α₂₁', alpha_2, 4)}, s = {s12:.4f} m"),
])
)
if "stochastisch" in method2:
# stoch
a_stoch = "noch nicht implementiert.."
out2.append(
html.Div([
html.Strong("Stochastisch (ES): "),
html.Span(f"{a_stoch}")
])
)
if not method2:
return html.Span("Bitte Berechnungsverfahren auswählen!", style={"color": "red"}), "", go.Figure()
fig = ellipsoid_figure(ell, title="Zweite Hauptaufgabe")
fig = figure_constant_lines(fig, ell, "ell")
fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2, "red")])
return "", out2, fig
return no_update, no_update, no_update
if __name__ == "__main__":
app.run(debug=False)

View File

@@ -1,6 +1,8 @@
import numpy as np
from numpy import sin, cos, arctan, arctan2, sqrt
import winkelumrechnungen as wu
import ausgaben as aus
import jacobian_Ligas
class EllipsoidBiaxial:
@@ -53,9 +55,9 @@ class EllipsoidBiaxial:
phi2p = lambda self, phi: self.N(phi) * np.cos(phi)
def ellipsoidische_Koords (self, Eh, Ephi, x, y, z):
def cart2ell(self, Eh, Ephi, x, y, z):
p = np.sqrt(x**2+y**2)
print(f"p = {round(p, 5)} m")
# print(f"p = {round(p, 5)} m")
lamb = np.arctan(y/x)
@@ -79,20 +81,39 @@ class EllipsoidBiaxial:
if dphi < Ephi:
break
for i in range(len(phii)):
print(f"P3[{i}]: {aus.gms('phi', phii[i], 5)}\th = {round(hi[i], 5)} m")
# print(f"P3[{i}]: {aus.gms('phi', phii[i], 5)}\th = {round(hi[i], 5)} m")
pass
return phi, lamb, h
def ell2cart(self, phi, lamb, h):
W = np.sqrt(1 - self.e**2 * np.sin(phi)**2)
N = self.a / W
x = (N+h) * np.cos(phi) * np.cos(lamb)
y = (N+h) * np.cos(phi) * np.sin(lamb)
z = (N * (1-self.e**2) + h) * np.sin(lamb)
return x, y, z
class EllipsoidTriaxial:
def __init__(self, ax: float, ay: float, b: float):
self.ax = ax
self.ay = ay
self.b = b
self.ex = np.sqrt(self.ax**2 - self.b**2)
self.ey = np.sqrt(self.ay**2 - self.b**2)
self.ee = np.sqrt(self.ax**2 - self.ay**2)
self.ex = np.sqrt((self.ax**2 - self.b**2) / self.ax**2)
self.ey = np.sqrt((self.ay**2 - self.b**2) / self.ay**2)
self.ee = np.sqrt((self.ax**2 - self.ay**2) / self.ax**2)
self.ex_ = np.sqrt((self.ax**2 - self.b**2) / self.b**2)
self.ey_ = np.sqrt((self.ay**2 - self.b**2) / self.b**2)
self.ee_ = np.sqrt((self.ax**2 - self.ay**2) / self.ay**2)
self.Ex = np.sqrt(self.ax**2 - self.b**2)
self.Ey = np.sqrt(self.ay**2 - self.b**2)
self.Ee = np.sqrt(self.ax**2 - self.ay**2)
@classmethod
def init_name(cls, name: str):
"""
Mögliche Ellipsoide: BursaFialova1993, BursaSima1980, Eitschberger1978, Bursa1972, Bursa1970, BesselBiaxial
:param name: Name des dreiachsigen Ellipsoids
"""
if name == "BursaFialova1993":
ax = 6378171.36
ay = 6378101.61
@@ -103,6 +124,12 @@ class EllipsoidTriaxial:
ay = 6378102.7
b = 6356752.6
return cls(ax, ay, b)
elif name == "BursaSima1980round":
# Panou 2013
ax = 6378172
ay = 6378103
b = 6356753
return cls(ax, ay, b)
elif name == "Eitschberger1978":
ax = 6378173.435
ay = 6378103.9
@@ -118,10 +145,433 @@ class EllipsoidTriaxial:
ay = 6378105
b = 6356754
return cls(ax, ay, b)
elif name == "BesselBiaxial":
ax = 6377397.15509
ay = 6377397.15508
b = 6356078.96290
return cls(ax, ay, b)
elif name == "Fiction":
ax = 6000000
ay = 5000000
b = 4000000
return cls(ax, ay, b)
elif name == "KarneyTest2024":
ax = np.sqrt(2)
ay = 1
b = 1 / np.sqrt(2)
return cls(ax, ay, b)
def ell2cart(self, beta, lamb, u):
s1 = u**2 - self.b**2
s2 = -self.ay**2 * np.sin(beta)**2 - self.b**2 * np.cos(beta)**2
s3 = -self.ax**2 * np.sin(lamb)**2 - self.ay**2 * np.cos(lamb)**2
def point_on(self, point: np.ndarray) -> bool:
"""
Test, ob ein Punkt auf dem Ellipsoid liegt.
:param point: kartesische 3D-Koordinaten
:return: Punkt auf dem Ellispoid?
"""
value = point[0]**2/self.ax**2 + point[1]**2/self.ay**2 + point[2]**2/self.b**2
if abs(1-value) < 0.000001:
return True
else:
return False
x = np.sqrt(u**2 + self.ex**2) * np.sqrt(np.cos(beta)**2 + self.ee**2/self.ex**2 * np.sin(beta)**2)
def ellu2cart(self, beta: float, lamb: float, u: float) -> np.ndarray:
"""
Panou 2014 12ff.
Elliptische Breite+Länge sind nicht gleich der geodätischen
Verhältnisse des Ellipsoids bekannt, Größe verändern bis Punkt erreicht,
dann ist u die Größe entlang der z-Achse
:param beta: ellipsoidische Breite [rad]
:param lamb: ellipsoidische Länge [rad]
:param u: Größe entlang der z-Achse
:return: Punkt in kartesischen Koordinaten
"""
# s1 = u**2 - self.b**2
# s2 = -self.ay**2 * np.sin(beta)**2 - self.b**2 * np.cos(beta)**2
# s3 = -self.ax**2 * np.sin(lamb)**2 - self.ay**2 * np.cos(lamb)**2
# print(s1, s2, s3)
# xe = np.sqrt(((self.ax**2+s1) * (self.ax**2+s2) * (self.ax**2+s3)) /
# ((self.ax**2-self.ay**2) * (self.ax**2-self.b**2)))
# ye = np.sqrt(((self.ay**2+s1) * (self.ay**2+s2) * (self.ay**2+s3)) /
# ((self.ay**2-self.ax**2) * (self.ay**2-self.b**2)))
# ze = np.sqrt(((self.b**2+s1) * (self.b**2+s2) * (self.b**2+s3)) /
# ((self.b**2-self.ax**2) * (self.b**2-self.ay**2)))
x = np.sqrt(u**2 + self.Ex**2) * np.sqrt(np.cos(beta)**2 + self.Ee**2/self.Ex**2 * np.sin(beta)**2) * np.cos(lamb)
y = np.sqrt(u**2 + self.Ey**2) * np.cos(beta) * np.sin(lamb)
z = u * np.sin(beta) * np.sqrt(1 - self.Ee**2/self.Ex**2 * np.cos(lamb)**2)
return np.array([x, y, z])
def ell2cart(self, beta: float | np.ndarray, lamb: float | np.ndarray) -> np.ndarray:
"""
Panou, Korakitis 2019 2
:param beta: elliptische Breite [rad]
:param lamb: elliptische Länge [rad]
:return: Punkt in kartesischen Koordinaten
"""
beta = np.asarray(beta, dtype=float)
lamb = np.asarray(lamb, dtype=float)
beta, lamb = np.broadcast_arrays(beta, lamb)
B = self.Ex ** 2 * np.cos(beta) ** 2 + self.Ee ** 2 * np.sin(beta) ** 2
L = self.Ex ** 2 - self.Ee ** 2 * np.cos(lamb) ** 2
x = self.ax / self.Ex * np.sqrt(B) * np.cos(lamb)
y = self.ay * np.cos(beta) * np.sin(lamb)
z = self.b / self.Ex * np.sin(beta) * np.sqrt(L)
xyz = np.stack((x, y, z), axis=-1)
# Pole
mask_south = beta == -np.pi / 2
mask_north = beta == np.pi / 2
xyz[mask_south] = np.array([0, 0, -self.b])
xyz[mask_north] = np.array([0, 0, self.b])
# Äquator
mask_eq = beta == 0
xyz[mask_eq & (lamb == -np.pi / 2)] = np.array([0, -self.ay, 0])
xyz[mask_eq & (lamb == np.pi / 2)] = np.array([0, self.ay, 0])
xyz[mask_eq & (lamb == 0)] = np.array([self.ax, 0, 0])
xyz[mask_eq & (lamb == np.pi)] = np.array([-self.ax, 0, 0])
return xyz
def cart2ellu(self, point: np.ndarray) -> tuple[float, float, float]:
"""
Panou 2014 15ff.
:param point: Punkt in kartesischen Koordinaten
:return: elliptische Breite, elliptische Länge, Größe entlang der z-Achse
"""
x, y, z = point
c2 = self.ax**2 + self.ay**2 + self.b**2 - x**2 - y**2 - z**2
c1 = (self.ax**2 * self.ay**2 + self.ax**2 * self.b**2 + self.ay**2 * self.b**2 -
(self.ay**2+self.b**2) * x**2 - (self.ax**2 + self.b**2) * y**2 - (self.ax**2 + self.ay**2) * z**2)
c0 = (self.ax**2 * self.ay**2 * self.b**2 - self.ay**2 * self.b**2 * x**2 -
self.ax**2 * self.b**2 * y**2 - self.ax**2 * self.ay**2 * z**2)
p = (c2**2 - 3*c1) / 9
q = (9*c1*c2 - 27*c0 - 2*c2**3) / 54
omega = np.arccos(q / np.sqrt(p**3))
s1 = 2 * np.sqrt(p) * np.cos(omega/3) - c2/3
s2 = 2 * np.sqrt(p) * np.cos(omega/3 - 2*np.pi/3) - c2/3
s3 = 2 * np.sqrt(p) * np.cos(omega/3 - 4*np.pi/3) - c2/3
# print(s1, s2, s3)
beta = np.arctan(np.sqrt((-self.b**2 - s2) / (self.ay**2 + s2)))
if abs((-self.ay**2 - s3) / (self.ax**2 + s3)) > 1e-7:
lamb = np.arctan(np.sqrt((-self.ay**2 - s3) / (self.ax**2 + s3)))
else:
lamb = 0
u = np.sqrt(self.b**2 + s1)
return beta, lamb, u
def cart2ell(self, point: np.ndarray) -> tuple[float, float]:
"""
Panou, Korakitis 2019 2f.
:param point: Punkt in kartesischen Koordinaten
:return: elliptische Breite, elliptische Länge
"""
x, y, z = point
eps = 1e-9
if abs(x) < eps and abs(y) < eps: # Punkt in der z-Achse
beta = np.pi / 2 if z > 0 else -np.pi / 2
lamb = 0.0
return beta, lamb
elif abs(x) < eps and abs(z) < eps: # Punkt in der y-Achse
beta = 0.0
lamb = np.pi / 2 if y > 0 else -np.pi / 2
return beta, lamb
elif abs(y) < eps and abs(z) < eps: # Punkt in der x-Achse
beta = 0.0
lamb = 0.0 if x > 0 else np.pi
return beta, lamb
# ---- Allgemeiner Fall -----
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
self.ax ** 2 + self.ay ** 2) * z ** 2)
t2 = (-c1 + np.sqrt(c1 ** 2 - 4 * c0)) / 2
t1 = c0 / t2
num_beta = max(t1 - self.b ** 2, 0)
den_beta = max(self.ay ** 2 - t1, 0)
num_lamb = max(t2 - self.ay ** 2, 0)
den_lamb = max(self.ax ** 2 - t2, 0)
beta = np.arctan(np.sqrt(num_beta / den_beta))
lamb = np.arctan(np.sqrt(num_lamb / den_lamb))
if z < 0:
beta = -beta
if y < 0:
lamb = -lamb
if x < 0:
lamb = np.pi - lamb
if abs(x) < eps:
lamb = -np.pi/2 if y < 0 else np.pi/2
elif abs(y) < eps:
lamb = 0 if x > 0 else np.pi
elif abs(z) < eps:
beta = 0
return beta, lamb
def cart2geod(self, point: np.ndarray, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> tuple[float, float, float]:
"""
Ligas 2012
:param mode: ligas1, ligas2, oder ligas3
:param point: Punkt in kartesischen Koordinaten
:param maxIter: maximale Anzahl Iterationen
:param maxLoa: Level of Accuracy, das erreicht werden soll
:return: phi, lambda, h
"""
xG, yG, zG = point
eps = 1e-9
if abs(xG) < eps and abs(yG) < eps: # Punkt in der z-Achse
phi = np.pi / 2 if zG > 0 else -np.pi / 2
lamb = 0.0
h = abs(zG) - self.b
return phi, lamb, h
elif abs(xG) < eps and abs(zG) < eps: # Punkt in der y-Achse
phi = 0.0
lamb = np.pi / 2 if yG > 0 else -np.pi / 2
h = abs(yG) - self.ay
return phi, lamb, h
elif abs(yG) < eps and abs(zG) < eps: # Punkt in der x-Achse
phi = 0.0
lamb = 0.0 if xG > 0 else np.pi
h = abs(xG) - self.ax
return phi, lamb, h
rG = np.sqrt(xG ** 2 + yG ** 2 + zG ** 2)
pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64)
E = 1 / self.ax**2
F = 1 / self.ay**2
G = 1 / self.b**2
i = 0
loa = np.inf
while i < maxIter and loa > maxLoa:
if mode == "ligas1":
invJ, fxE = jacobian_Ligas.case1(E, F, G, np.array([xG, yG, zG]), pE)
elif mode == "ligas2":
invJ, fxE = jacobian_Ligas.case2(E, F, G, np.array([xG, yG, zG]), pE)
elif mode == "ligas3":
invJ, fxE = jacobian_Ligas.case3(E, F, G, np.array([xG, yG, zG]), pE)
pEi = pE.reshape(-1, 1) - invJ @ fxE.reshape(-1, 1)
pEi = pEi.reshape(1, -1).flatten()
loa = np.sqrt((pEi[0]-pE[0])**2 + (pEi[1]-pE[1])**2 + (pEi[2]-pE[2])**2)
pE = pEi
i += 1
phi = np.arctan((1-self.ee**2) / (1-self.ex**2) * pE[2] / np.sqrt((1-self.ee**2)**2 * pE[0]**2 + pE[1]**2))
lamb = np.arctan(1/(1-self.ee**2) * pE[1]/pE[0])
h = np.sign(zG - pE[2]) * np.sign(pE[2]) * np.sqrt((pE[0] - xG) ** 2 + (pE[1] - yG) ** 2 + (pE[2] - zG) ** 2)
if xG < 0 and yG < 0:
lamb = -np.pi + lamb
elif xG < 0:
lamb = np.pi + lamb
if abs(zG) < eps:
phi = 0
return phi, lamb, h
def geod2cart(self, phi: float | np.ndarray, lamb: float | np.ndarray, h: float) -> np.ndarray:
"""
Ligas 2012, 250
:param phi: geodätische Breite [rad]
:param lamb: geodätische Länge [rad]
:param h: Höhe über dem Ellipsoid
:return: kartesische Koordinaten
"""
v = self.ax / np.sqrt(1 - self.ex**2*np.sin(phi)**2-self.ee**2*np.cos(phi)**2*np.sin(lamb)**2)
xG = (v + h) * np.cos(phi) * np.cos(lamb)
yG = (v * (1-self.ee**2) + h) * np.cos(phi) * np.sin(lamb)
zG = (v * (1-self.ex**2) + h) * np.sin(phi)
return np.array([xG, yG, zG])
def cartonell(self, point: np.ndarray) -> tuple[np.ndarray, float, float, float]:
"""
Berechnung des Lotpunktes auf einem Ellipsoiden
:param point: Punkt in kartesischen Koordinaten, der gelotet werden soll
:return: Lotpunkt in kartesischen Koordinaten, geodätische Koordinaten des Punktes
"""
phi, lamb, h = self.cart2geod(point, "ligas3")
x, y, z = self. geod2cart(phi, lamb, 0)
return np.array([x, y, z]), phi, lamb, h
def cartellh(self, point: np.ndarray, h: float) -> np.ndarray:
"""
Punkt auf Ellipsoid hoch loten
:param point: Punkt auf dem Ellipsoid
:param h: Höhe über dem Ellipsoid
:return: hochgeloteter Punkt
"""
phi, lamb, _ = self.cart2geod(point, "ligas3")
pointH = self. geod2cart(phi, lamb, h)
return pointH
def para2cart(self, u: float | np.ndarray, v: float | np.ndarray) -> np.ndarray:
"""
Panou, Korakitits 2020, 4
:param u: Parameter u
:param v: Parameter v
:return: Punkt in kartesischen Koordinaten
"""
x = self.ax * np.cos(u) * np.cos(v)
y = self.ay * np.cos(u) * np.sin(v)
z = self.b * np.sin(u)
z = np.broadcast_to(z, np.shape(x))
return np.array([x, y, z])
def cart2para(self, point: np.ndarray) -> tuple[float, float]:
"""
Panou, Korakitits 2020, 4
:param point: Punkt in kartesischen Koordinaten
:return: parametrische Koordinaten
"""
x, y, z = point
u_check1 = z*np.sqrt(1 - self.ee**2)
u_check2 = np.sqrt(x**2 * (1-self.ee**2) + y**2) * np.sqrt(1-self.ex**2)
if u_check1 <= u_check2:
u = np.arctan2(u_check1, u_check2)
else:
u = np.pi/2 - np.arctan2(u_check2, u_check1)
v_check1 = y
v_check2 = x*np.sqrt(1-self.ee**2)
v_factor = np.sqrt(x**2*(1-self.ee**2)+y**2)
if v_check1 <= v_check2:
v = 2 * np.arctan2(v_check1, v_check2 + v_factor)
else:
v = np.pi/2 - 2 * np.arctan2(v_check2, v_check1 + v_factor)
return u, v
def ell2para(self, beta, lamb) -> tuple[float, float]:
cart = self.ell2cart(beta, lamb)
return self.cart2para(cart)
def para2ell(self, u, v) -> tuple[float, float]:
cart = self.para2cart(u, v)
return self.cart2ell(cart)
def para2geod(self, u: float, v: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> tuple[float, float, float]:
cart = self.para2cart(u, v)
return self.cart2geod(cart, mode, maxIter, maxLoa)
def geod2para(self, phi, lamb, h) -> tuple[float, float]:
cart = self.geod2cart(phi, lamb, h)
return self.cart2para(cart)
def ell2geod(self, beta, lamb, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> tuple[float, float, float]:
cart = self.ell2cart(beta, lamb)
return self.cart2geod(cart, mode, maxIter, maxLoa)
def func_H(self, x, y, z):
return x ** 2 + y ** 2 / (1 - self.ee ** 2) ** 2 + z ** 2 / (1 - self.ex ** 2) ** 2
def func_n(self, x, y, z, H=None):
if H is None:
H = self.func_H(x, y, z)
return np.array([x / sqrt(H),
y / ((1 - self.ee ** 2) * sqrt(H)),
z / ((1 - self.ex ** 2) * sqrt(H))])
def p_q(self, x, y, z) -> tuple[np.ndarray, np.ndarray]:
"""
Berechnung sämtlicher Größen
:param x: x
:param y: y
:param z: z
:return: Dictionary sämtlicher Größen
"""
n = self.func_n(x, y, z)
beta, lamb = self.cart2ell(np.array([x, y, z]))
B = self.Ex ** 2 * np.cos(beta) ** 2 + self.Ee ** 2 * np.sin(beta) ** 2
L = self.Ex ** 2 - self.Ee ** 2 * np.cos(lamb) ** 2
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
self.ax ** 2 + self.ay ** 2) * z ** 2)
t2 = (-c1 + np.sqrt(c1 ** 2 - 4 * c0)) / 2
t1 = c0 / t2
t2e = self.ax ** 2 * np.sin(lamb) ** 2 + self.ay ** 2 * np.cos(lamb) ** 2
t1e = self.ay ** 2 * np.sin(beta) ** 2 + self.b ** 2 * np.cos(beta) ** 2
F = self.Ey ** 2 * np.cos(beta) ** 2 + self.Ee ** 2 * np.sin(lamb) ** 2
p1 = -np.sqrt(L / (F * t2)) * self.ax / self.Ex * np.sqrt(B) * np.sin(lamb)
p2 = np.sqrt(L / (F * t2)) * self.ay * np.cos(beta) * np.cos(lamb)
p3 = 1 / np.sqrt(F * t2) * (self.b * self.Ee ** 2) / (2 * self.Ex) * np.sin(beta) * np.sin(2 * lamb)
# p1 = -np.sign(y) * np.sqrt(L / (F * t2)) * self.ax / (self.Ex * self.Ee) * np.sqrt(B) * np.sqrt(t2 - self.ay ** 2)
# p2 = np.sign(x) * np.sqrt(L / (F * t2)) * self.ay / (self.Ey * self.Ee) * np.sqrt((ell.ay ** 2 - t1) * (self.ax ** 2 - t2))
# p3 = np.sign(x) * np.sign(y) * np.sign(z) * 1 / np.sqrt(F * t2) * self.b / (self.Ex * self.Ey) * np.sqrt(
# (t1 - self.b ** 2) * (t2 - self.ay ** 2) * (self.ax ** 2 - t2))
p = np.array([p1, p2, p3])
q = np.array([n[1] * p[2] - n[2] * p[1],
n[2] * p[0] - n[0] * p[2],
n[0] * p[1] - n[1] * p[0]])
return p, q
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("Eitschberger1978")
diff_list = []
for beta_deg in range(-150, 210, 30):
for lamb_deg in range(-150, 210, 30):
beta = wu.deg2rad(beta_deg)
lamb = wu.deg2rad(lamb_deg)
point = ell.ell2cart(beta, lamb)
elli = ell.cart2ell(point)
cart_elli = ell.ell2cart(elli[0], elli[1])
diff_ell = np.sum(np.abs(point-cart_elli))
para = ell.cart2para(point)
cart_para = ell.para2cart(para[0], para[1])
diff_para = np.sum(np.abs(point-cart_para))
# geod = ell.cart2geod(point, "ligas1")
# cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
# diff_geod1 = np.sum(np.abs(point-cart_geod))
#
# geod = ell.cart2geod(point, "ligas2")
# cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
# diff_geod2 = np.sum(np.abs(point-cart_geod))
geod = ell.cart2geod(point, "ligas3")
cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
diff_geod3 = np.sum(np.abs(point-cart_geod))
diff_list.append([beta_deg, lamb_deg, diff_ell, diff_para, diff_geod3])
diff_list.append([diff_ell])
diff_list = np.array(diff_list)
pass

View File

@@ -1,78 +0,0 @@
from numpy import cos, sin, tan
import winkelumrechnungen as wu
import s_ellipse as s_ell
import ausgaben as aus
from ellipsoide import EllipsoidBiaxial
import Numerische_Integration.num_int_runge_kutta as rk
import GHA.gauss as gauss
import GHA.bessel as bessel
matrikelnummer = "6044051"
print(f"Matrikelnummer: {matrikelnummer}")
m4 = matrikelnummer[-4]
m3 = matrikelnummer[-3]
m2 = matrikelnummer[-2]
m1 = matrikelnummer[-1]
print(f"m1={m1}\tm2={m2}\tm3={m3}\tm4={m4}")
re = EllipsoidBiaxial.init_name("Bessel")
nks = 3
print(f"\na = {re.a} m\nb = {re.b} m\nc = {re.c} m\ne' = {re.e_}")
print("\n\nAufgabe 1 (via Reihenentwicklung)")
phi1 = re.beta2phi(wu.gms2rad([int("1"+m1), int("1"+m2), int("1"+m3)]))
print(f"{aus.gms('phi_P1', phi1, 5)}")
s = s_ell.reihenentwicklung(re.e_, re.c, phi1)
print(f'\ns_P1 = {round(s,nks)} m')
# s_poly = s_ell.polyapp_tscheby_bessel(phi1)
# print(f'Meridianbogenlänge: {round(s_poly,nks)} m (Polynomapproximation)')
print("\n\nAufgabe 2 (via Gauß´schen Mittelbreitenformeln)")
lambda1 = wu.gms2rad([int("1"+m3), int("1"+m2), int("1"+m4)])
A12 = wu.gms2rad([90, 0, 0])
s12 = float("1"+m4+m3+m2+"."+m1+"0")
# print("\nvia Runge-Kutta-Verfahren")
# re = Ellipsoid.init_name("Bessel")
# f_phi = lambda s, phi, lam, A: cos(A) * re.V(phi) ** 3 / re.c
# f_lam = lambda s, phi, lam, A: sin(A) * re.V(phi) / (cos(phi) * re.c)
# f_A = lambda s, phi, lam, A: tan(phi) * sin(A) * re.V(phi) / re.c
#
# funktionswerte = rk.verfahren([f_phi, f_lam, f_A],
# [0, phi1, lambda1, A12],
# s12, 1)
#
# for s, phi, lam, A in funktionswerte:
# print(f"{s} m, {aus.gms('phi', phi, nks)}, {aus.gms('lambda', lam, nks)}, {aus.gms('A', A, nks)}")
# print("via Gauß´schen Mittelbreitenformeln")
phi_p2, lambda_p2, A_p2 = gauss.gha1(EllipsoidBiaxial.init_name("Bessel"),
phi_p1=phi1,
lambda_p1=lambda1,
A_p1=A12,
s=s12, eps=wu.gms2rad([1*10**-8, 0, 00]))
print(f"\nP2: {aus.gms('phi', phi_p2[-1], nks)}\t\t{aus.gms('lambda', lambda_p2[-1], nks)}\t{aus.gms('A', A_p2[-1], nks)}")
# print("\nvia Verfahren nach Bessel")
# phi_p2, lambda_p2, A_p2 = bessel.gha1(Ellipsoid.init_name("Bessel"),
# phi_p1=phi1,
# lambda_p1=lambda1,
# A_p1=A12,
# s=s12)
# print(f"P2: {aus.gms('phi', phi_p2, nks)}, {aus.gms('lambda', lambda_p2, nks)}, {aus.gms('A', A_p2, nks)}")
print("\n\nAufgabe 3")
p = re.phi2p(phi_p2[-1])
print(f"p = {round(p,2)} m")
print("\n\nAufgabe 4")
x = float("4308"+m3+"94.556")
y = float("1214"+m2+"88.242")
z = float("4529"+m4+"03.878")
phi_p3, lambda_p3, h_p3 = re.ellipsoidische_Koords(0.001, wu.gms2rad([0, 0, 0.001]), x, y, z)
print(f"\nP3: {aus.gms('phi', phi_p3, nks)}, {aus.gms('lambda', lambda_p3, 5)}, h = {round(h_p3,nks)} m")

74
jacobian_Ligas.py Normal file
View File

@@ -0,0 +1,74 @@
import numpy as np
def case1(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
j11 = 2 * E * pE[0]
j12 = 2 * F * pE[1]
j13 = 2 * G * pE[2]
j21 = F * pE[1] - (pE[1] - pG[1]) * E
j22 = (pE[0] - pG[0]) * F - E * pE[0]
j23 = 0
j31 = G * pE[2] - (pE[2] - pG[2]) * E
j32 = 0
j33 = (pE[0] - pG[0]) * G - E * pE[0]
detJ = j11 * j22 * j33 - j21 * j12 * j33 - j31 * j13 * j22
invJ = 1/detJ * np.array([[j22*j33, -j12*j33, -j13*j22],
[-j21*j33, j11*j33-j13*j31, j13*j21],
[-j22*j31, j12*j31, j11*j22-j12*j21]])
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
(pE[0]-pG[0]) * F*pE[1] - (pE[1]-pG[1]) * E*pE[0],
(pE[0]-pG[0]) * G*pE[2] - (pE[2]-pG[2]) * E*pE[0]])
return invJ, fxE
def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
j11 = 2 * E * pE[0]
j12 = 2 * F * pE[1]
j13 = 2 * G * pE[2]
j21 = F * pE[1] - (pE[1] - pG[1]) * E
j22 = (pE[0] - pG[0]) * F - E * pE[0]
j23 = 0
j31 = 0
j32 = G * pE[2] - (pE[2] - pG[2]) * F
j33 = (pE[1] - pG[1]) * G - F * pE[1]
detJ = j11 * j22 * j33 - j21 * j12 * j33 + j21 * j13 * j32
if detJ == 0:
invJ, fxE = case3(E, F, G, pG, pE)
else:
invJ = 1/detJ * np.array([[j22*j33, -(j12*j33-j13*j32), -j13*j22],
[-j21*j33, j11*j33, j13*j21],
[j21*j32, -j11*j32, j11*j22-j12*j21]])
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
(pE[0]-pG[0]) * F*pE[1] - (pE[1]-pG[1]) * E*pE[0],
(pE[1]-pG[1]) * G*pE[2] - (pE[2]-pG[2]) * F*pE[1]])
return invJ, fxE
def case3(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
j11 = 2 * E * pE[0]
j12 = 2 * F * pE[1]
j13 = 2 * G * pE[2]
j21 = G * pE[2] - (pE[2] - pG[2]) * E
j22 = 0
j23 = (pE[0] - pG[0]) * G - E * pE[0]
j31 = 0
j32 = G * pE[2] - (pE[2] - pG[2]) * F
j33 = (pE[1] - pG[1]) * G - F * pE[1]
detJ = -j11 * j23 * j32 - j21 * j12 * j33 + j21 * j13 * j32
if detJ == 0:
invJ, fxE = case2(E, F, G, pG, pE)
else:
invJ = 1/detJ * np.array([[-j23*j32, -(j12*j33-j13*j32), j12*j23],
[-j21*j33, j11*j33, -(j11*j23-j13*j21)],
[j21*j32, -j11*j32, -j12*j21]])
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
(pE[0]-pG[0]) * G*pE[2] - (pE[2]-pG[2]) * E*pE[0],
(pE[1]-pG[1]) * G*pE[2] - (pE[2]-pG[2]) * F*pE[1]])
return invJ, fxE

View File

@@ -1,3 +0,0 @@
import numpy as np
def ell2cart()

78
kugel.py Normal file
View File

@@ -0,0 +1,78 @@
import numpy as np
def cart2sph(x, y, z):
r = np.sqrt(x**2 + y**2 + z**2)
phi = np.atan2(z, np.sqrt(x**2 + y**2))
lamb = np.atan2(y, x)
return r, np.rad2deg(phi), np.rad2deg(lamb)
def sph2cart(r, phi, lamb):
phi_rad = np.deg2rad(phi)
lamb_rad = np.deg2rad(lamb)
x = r * np.cos(phi_rad) * np.cos(lamb_rad)
y = r * np.cos(phi_rad) * np.sin(lamb_rad)
z = r * np.sin(phi_rad)
return x, y, z
def kugel_erste_gha(R, phi_1, lamb_1, s_d, a_12):
s = s_d / R
lamb_1_rad = np.deg2rad(lamb_1)
phi_1_rad = np.deg2rad(phi_1)
a_12_rad = np.deg2rad(a_12)
sin_satz = np.sin(s) * np.sin(a_12_rad)
sin_kos = np.cos(phi_1_rad) * np.cos(s) - np.sin(phi_1_rad) * np.sin(s) * np.cos(a_12_rad)
delta_lam = np.atan2(sin_satz, sin_kos)
lamb_2_rad = lamb_1_rad + delta_lam
phi_2_rad = np.asin(np.sin(phi_1_rad) * np.cos(s) + np.cos(phi_1_rad) * np.sin(s) * np.cos(a_12_rad))
sin_satz_2 = -np.cos(phi_1_rad) * np.sin(a_12_rad)
sin_kos_2 = np.sin(s) * np.sin(phi_1_rad) - np.cos(s) * np.cos(phi_1_rad) * np.cos(a_12_rad)
a_21_rad = np.atan2(sin_satz_2, sin_kos_2)
if a_21_rad < 0:
a_21_rad += 2 * np.pi
return np.rad2deg(phi_2_rad), np.rad2deg(lamb_2_rad), np.rad2deg(a_21_rad)
def kugel_zweite_gha(R, phi_1, lamb_1, phi_2, lamb_2):
phi_1_rad = np.deg2rad(phi_1)
lamb_1_rad = np.deg2rad(lamb_1)
phi_2_rad = np.deg2rad(phi_2)
lamb_2_rad = np.deg2rad(lamb_2)
sin_satz_1 = np.cos(phi_2_rad) * np.sin(lamb_2_rad - lamb_1_rad)
sin_kos_1 = np.cos(phi_1_rad) * np.sin(phi_2_rad) - np.sin(phi_1_rad) * np.cos(phi_2_rad) * np.cos(lamb_2_rad - lamb_1_rad)
a_12_rad = np.atan2(sin_satz_1, sin_kos_1)
kos = np.sin(phi_1_rad) * np.sin(phi_2_rad) + np.cos(phi_1_rad) * np.cos(phi_2_rad) * np.cos(lamb_2_rad - lamb_1_rad)
s = np.acos(kos)
s_d = R * s
sin_satz_2 = -np.cos(phi_1_rad) * np.sin(lamb_2_rad - lamb_1_rad)
sin_kos_2 = np.cos(phi_2_rad) * np.sin(phi_1_rad) - np.sin(phi_2_rad) * np.cos(phi_1_rad) * np.cos(lamb_2_rad - lamb_1_rad)
a_21_rad = np.atan2(sin_satz_2, sin_kos_2)
if a_21_rad < 0:
a_21_rad += 2 * np.pi
return s_d, np.rad2deg(a_12_rad), np.rad2deg(a_21_rad)
if __name__ == "__main__":
R = 6378815.904 # Bern
phi_1 = 10
lamb_1 = 40
a_12 = 100
s = 10000
phi_2, lamb_2, _ = kugel_erste_gha(R, phi_1, lamb_1, s, a_12)
print(kugel_erste_gha(R, phi_1, lamb_1, s, a_12))
print(kugel_zweite_gha(R, phi_1, lamb_1, phi_2, lamb_2))

30
show_constant_lines.py Normal file
View File

@@ -0,0 +1,30 @@
import numpy as np
import plotly.graph_objects as go
from ellipsoide import EllipsoidTriaxial
import winkelumrechnungen as wu
from dashboard import ellipsoid_figure
u = np.linspace(0, 2*np.pi, 51)
v = np.linspace(0, np.pi, 51)
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
points = []
lines = []
for u_i, u_value in enumerate(u):
for v_i, v_value in enumerate(v):
cart = ell.ell2cart(u_value, v_value)
if u_i != 0 and v_i != 0:
lines.append((points[-1], cart, "red"))
points.append(cart)
points = []
for v_i, v_value in enumerate(v):
for u_i, u_value in enumerate(u):
cart = ell.ell2cart(u_value, v_value)
if u_i != 0 and v_i != 0:
lines.append((points[-1], cart, "blue"))
points.append(cart)
ax = ell.ax
ay = ell.ay
b = ell.b
figu = ellipsoid_figure(ax, ay, b, lines=lines)
figu.show()

29
test.py Normal file
View File

@@ -0,0 +1,29 @@
import numpy as np
from scipy.special import factorial as fact
from math import comb
J = np.array([
[2, 3, 0],
[0, 3, 0],
[6, 0, 4]
])
xi = np.array([1, 2, 3])
xi_col = xi.reshape(-1, 1)
print(xi_col)
xi_row = xi_col.reshape(1, -1).flatten()
print(xi_row)
# Spaltenvektor-Variante
res_col = xi[:, None] - J @ xi[:, None]
# Zeilenvektor-Variante
res_row = xi[None, :] - xi[None, :] @ J
print("Spaltenvektor:")
print(res_col[0,0])
print("Zeilenvektor:")
print(res_row)
t = 5
l = 2
print(fact(t+1-l) / (fact(t+1-l) * fact(l-1)), comb(l-1, t+1-l))

84
test_algorithms.py Normal file
View File

@@ -0,0 +1,84 @@
import GHA_triaxial.numeric_examples_panou as nep
import ellipsoide
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
from GHA_triaxial.panou import gha1_ana, gha1_num
import numpy as np
import time
def test():
ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
tables = nep.get_tables()
diffs_gha1_num = []
diffs_gha1_ana = []
diffs_gha2_num = []
times_gha1_num = []
times_gha1_ana = []
times_gha2_num = []
for table in tables:
diffs_gha1_num.append([])
diffs_gha1_ana.append([])
diffs_gha2_num.append([])
times_gha1_num.append([])
times_gha1_ana.append([])
times_gha2_num.append([])
for example in table:
beta0, lamb0, beta1, lamb1, c, alpha0, alpha1, s = example
P0 = ell.ell2cart(beta0, lamb0)
P1 = ell.ell2cart(beta1, lamb1)
start = time.perf_counter()
try:
P1_num = gha1_num(ell, P0, alpha0, s, 10000)
end = time.perf_counter()
diff_P1_num = np.linalg.norm(P1 - P1_num)
except:
end = time.perf_counter()
diff_P1_num = None
time_gha1_num = end - start
start = time.perf_counter()
try:
P1_ana = gha1_ana(ell, P0, alpha0, s, 50)
end = time.perf_counter()
diff_P1_ana = np.linalg.norm(P1 - P1_ana)
except:
end = time.perf_counter()
diff_P1_ana = None
time_gha1_ana = end - start
start = time.perf_counter()
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=1000)
end = time.perf_counter()
diff_s_num = abs(s - s_num)
except:
end = time.perf_counter()
diff_s_num = None
time_gha2_num = None
time_gha2_num = end - start
diffs_gha1_num[-1].append(diff_P1_num)
diffs_gha1_ana[-1].append(diff_P1_ana)
diffs_gha2_num[-1].append(diff_s_num)
times_gha1_num[-1].append(time_gha1_num)
times_gha1_ana[-1].append(time_gha1_ana)
times_gha2_num[-1].append(time_gha2_num)
print(diffs_gha1_num, diffs_gha1_ana, diffs_gha2_num)
print(times_gha1_num, times_gha1_ana, times_gha2_num)
def display():
diffs = [[{'gha1_num': np.float64(3.410763124264611e-05), 'gha1_ana': np.float64(3.393273802112796e-05), 'gha2_num': np.float64(3.3931806683540344e-05)}, {'gha1_num': np.float64(0.0008736425000530604), 'gha1_ana': np.float64(0.0008736458415010259), 'gha2_num': None}, {'gha1_num': np.float64(0.0007739730058338136), 'gha1_ana': np.float64(0.0007739621469802854), 'gha2_num': np.float64(1.5832483768463135e-07)}, {'gha1_num': np.float64(0.00010554956741100295), 'gha1_ana': np.float64(8.814246009944831), 'gha2_num': np.float64(4.864111542701721e-05)}, {'gha1_num': np.float64(0.0002135908394614854), 'gha1_ana': np.float64(0.0002138610897967267), 'gha2_num': np.float64(5.0179407158866525)}, {'gha1_num': np.float64(0.00032727226891456654), 'gha1_ana': np.float64(0.00032734569198545905), 'gha2_num': np.float64(9.735533967614174e-05)}, {'gha1_num': np.float64(0.0005195973303787956), 'gha1_ana': np.float64(0.0005197766935509641), 'gha2_num': None}], [{'gha1_num': np.float64(1.780250537652368e-05), 'gha1_ana': np.float64(1.996805145339501e-05), 'gha2_num': np.float64(1.8164515495300293e-05)}, {'gha1_num': np.float64(4.8607540473363564e-05), 'gha1_ana': np.float64(2205539.954949392), 'gha2_num': None}, {'gha1_num': np.float64(0.00017376854985685854), 'gha1_ana': np.float64(328124.1513636429), 'gha2_num': np.float64(0.17443156614899635)}, {'gha1_num': np.float64(5.83429352558999e-05), 'gha1_ana': np.float64(0.01891628037258558), 'gha2_num': np.float64(1.4207654744386673)}, {'gha1_num': np.float64(0.0006421087024666934), 'gha1_ana': np.float64(0.0006420400127297228), 'gha2_num': np.float64(0.12751091085374355)}, {'gha1_num': np.float64(0.0004456207867164434), 'gha1_ana': np.float64(0.0004455649707698245), 'gha2_num': np.float64(0.00922046648338437)}, {'gha1_num': np.float64(0.0002340879908275419), 'gha1_ana': np.float64(0.00023422217242111216), 'gha2_num': np.float64(0.001307751052081585)}], [{'gha1_num': np.float64(976.6580096633622), 'gha1_ana': np.float64(976.6580096562798), 'gha2_num': np.float64(6.96033239364624e-05)}, {'gha1_num': np.float64(2825.2936643258527), 'gha1_ana': np.float64(2794.954866417055), 'gha2_num': np.float64(1.3615936040878296e-05)}, {'gha1_num': np.float64(1248.8942058074501), 'gha1_ana': np.float64(538.5550561841195), 'gha2_num': np.float64(3.722589462995529e-05)}, {'gha1_num': np.float64(2201.1793359793814), 'gha1_ana': np.float64(3735.376499414938), 'gha2_num': np.float64(1.4525838196277618e-05)}, {'gha1_num': np.float64(2262.134819997246), 'gha1_ana': np.float64(25549.567793410763), 'gha2_num': np.float64(9.328126907348633e-06)}, {'gha1_num': np.float64(2673.219788119847), 'gha1_ana': np.float64(21760.866677295206), 'gha2_num': np.float64(8.635222911834717e-06)}, {'gha1_num': np.float64(1708.758419275875), 'gha1_ana': np.float64(3792.1128807063437), 'gha2_num': np.float64(2.4085864424705505e-05)}], [{'gha1_num': np.float64(0.7854659044152204), 'gha1_ana': np.float64(0.785466068424286), 'gha2_num': np.float64(0.785466069355607)}, {'gha1_num': np.float64(237.79878717216718), 'gha1_ana': np.float64(1905080.064324282), 'gha2_num': None}, {'gha1_num': np.float64(55204.601699830164), 'gha1_ana': np.float64(55204.60175211949), 'gha2_num': None}, {'gha1_num': np.float64(12766.348063015519), 'gha1_ana': np.float64(12766.376619517901), 'gha2_num': np.float64(12582.786206113175)}, {'gha1_num': np.float64(29703.049988324146), 'gha1_ana': np.float64(29703.056427749252), 'gha2_num': np.float64(28933.668131249025)}, {'gha1_num': np.float64(43912.03007182513), 'gha1_ana': np.float64(43912.03007528712), 'gha2_num': None}, {'gha1_num': np.float64(28522.29828970693), 'gha1_ana': np.float64(28522.29830145182), 'gha2_num': None}, {'gha1_num': np.float64(17769.115549537233), 'gha1_ana': np.float64(17769.115549483362), 'gha2_num': np.float64(17769.121286311187)}]]
arr = []
for table in diffs:
for example in table:
arr.append([example['gha1_num'], example['gha1_ana'], example['gha2_num']])
arr = np.array(arr)
pass
if __name__ == "__main__":
# test()
display()

View File

@@ -1,4 +1,5 @@
from numpy import *
import numpy as np
def deg2gms(deg: float) -> list:
@@ -10,13 +11,13 @@ def deg2gms(deg: float) -> list:
:rtype: list
"""
gra = deg // 1
min = gra % 1
minu = gra % 1
gra = gra // 1
min *= 60
sek = min % 1
min = min // 1
minu *= 60
sek = minu % 1
minu = minu // 1
sek *= 60
return [gra, min, sek]
return [gra, minu, sek]
def deg2gra(deg: float) -> float:
@@ -30,13 +31,13 @@ def deg2gra(deg: float) -> float:
return deg * 10/9
def deg2rad(deg: float) -> float:
def deg2rad(deg: float | np.ndarray) -> float | np.ndarray:
"""
Umrechnung von Grad in Radiant
:param deg: Winkel in Grad
:type deg: float
:type deg: float or np.ndarray
:return: Winkel in Radiant
:rtype: float
:rtype: float or np.ndarray
"""
return deg * pi / 180
@@ -51,13 +52,13 @@ def gra2gms(gra: float) -> list:
"""
deg = gra2deg(gra)
gra = deg // 1
min = gra % 1
minu = gra % 1
gra = gra // 1
min *= 60
sek = min % 1
min = min // 1
minu *= 60
sek = minu % 1
minu = minu // 1
sek *= 60
return [gra, min, sek]
return [gra, minu, sek]
def gra2rad(gra: float) -> float:
@@ -113,13 +114,13 @@ def rad2gms(rad: float) -> list:
:rtype: list
"""
deg = rad2deg(rad)
min = deg % 1
minu = deg % 1
gra = deg // 1
min *= 60
sek = min % 1
min = min // 1
minu *= 60
sek = minu % 1
minu = minu // 1
sek *= 60
return [gra, min, sek]
return [gra, minu, sek]
def gms2rad(gms: list) -> float: