Aufgeräumt, Grundkonstrukt analytische Lösung
This commit is contained in:
@@ -7,28 +7,44 @@ import GHA.rk as ghark
|
||||
|
||||
# Panou, Korakitits 2019
|
||||
|
||||
def gha1(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, num):
|
||||
H = x**2 + y**2 / (1-ell.ee**2)**2 + z**2/(1-ell.ex**2)**2
|
||||
def p_q(ell: ellipsoide.EllipsoidTriaxial, x, y, z):
|
||||
H = x ** 2 + y ** 2 / (1 - ell.ee ** 2) ** 2 + z ** 2 / (1 - ell.ex ** 2) ** 2
|
||||
|
||||
n = np.array([x/np.sqrt(H), y/((1-ell.ee**2)*np.sqrt(H)), z/((1-ell.ex**2)*np.sqrt(H))])
|
||||
n = np.array([x / np.sqrt(H), y / ((1 - ell.ee ** 2) * np.sqrt(H)), z / ((1 - ell.ex ** 2) * np.sqrt(H))])
|
||||
|
||||
beta, lamb, u = ell.cart2ell(x, y, z)
|
||||
B = ell.Ex**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(beta)**2
|
||||
L = ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2
|
||||
carts = ell.ell2cart(beta, lamb, u)
|
||||
B = ell.Ex ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(beta) ** 2
|
||||
L = ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2
|
||||
|
||||
c1 = x**2 + y**2 + z**2 - (ell.ax**2 + ell.ay**2 + ell.b**2)
|
||||
c0 = (ell.ax**2*ell.ay**2 + ell.ax**2*ell.b**2+ell.ay**2*ell.b**2 -
|
||||
(ell.ay**2+ell.b**2)*x**2 - (ell.ax**2+ell.b**2)*y**2 - (ell.ax**2+ell.ay**2)*z**2)
|
||||
c1 = x ** 2 + y ** 2 + z ** 2 - (ell.ax ** 2 + ell.ay ** 2 + ell.b ** 2)
|
||||
c0 = (ell.ax ** 2 * ell.ay ** 2 + ell.ax ** 2 * ell.b ** 2 + ell.ay ** 2 * ell.b ** 2 -
|
||||
(ell.ay ** 2 + ell.b ** 2) * x ** 2 - (ell.ax ** 2 + ell.b ** 2) * y ** 2 - (
|
||||
ell.ax ** 2 + ell.ay ** 2) * z ** 2)
|
||||
t2 = (-c1 + np.sqrt(c1**2 - 4*c0)) / 2
|
||||
t1 = c0 / t2
|
||||
t2e = ell.ax ** 2 * np.sin(lamb) ** 2 + ell.ay ** 2 * np.cos(lamb) ** 2
|
||||
t1e = ell.ay ** 2 * np.sin(beta) ** 2 + ell.b ** 2 * np.cos(beta) ** 2
|
||||
|
||||
F = ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2
|
||||
p1 = -np.sqrt(L/(F*t2)) * ell.ax/ell.Ex * np.sqrt(B) * np.sin(lamb)
|
||||
p2 = np.sqrt(L/(F*t2)) * ell.ay * np.cos(beta) * np.cos(lamb)
|
||||
p3 = 1 / np.sqrt(F*t2) * (ell.b*ell.Ee**2)/(2*ell.Ex) * np.sin(beta) * np.sin(2*lamb)
|
||||
F = ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2
|
||||
p1 = -np.sqrt(L / (F * t2)) * ell.ax / ell.Ex * np.sqrt(B) * np.sin(lamb)
|
||||
p2 = np.sqrt(L / (F * t2)) * ell.ay * np.cos(beta) * np.cos(lamb)
|
||||
p3 = 1 / np.sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * np.sin(beta) * np.sin(2 * lamb)
|
||||
# p1 = -np.sign(y) * np.sqrt(L / (F * t2)) * ell.ax / (ell.Ex * ell.Ee) * np.sqrt(B) * np.sqrt(t2 - ell.ay ** 2)
|
||||
# p2 = np.sign(x) * np.sqrt(L / (F * t2)) * ell.ay / (ell.Ey * ell.Ee) * np.sqrt((ell.ay ** 2 - t1) * (ell.ax ** 2 - t2))
|
||||
# p3 = np.sign(x) * np.sign(y) * np.sign(z) * 1 / np.sqrt(F * t2) * ell.b / (ell.Ex * ell.Ey) * np.sqrt(
|
||||
# (t1 - ell.b ** 2) * (t2 - ell.ay ** 2) * (ell.ax ** 2 - t2))
|
||||
p = np.array([p1, p2, p3])
|
||||
q = np.cross(n, p)
|
||||
|
||||
return {"H": H, "n": n, "beta": beta, "lamb": lamb, "u": u, "B": B, "L": L, "c1": c1, "c0": c0, "t1": t1, "t2": t2,
|
||||
"F": F, "p": p, "q": q}
|
||||
def gha1_num(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, num):
|
||||
values = p_q(ell, x, y, z)
|
||||
H = values["H"]
|
||||
p = values["p"]
|
||||
q = values["q"]
|
||||
|
||||
dxds0 = p[0] * np.sin(alpha0) + q[0] * np.cos(alpha0)
|
||||
dyds0 = p[1] * np.sin(alpha0) + q[1] * np.cos(alpha0)
|
||||
dzds0 = p[2] * np.sin(alpha0) + q[2] * np.cos(alpha0)
|
||||
@@ -45,6 +61,69 @@ def gha1(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, num):
|
||||
funktionswerte = rk.verfahren([f1, f2, f3, f4, f5, f6], [0, x, dxds0, y, dyds0, z, dzds0], s, num)
|
||||
return funktionswerte
|
||||
|
||||
def checkLiouville(ell: ellipsoide.EllipsoidTriaxial, points):
|
||||
constantValues = []
|
||||
for point in points:
|
||||
x = point[1]
|
||||
dxds = point[2]
|
||||
y = point[3]
|
||||
dyds = point[4]
|
||||
z = point[5]
|
||||
dzds = point[6]
|
||||
|
||||
values = p_q(ell, x, y, z)
|
||||
p = values["p"]
|
||||
q = values["q"]
|
||||
t1 = values["t1"]
|
||||
t2 = values["t2"]
|
||||
|
||||
P = p[0]*dxds + p[1]*dyds + p[2]*dzds
|
||||
Q = q[0]*dxds + q[1]*dyds + q[2]*dzds
|
||||
alpha = np.arctan(P/Q)
|
||||
|
||||
c = ell.ay**2 - (t1 * np.sin(alpha)**2 + t2 * np.cos(alpha)**2)
|
||||
constantValues.append(c)
|
||||
pass
|
||||
|
||||
|
||||
def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, maxM):
|
||||
"""
|
||||
Panou, Korakitits 2020, 5ff.
|
||||
:param ell:
|
||||
:param x:
|
||||
:param y:
|
||||
:param z:
|
||||
:param alpha0:
|
||||
:param s:
|
||||
:param maxM:
|
||||
:return:
|
||||
"""
|
||||
Hsp = []
|
||||
# H Ableitungen (7)
|
||||
hsq = []
|
||||
# h Ableitungen (7)
|
||||
hHst = []
|
||||
# h/H Ableitungen (6)
|
||||
xsm = [x]
|
||||
ysm = [y]
|
||||
zsm = [z]
|
||||
# erste Ableitungen (7-8)
|
||||
# xm, ym, zm Ableitungen (6)
|
||||
am = []
|
||||
bm = []
|
||||
cm = []
|
||||
# am, bm, cm (6)
|
||||
x_s = 0
|
||||
for a in am:
|
||||
x_s = x_s * s + a
|
||||
y_s = 0
|
||||
for b in bm:
|
||||
y_s = y_s * s + b
|
||||
z_s = 0
|
||||
for c in cm:
|
||||
z_s = z_s * s + c
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978")
|
||||
@@ -56,7 +135,10 @@ if __name__ == "__main__":
|
||||
alpha0 = wu.gms2rad([20, 0, 0])
|
||||
s = 10000
|
||||
num = 10000
|
||||
werteTri = gha1(ellbi, x0, y0, z0, alpha0, s, num)
|
||||
print(aus.xyz(werteTri[-1][1], werteTri[-1][3], werteTri[-1][5], 8))
|
||||
werteBi = ghark.gha1(re, x0, y0, z0, alpha0, s, num)
|
||||
print(aus.xyz(werteBi[0], werteBi[1], werteBi[2], 8))
|
||||
# werteTri = gha1_num(ellbi, x0, y0, z0, alpha0, s, num)
|
||||
# print(aus.xyz(werteTri[-1][1], werteTri[-1][3], werteTri[-1][5], 8))
|
||||
# checkLiouville(ell, werteTri)
|
||||
# werteBi = ghark.gha1(re, x0, y0, z0, alpha0, s, num)
|
||||
# print(aus.xyz(werteBi[0], werteBi[1], werteBi[2], 8))
|
||||
|
||||
gha1_ana(ell, x0, y0, z0, alpha0, s, 7)
|
||||
@@ -1,14 +0,0 @@
|
||||
from numpy import sqrt, cos, sin
|
||||
import ellipsoide
|
||||
import ausgaben as aus
|
||||
import winkelumrechnungen as wu
|
||||
|
||||
|
||||
re = ellipsoide.EllipsoidBiaxial.init_name("Bessel")
|
||||
eta = lambda phi: sqrt(re.e_ ** 2 * cos(phi) ** 2)
|
||||
|
||||
A = wu.gms2rad([327,0,0])
|
||||
phi = wu.gms2rad([35,0,0])
|
||||
h = 3500
|
||||
dA = eta(phi)**2 * h * sin(A)*cos(A) / re.N(phi)
|
||||
print(aus.gms("dA", dA, 10))
|
||||
101
ellipsoide.py
101
ellipsoide.py
@@ -135,7 +135,7 @@ class EllipsoidTriaxial:
|
||||
b = 6356754
|
||||
return cls(ax, ay, b)
|
||||
elif name == "Bessel-biaxial":
|
||||
ax = 6377397.155085
|
||||
ax = 6377397.15509
|
||||
ay = 6377397.15508
|
||||
b = 6356078.96290
|
||||
return cls(ax, ay, b)
|
||||
@@ -148,17 +148,20 @@ class EllipsoidTriaxial:
|
||||
:param u: Höhe
|
||||
:return: kartesische Koordinaten
|
||||
"""
|
||||
beta = wu.deg2rad(beta)
|
||||
lamb = wu.deg2rad(lamb)
|
||||
|
||||
# s1 = u**2 - self.b**2
|
||||
# s2 = -self.ay**2 * np.sin(beta)**2 - self.b**2 * np.cos(beta)**2
|
||||
# s3 = -self.ax**2 * np.sin(lamb)**2 - self.ay**2 * np.cos(lamb)**2
|
||||
s1 = u**2 - self.b**2
|
||||
s2 = -self.ay**2 * np.sin(beta)**2 - self.b**2 * np.cos(beta)**2
|
||||
s3 = -self.ax**2 * np.sin(lamb)**2 - self.ay**2 * np.cos(lamb)**2
|
||||
# print(s1, s2, s3)
|
||||
xe = np.sqrt(((self.ax**2+s1) * (self.ax**2+s2) * (self.ax**2+s3)) /
|
||||
((self.ax**2-self.ay**2) * (self.ax**2-self.b**2)))
|
||||
ye = np.sqrt(((self.ay**2+s1) * (self.ay**2+s2) * (self.ay**2+s3)) /
|
||||
((self.ay**2-self.ax**2) * (self.ay**2-self.b**2)))
|
||||
ze = np.sqrt(((self.b**2+s1) * (self.b**2+s2) * (self.b**2+s3)) /
|
||||
((self.b**2-self.ax**2) * (self.b**2-self.ax**2)))
|
||||
|
||||
x = np.sqrt(u**2 + self.ex**2) * np.sqrt(np.cos(beta)**2 + self.ee**2/self.ex**2 * np.sin(beta)**2) * np.cos(lamb)
|
||||
y = np.sqrt(u**2 + self.ey**2) * np.cos(beta) * np.sin(lamb)
|
||||
z = u * np.sin(beta) * np.sqrt(1 - self.ee**2/self.ex**2 * np.cos(lamb)**2)
|
||||
x = np.sqrt(u**2 + self.Ex**2) * np.sqrt(np.cos(beta)**2 + self.Ee**2/self.Ex**2 * np.sin(beta)**2) * np.cos(lamb)
|
||||
y = np.sqrt(u**2 + self.Ey**2) * np.cos(beta) * np.sin(lamb)
|
||||
z = u * np.sin(beta) * np.sqrt(1 - self.Ee**2/self.Ex**2 * np.cos(lamb)**2)
|
||||
|
||||
return x, y, z
|
||||
|
||||
@@ -232,35 +235,73 @@ class EllipsoidTriaxial:
|
||||
return phi, lamb, h
|
||||
|
||||
def geod2cart(self, phi, lamb, h):
|
||||
"""
|
||||
Ligas 2012, 250
|
||||
:param phi:
|
||||
:param lamb:
|
||||
:param h:
|
||||
:return:
|
||||
"""
|
||||
v = self.ax / np.sqrt(1 - self.ex**2*np.sin(phi)**2-self.ee**2*np.cos(phi)**2*np.sin(lamb)**2)
|
||||
xG = (v + h) * np.cos(phi) * np.cos(lamb)
|
||||
yG = (v * (1-self.ee**2) + h) * np.cos(phi) * np.sin(lamb)
|
||||
zG = (v * (1-self.ex**2) + h) * np.sin(phi)
|
||||
return xG, yG, zG
|
||||
|
||||
def para2cart(self, u, v):
|
||||
"""
|
||||
Panou, Korakitits 2020, 4
|
||||
:param u:
|
||||
:param v:
|
||||
:return:
|
||||
"""
|
||||
x = self.ax * np.cos(u) * np.cos(v)
|
||||
y = self.ay * np.cos(u) * np.cos(v)
|
||||
z = self.b * np.sin(u)
|
||||
|
||||
def cart2para(self, x, y, z):
|
||||
"""
|
||||
Panou, Korakitits 2020, 4
|
||||
:param x:
|
||||
:param y:
|
||||
:param z:
|
||||
:return:
|
||||
"""
|
||||
if z*np.sqrt(1-self.ee**2) <= np.sqrt(x**2 * (1-self.ee**2)+y**2) * np.sqrt(1-self.ex**2):
|
||||
u = np.arctan(z*np.sqrt(1-self.ee**2) / np.sqrt(x**2 * (1-self.ee**2)+y**2) * np.sqrt(1-self.ex**2))
|
||||
else:
|
||||
u = np.arctan(np.sqrt(x**2 * (1-self.ee**2)+y**2) * np.sqrt(1-self.ex**2) / z*np.sqrt(1-self.ee**2))
|
||||
|
||||
if y <= x*np.sqrt(1-self.ee**2):
|
||||
v = 2*np.arctan(y/(x*np.sqrt(1-self.ee**2) + np.sqrt(x**2*(1-self.ee**2)+y**2)))
|
||||
else:
|
||||
v = np.pi/2 - 2*np.arctan(x*np.sqrt(1-self.ee**2) / (y + np.sqrt(x**2*(1-self.ee**2)+y**2)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ellips = EllipsoidTriaxial.init_name("Eitschberger1978")
|
||||
# ellips = EllipsoidTriaxial.init_name("Bursa1972")
|
||||
# carts = ellips.ell2cart(10, 30, 6378172)
|
||||
# ells = ellips.cart2ell(carts[0], carts[1], carts[2])
|
||||
|
||||
# carts = ellips.ell2cart(10, 25, 6378293.435)
|
||||
# print(aus.gms("beta", ells[0], 3), aus.gms("lambda", ells[1], 3), "u =", ells[2])
|
||||
stellen = 20
|
||||
geod1 = ellips.cart2geod("ligas1", 5712200, 2663400, 1106000)
|
||||
print(aus.gms("phi", geod1[0], stellen), aus.gms("lambda", geod1[1], stellen), "h =", geod1[2])
|
||||
geod2 = ellips.cart2geod("ligas2", 5712200, 2663400, 1106000)
|
||||
print(aus.gms("phi", geod2[0], stellen), aus.gms("lambda", geod2[1], stellen), "h =", geod2[2])
|
||||
geod3 = ellips.cart2geod("ligas3", 5712200, 2663400, 1106000)
|
||||
print(aus.gms("phi", geod3[0], stellen), aus.gms("lambda", geod3[1], stellen), "h =", geod3[2])
|
||||
cart1 = ellips.geod2cart(geod1[0], geod1[1], geod1[2])
|
||||
print(aus.xyz(cart1[0], cart1[1], cart1[2], 10))
|
||||
cart2 = ellips.geod2cart(geod2[0], geod2[1], geod2[2])
|
||||
print(aus.xyz(cart2[0], cart2[1], cart2[2], 10))
|
||||
cart3 = ellips.geod2cart(geod3[0], geod3[1], geod3[2])
|
||||
print(aus.xyz(cart3[0], cart3[1], cart3[2], 10))
|
||||
carts = ellips.ell2cart(wu.deg2rad(10), wu.deg2rad(30), 6378172)
|
||||
ells = ellips.cart2ell(carts[0], carts[1], carts[2])
|
||||
print(aus.gms("beta", ells[0], 3), aus.gms("lambda", ells[1], 3), "u =", ells[2])
|
||||
ells2 = ellips.cart2ell(5712200, 2663400, 1106000)
|
||||
carts2 = ellips.ell2cart(ells2[0], ells2[1], ells2[2])
|
||||
print(aus.xyz(carts2[0], carts2[1], carts2[2], 10))
|
||||
|
||||
test_cart = ellips.geod2cart(0.175, 0.444, 100)
|
||||
print(aus.xyz(test_cart[0], test_cart[1], test_cart[2], 10))
|
||||
# stellen = 20
|
||||
# geod1 = ellips.cart2geod("ligas1", 5712200, 2663400, 1106000)
|
||||
# print(aus.gms("phi", geod1[0], stellen), aus.gms("lambda", geod1[1], stellen), "h =", geod1[2])
|
||||
# geod2 = ellips.cart2geod("ligas2", 5712200, 2663400, 1106000)
|
||||
# print(aus.gms("phi", geod2[0], stellen), aus.gms("lambda", geod2[1], stellen), "h =", geod2[2])
|
||||
# geod3 = ellips.cart2geod("ligas3", 5712200, 2663400, 1106000)
|
||||
# print(aus.gms("phi", geod3[0], stellen), aus.gms("lambda", geod3[1], stellen), "h =", geod3[2])
|
||||
# cart1 = ellips.geod2cart(geod1[0], geod1[1], geod1[2])
|
||||
# print(aus.xyz(cart1[0], cart1[1], cart1[2], 10))
|
||||
# cart2 = ellips.geod2cart(geod2[0], geod2[1], geod2[2])
|
||||
# print(aus.xyz(cart2[0], cart2[1], cart2[2], 10))
|
||||
# cart3 = ellips.geod2cart(geod3[0], geod3[1], geod3[2])
|
||||
# print(aus.xyz(cart3[0], cart3[1], cart3[2], 10))
|
||||
|
||||
# test_cart = ellips.geod2cart(0.175, 0.444, 100)
|
||||
# print(aus.xyz(test_cart[0], test_cart[1], test_cart[2], 10))
|
||||
pass
|
||||
|
||||
@@ -1,78 +0,0 @@
|
||||
from numpy import cos, sin, tan
|
||||
import winkelumrechnungen as wu
|
||||
import s_ellipse as s_ell
|
||||
import ausgaben as aus
|
||||
from ellipsoide import EllipsoidBiaxial
|
||||
import Numerische_Integration.num_int_runge_kutta as rk
|
||||
import GHA.gauss as gauss
|
||||
import GHA.bessel as bessel
|
||||
|
||||
matrikelnummer = "6044051"
|
||||
print(f"Matrikelnummer: {matrikelnummer}")
|
||||
|
||||
m4 = matrikelnummer[-4]
|
||||
m3 = matrikelnummer[-3]
|
||||
m2 = matrikelnummer[-2]
|
||||
m1 = matrikelnummer[-1]
|
||||
print(f"m1={m1}\tm2={m2}\tm3={m3}\tm4={m4}")
|
||||
|
||||
re = EllipsoidBiaxial.init_name("Bessel")
|
||||
nks = 3
|
||||
|
||||
print(f"\na = {re.a} m\nb = {re.b} m\nc = {re.c} m\ne' = {re.e_}")
|
||||
|
||||
print("\n\nAufgabe 1 (via Reihenentwicklung)")
|
||||
phi1 = re.beta2phi(wu.gms2rad([int("1"+m1), int("1"+m2), int("1"+m3)]))
|
||||
print(f"{aus.gms('phi_P1', phi1, 5)}")
|
||||
s = s_ell.reihenentwicklung(re.e_, re.c, phi1)
|
||||
print(f'\ns_P1 = {round(s,nks)} m')
|
||||
# s_poly = s_ell.polyapp_tscheby_bessel(phi1)
|
||||
# print(f'Meridianbogenlänge: {round(s_poly,nks)} m (Polynomapproximation)')
|
||||
|
||||
print("\n\nAufgabe 2 (via Gauß´schen Mittelbreitenformeln)")
|
||||
|
||||
lambda1 = wu.gms2rad([int("1"+m3), int("1"+m2), int("1"+m4)])
|
||||
A12 = wu.gms2rad([90, 0, 0])
|
||||
s12 = float("1"+m4+m3+m2+"."+m1+"0")
|
||||
|
||||
# print("\nvia Runge-Kutta-Verfahren")
|
||||
# re = Ellipsoid.init_name("Bessel")
|
||||
# f_phi = lambda s, phi, lam, A: cos(A) * re.V(phi) ** 3 / re.c
|
||||
# f_lam = lambda s, phi, lam, A: sin(A) * re.V(phi) / (cos(phi) * re.c)
|
||||
# f_A = lambda s, phi, lam, A: tan(phi) * sin(A) * re.V(phi) / re.c
|
||||
#
|
||||
# funktionswerte = rk.verfahren([f_phi, f_lam, f_A],
|
||||
# [0, phi1, lambda1, A12],
|
||||
# s12, 1)
|
||||
#
|
||||
# for s, phi, lam, A in funktionswerte:
|
||||
# print(f"{s} m, {aus.gms('phi', phi, nks)}, {aus.gms('lambda', lam, nks)}, {aus.gms('A', A, nks)}")
|
||||
|
||||
# print("via Gauß´schen Mittelbreitenformeln")
|
||||
phi_p2, lambda_p2, A_p2 = gauss.gha1(EllipsoidBiaxial.init_name("Bessel"),
|
||||
phi_p1=phi1,
|
||||
lambda_p1=lambda1,
|
||||
A_p1=A12,
|
||||
s=s12, eps=wu.gms2rad([1*10**-8, 0, 00]))
|
||||
|
||||
print(f"\nP2: {aus.gms('phi', phi_p2[-1], nks)}\t\t{aus.gms('lambda', lambda_p2[-1], nks)}\t{aus.gms('A', A_p2[-1], nks)}")
|
||||
|
||||
# print("\nvia Verfahren nach Bessel")
|
||||
# phi_p2, lambda_p2, A_p2 = bessel.gha1(Ellipsoid.init_name("Bessel"),
|
||||
# phi_p1=phi1,
|
||||
# lambda_p1=lambda1,
|
||||
# A_p1=A12,
|
||||
# s=s12)
|
||||
# print(f"P2: {aus.gms('phi', phi_p2, nks)}, {aus.gms('lambda', lambda_p2, nks)}, {aus.gms('A', A_p2, nks)}")
|
||||
|
||||
print("\n\nAufgabe 3")
|
||||
p = re.phi2p(phi_p2[-1])
|
||||
print(f"p = {round(p,2)} m")
|
||||
|
||||
|
||||
print("\n\nAufgabe 4")
|
||||
x = float("4308"+m3+"94.556")
|
||||
y = float("1214"+m2+"88.242")
|
||||
z = float("4529"+m4+"03.878")
|
||||
phi_p3, lambda_p3, h_p3 = re.cart2ell(0.001, wu.gms2rad([0, 0, 0.001]), x, y, z)
|
||||
print(f"\nP3: {aus.gms('phi', phi_p3, nks)}, {aus.gms('lambda', lambda_p3, 5)}, h = {round(h_p3,nks)} m")
|
||||
Reference in New Issue
Block a user