Compare commits

..

26 Commits

Author SHA1 Message Date
Tammo.Weber
9db63d09fa GHA1 numerisch implementiert 2025-12-17 17:59:05 +01:00
Tammo.Weber
cfeb069e29 Zusammenführung 2025-12-16 16:39:33 +01:00
Tammo.Weber
f19373ed82 Merge remote-tracking branch 'origin/main'
# Conflicts:
#	dashboard.py
2025-12-16 16:33:57 +01:00
Tammo.Weber
0f47be3a9f Berechnungsverfahren und Darstellung 2025-12-16 16:31:24 +01:00
Tammo.Weber
30a610ccf6 Hansen Skript roh 2025-12-16 16:25:00 +01:00
bf1e26c98a Code-Verschönerung Dashboard 2025-12-15 12:33:12 +01:00
4139fbc354 kleine Anpassungen 2025-12-14 16:13:55 +01:00
946d028fae GHA1 num und ana richtig. Tests nach Beispielen aus Panou 2013 2025-12-10 11:45:41 +01:00
Tammo.Weber
936b7c56f9 icon 2025-12-10 10:10:14 +01:00
Tammo.Weber
766f75efc1 1 GHA ES 2025-12-10 10:07:27 +01:00
Tammo.Weber
520f0973f0 Dashboard 2025-12-10 10:05:57 +01:00
d76859d17b Koordinatenumrechnungen funktionieren inkl. Randfälle, GHA2_num funktioniert mit Standard Ellipsoid 2025-11-26 11:05:18 +01:00
9031a12312 diverse Änderungen, Versuch der Lösung der zweiten GHA mit Louville 2025-11-25 14:49:06 +01:00
Tammo.Weber
2ff4cff2be Kugel 2025-11-18 13:17:33 +01:00
Tammo.Weber
e545da5cd7 Zweite GHA numerisch 2025-11-15 14:48:11 +01:00
Tammo.Weber
e464e1cb5c Neue Funktion ell2cart nach Panou 2013 2025-11-15 14:31:51 +01:00
4e85eef5d7 analytisch funktioniert, p_q in ellisoid 2025-11-04 15:47:44 +01:00
ff81093d34 Merge remote-tracking branch 'origin/main' 2025-11-04 14:18:40 +01:00
1c56b089f2 analytisch funktioniert noch nicht 2025-11-04 14:18:17 +01:00
Tammo.Weber
1af07e61a9 Funktionstest 2025-11-03 10:13:42 +01:00
610ea3dc28 Aufgeräumt, Grundkonstrukt analytische Lösung 2025-11-01 17:59:57 +01:00
b5ecc50b68 GHA triaxial nach Panou Korakitis 2019 läuft
bei ax=ay Fehler
irgendwas bei gha1 biaxial noch falsch, evtl Umrechnung
2025-10-26 19:01:19 +01:00
b7d437e0ca Umrechnung geod cart 2025-10-22 18:07:17 +02:00
dcf1780f44 Umrechnung ell cart 2025-10-21 14:19:40 +02:00
cc5996e174 Merge remote-tracking branch 'origin/main' 2025-10-15 12:52:33 +02:00
a143cad0eb Anfang triaxial 2025-10-15 12:52:17 +02:00
22 changed files with 2611 additions and 129 deletions

364
1,lambda-ES-CMA.py Normal file
View File

@@ -0,0 +1,364 @@
import numpy as np
import plotly.graph_objects as go
from ellipsoide import EllipsoidTriaxial
def ell2cart(ell: EllipsoidTriaxial, beta, lamb):
x = ell.ax * np.cos(beta) * np.cos(lamb)
y = ell.ay * np.cos(beta) * np.sin(lamb)
z = ell.b * np.sin(beta)
return np.array([x, y, z], dtype=float)
def liouville(ell: EllipsoidTriaxial, beta, lamb, alpha):
k = (ell.Ee**2) / (ell.Ex**2)
c_sq = (np.cos(beta)**2 + k * np.sin(beta)**2) * np.sin(alpha)**2 \
+ k * np.cos(lamb)**2 * np.cos(alpha)**2
return c_sq
def normalize_angles(beta, lamb):
beta = np.clip(beta, -np.pi / 2.0, np.pi / 2.0)
lamb = (lamb + np.pi) % (2 * np.pi) - np.pi
return beta, lamb
def compute_azimuth(beta0: float, lamb0: float,
beta1: float, lamb1: float) -> float:
dlam = lamb1 - lamb0
y = np.cos(beta1) * np.sin(dlam)
x = np.cos(beta0) * np.sin(beta1) - np.sin(beta0) * np.cos(beta1) * np.cos(dlam)
alpha = np.arctan2(y, x)
return alpha
def sphere_forward_step(beta0: float,
lamb0: float,
alpha0: float,
s: float,
R: float) -> tuple[float, float]:
delta = s / R
sin_beta0 = np.sin(beta0)
cos_beta0 = np.cos(beta0)
sin_beta2 = sin_beta0 * np.cos(delta) + cos_beta0 * np.sin(delta) * np.cos(alpha0)
beta2 = np.arcsin(sin_beta2)
y = np.sin(alpha0) * np.sin(delta) * cos_beta0
x = np.cos(delta) - sin_beta0 * sin_beta2
dlam = np.arctan2(y, x)
lamb2 = lamb0 + dlam
beta2, lamb2 = normalize_angles(beta2, lamb2)
return beta2, lamb2
def local_step_objective(candidate: np.ndarray,
beta_start: float,
lamb_start: float,
alpha_prev: float,
c_target: float,
step_length: float,
ell: EllipsoidTriaxial,
beta_pred: float,
lamb_pred: float,
w_L: float = 5.0,
w_d: float = 5.0,
w_p: float = 2.0,
w_a: float = 2.0) -> float:
beta1, lamb1 = candidate
beta1, lamb1 = normalize_angles(beta1, lamb1)
P0 = ell2cart(ell, beta_start, lamb_start)
P1 = ell2cart(ell, beta1, lamb1)
d = np.linalg.norm(P1 - P0)
alpha1 = compute_azimuth(beta_start, lamb_start, beta1, lamb1)
c1 = liouville(ell, beta1, lamb1, alpha1)
J_L = (c1 - c_target) ** 2
J_d = (d - step_length) ** 2
d_beta = beta1 - beta_pred
d_lamb = lamb1 - lamb_pred
d_ang2 = d_beta**2 + (np.cos(beta_pred) * d_lamb)**2
J_p = d_ang2
d_alpha = np.arctan2(np.sin(alpha1 - alpha_prev),
np.cos(alpha1 - alpha_prev))
J_a = d_alpha**2
return w_L * J_L + w_d * J_d + w_p * J_p + w_a * J_a
def ES_CMA_step(beta_start: float,
lamb_start: float,
alpha_prev: float,
c_target: float,
step_length: float,
ell: EllipsoidTriaxial,
beta_pred: float,
lamb_pred: float,
sigma0: float,
stopfitness: float = 1e-18) -> tuple[float, float]:
N = 2
xmean = np.array([beta_pred, lamb_pred], dtype=float)
sigma = sigma0
stopeval = int(400 * N**2)
lamb = 30
mu = 1
weights = np.array([1.0])
mueff = 1.0
cc = (4 + mueff / N) / (N + 4 + 2 * mueff / N)
cs = (mueff + 2) / (N + mueff + 5)
c1 = 2 / ((N + 1.3)**2 + mueff)
cmu = min(1 - c1,
2 * (mueff - 2 + 1/mueff) / ((N + 2)**2 + mueff))
damps = 1 + 2 * max(0, np.sqrt((mueff - 1) / (N + 1)) - 1) + cs
pc = np.zeros(N)
ps = np.zeros(N)
B = np.eye(N)
D = np.eye(N)
C = B @ D @ (B @ D).T
eigeneval = 0
chiN = np.sqrt(N) * (1 - 1 / (4 * N) + 1 / (21 * N**2))
counteval = 0
arx = np.zeros((N, lamb))
arz = np.zeros((N, lamb))
arfitness = np.zeros(lamb)
while counteval < stopeval:
for k in range(lamb):
arz[:, k] = np.random.randn(N)
arx[:, k] = xmean + sigma * (B @ D @ arz[:, k])
arfitness[k] = local_step_objective(
arx[:, k],
beta_start, lamb_start,
alpha_prev,
c_target,
step_length,
ell,
beta_pred, lamb_pred
)
counteval += 1
idx = np.argsort(arfitness)
arfitness = arfitness[idx]
arindex = idx
xold = xmean.copy()
xmean = arx[:, arindex[:mu]] @ weights
zmean = arz[:, arindex[:mu]] @ weights
ps = (1 - cs) * ps + np.sqrt(cs * (2 - cs) * mueff) * (B @ zmean)
norm_ps = np.linalg.norm(ps)
hsig = norm_ps / np.sqrt(1 - (1 - cs)**(2 * counteval / lamb)) / chiN < 1.4 + 2 / (N + 1)
hsig = 1.0 if hsig else 0.0
pc = (1 - cc) * pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * (B @ D @ zmean)
BDz = B @ D @ arz[:, arindex[:mu]]
C = (1 - c1 - cmu) * C \
+ c1 * (np.outer(pc, pc) + (1 - hsig) * cc * (2 - cc) * C) \
+ cmu * BDz @ np.diag(weights) @ BDz.T
sigma = sigma * np.exp((cs / damps) * (norm_ps / chiN - 1))
if counteval - eigeneval > lamb / ((c1 + cmu) * N * 10):
eigeneval = counteval
C = (C + C.T) / 2.0
eigvals, B = np.linalg.eigh(C)
D = np.diag(np.sqrt(np.maximum(eigvals, 1e-20)))
if arfitness[0] <= stopfitness:
break
xmin = arx[:, arindex[0]]
beta1, lamb1 = normalize_angles(xmin[0], xmin[1])
return beta1, lamb1
def march_geodesic(beta1: float,
lamb1: float,
alpha1: float,
S_total: float,
step_length: float,
ell: EllipsoidTriaxial):
beta_curr = beta1
lamb_curr = lamb1
alpha_curr = alpha1
betas = [beta_curr]
lambs = [lamb_curr]
alphas = [alpha_curr]
c_target = liouville(ell, beta_curr, lamb_curr, alpha_curr)
total_distance = 0.0
R_sphere = ell.ax
sigma0 = 1e-10
while total_distance < S_total - 1e-6:
remaining = S_total - total_distance
this_step = min(step_length, remaining)
beta_pred, lamb_pred = sphere_forward_step(
beta_curr, lamb_curr, alpha_curr,
this_step, R_sphere
)
beta_next, lamb_next = ES_CMA_step(
beta_curr, lamb_curr, alpha_curr,
c_target,
this_step,
ell,
beta_pred,
lamb_pred,
sigma0=sigma0
)
P_curr = ell2cart(ell, beta_curr, lamb_curr)
P_next = ell2cart(ell, beta_next, lamb_next)
d_step = np.linalg.norm(P_next - P_curr)
total_distance += d_step
alpha_next = compute_azimuth(beta_curr, lamb_curr, beta_next, lamb_next)
beta_curr, lamb_curr, alpha_curr = beta_next, lamb_next, alpha_next
betas.append(beta_curr)
lambs.append(lamb_curr)
alphas.append(alpha_curr)
return np.array(betas), np.array(lambs), np.array(alphas), total_distance
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
beta1 = np.deg2rad(10.0)
lamb1 = np.deg2rad(10.0)
alpha1 = 0.7494562507041596 # Ergebnis 20°, 20°
STEP_LENGTH = 500.0
S_total = 1542703.1458877102
betas, lambs, alphas, S_real = march_geodesic(
beta1, lamb1, alpha1,
S_total,
STEP_LENGTH,
ell
)
print("Anzahl Schritte:", len(betas) - 1)
print("Resultierende Gesamtstrecke (Chord, Ellipsoid):", S_real, "m")
print("Letzter Punkt (beta, lambda) in Grad:",
np.rad2deg(betas[-1]), np.rad2deg(lambs[-1]))
def plot_geodesic_3d(ell: EllipsoidTriaxial,
betas: np.ndarray,
lambs: np.ndarray,
n_beta: int = 60,
n_lamb: int = 120):
beta_grid = np.linspace(-np.pi/2, np.pi/2, n_beta)
lamb_grid = np.linspace(-np.pi, np.pi, n_lamb)
B, L = np.meshgrid(beta_grid, lamb_grid, indexing="ij")
Xs = ell.ax * np.cos(B) * np.cos(L)
Ys = ell.ay * np.cos(B) * np.sin(L)
Zs = ell.b * np.sin(B)
Xp = ell.ax * np.cos(betas) * np.cos(lambs)
Yp = ell.ay * np.cos(betas) * np.sin(lambs)
Zp = ell.b * np.sin(betas)
fig = go.Figure()
fig.add_trace(
go.Surface(
x=Xs,
y=Ys,
z=Zs,
opacity=0.6,
showscale=False,
colorscale="Viridis",
name="Ellipsoid"
)
)
fig.add_trace(
go.Scatter3d(
x=Xp,
y=Yp,
z=Zp,
mode="lines+markers",
line=dict(width=5, color="red"),
marker=dict(size=4, color="black"),
name="ES-CMA Schritte"
)
)
fig.add_trace(
go.Scatter3d(
x=[Xp[0]], y=[Yp[0]], z=[Zp[0]],
mode="markers",
marker=dict(size=6, color="green"),
name="Start"
)
)
fig.add_trace(
go.Scatter3d(
x=[Xp[-1]], y=[Yp[-1]], z=[Zp[-1]],
mode="markers",
marker=dict(size=6, color="blue"),
name="Ende"
)
)
fig.update_layout(
title="ES-CMA",
scene=dict(
xaxis_title="X [m]",
yaxis_title="Y [m]",
zaxis_title="Z [m]",
aspectmode="data"
)
)
fig.show()
plot_geodesic_3d(ell, betas, lambs)

View File

@@ -1 +0,0 @@
print("Hallo Welt!")

17
GHA/rk.py Normal file
View File

@@ -0,0 +1,17 @@
import Numerische_Integration.num_int_runge_kutta as rk
from numpy import sin, cos, tan
import winkelumrechnungen as wu
from ellipsoide import EllipsoidBiaxial
def gha1(re: EllipsoidBiaxial, x0, y0, z0, A0, s, num):
phi0, lamb0, h0 = re.cart2ell(0.001, wu.gms2rad([0, 0, 0.001]), x0, y0, z0)
f_phi = lambda s, phi, lam, A: cos(A) * re.V(phi) ** 3 / re.c
f_lam = lambda s, phi, lam, A: sin(A) * re.V(phi) / (cos(phi) * re.c)
f_A = lambda s, phi, lam, A: tan(phi) * sin(A) * re.V(phi) / re.c
funktionswerte = rk.verfahren([f_phi, f_lam, f_A],
[0, phi0, lamb0, A0],
s, num)
coords = re.ell2cart(funktionswerte[-1][1], funktionswerte[-1][2], h0)
return coords

0
GHA_triaxial/__init__.py Normal file
View File

View File

@@ -0,0 +1,108 @@
import numpy as np
from numpy import sin, cos, arcsin, arccos, arctan2
from ellipsoide import EllipsoidTriaxial
import matplotlib.pyplot as plt
dbeta_dc = lambda ell, beta, lamb, alpha: -2 * ell.Ey**2 * sin(alpha)**2 * cos(beta) * sin(beta)
dlamb_dc = lambda ell, beta, lamb, alpha: -2 * ell.Ee**2 * cos(alpha)**2 * sin(lamb) * cos(lamb)
dalpha_dc = lambda ell, beta, lamb, alpha: (2 * sin(alpha) * cos(alpha) *
(ell.Ey**2 * cos(beta)**2 + ell.Ee**2 * sin(lamb)**2))
lamb2_sphere = lambda r, phi1, lamb1, a12, s: lamb1 + arctan2(sin(s/r) * sin(a12),
cos(phi1) * cos(s/r) - sin(s/r) * cos(a12))
phi2_sphere = lambda r, phi1, lamb1, a12, s: arcsin(sin(phi1) * cos(s/r) + cos(phi1) * sin(s/r) * cos(a12))
a12_sphere = lambda phi1, lamb1, phi2, lamb2: arctan2(cos(phi2) * sin(lamb2 - lamb1),
cos(phi1) * cos(phi2) -
sin(phi1) * cos(phi2) * cos(lamb2 - lamb1))
s_sphere = lambda r, phi1, lamb1, phi2, lamb2: r * arccos(sin(phi1) * sin(phi2) +
cos(phi1) * cos(phi2) * cos(lamb2 - lamb1))
louville = lambda beta, lamb, alpha: (ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 -
ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2)
def points_approx_gha2(r: float, phi1: np.ndarray, lamb1: np.ndarray, phi2: np.ndarray, lamb2: np.ndarray, num: int = None, step_size: float = 10000):
s_approx = s_sphere(r, phi1, lamb1, phi2, lamb2)
if num is not None:
step_size = s_approx / (num+1)
a_approx = a12_sphere(phi1, lamb1, phi2, lamb2)
points = [np.array([phi1, lamb1, a_approx])]
current_s = step_size
while current_s < s_approx:
phi_n = phi2_sphere(r, phi1, lamb1, a_approx, current_s)
lamb_n = lamb2_sphere(r, phi1, lamb1, a_approx, current_s)
points.append(np.array([phi_n, lamb_n, a_approx]))
current_s += step_size
points.append(np.array([phi2, lamb2, a_approx]))
return points
def num_update(ell: EllipsoidTriaxial, points, diffs):
for i, (beta, lamb, alpha) in enumerate(points):
dalpha = dalpha_dc(ell, beta, lamb, alpha)
if i == 0 or i == len(points) - 1:
grad = np.array([0, 0, dalpha])
else:
dbeta = dbeta_dc(ell, beta, lamb, alpha)
dlamb = dlamb_dc(ell, beta, lamb, alpha)
grad = np.array([dbeta, dlamb, dalpha])
delta = -diffs[i] * grad / np.dot(grad, grad)
points[i] += delta
return points
def gha2(ell: EllipsoidTriaxial, p1: np.ndarray, p2: np.ndarray, maxI: int):
beta1, lamb1 = ell.cart2ell(p1)
beta2, lamb2 = ell.cart2ell(p2)
points = points_approx_gha2(ell.ax, beta1, lamb1, beta2, lamb2, 5)
for j in range(maxI):
constants = [louville(point[0], point[1], point[2]) for point in points]
mean_constant = np.mean(constants)
diffs = constants - mean_constant
if np.mean(np.abs(diffs)) > 10:
points = num_update(ell, points, diffs)
else:
break
for k in range(maxI):
last_diff_alpha = points[-2][-1] - points[-3][-1]
alpha_extrap = points[-2][-1] + last_diff_alpha
if abs(alpha_extrap - points[-1][-1]) > 0.0005:
pass
else:
break
pass
pass
return points
def show_points(ell: EllipsoidTriaxial, points):
points_cart = []
for point in points:
points_cart.append(ell.ell2cart(point[0], point[1]))
points_cart = np.array(points_cart)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(points_cart[:, 0], points_cart[:, 1], points_cart[:, 2])
ax.scatter(points_cart[:, 0], points_cart[:, 1], points_cart[:, 2])
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("Eitschberger1978")
p1 = np.array([4189000, 812000, 4735000])
p2 = np.array([4090000, 868000, 4808000])
p1, phi1, lamb1, h1 = ell.cartonell(p1)
p2, phi2, lamb2, h2 = ell.cartonell(p2)
points = gha2(ell, p1, p2, 10)
show_points(ell, points)

View File

@@ -0,0 +1,111 @@
import winkelumrechnungen as wu
table1 = [
(wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(90), 1.00000000000,
wu.gms2rad([90,0,0.0000]), wu.gms2rad([90,0,0.0000]), 10018754.9569),
(wu.deg2rad(1), wu.deg2rad(0), wu.deg2rad(-80), wu.deg2rad(5), 0.05883743460,
wu.gms2rad([179,7,12.2719]), wu.gms2rad([174,40,13.8487]), 8947130.7221),
(wu.deg2rad(5), wu.deg2rad(0), wu.deg2rad(-60), wu.deg2rad(40), 0.34128138370,
wu.gms2rad([160,13,24.5001]), wu.gms2rad([137,26,47.0036]), 8004762.4330),
(wu.deg2rad(30), wu.deg2rad(0), wu.deg2rad(-30), wu.deg2rad(175), 0.86632464962,
wu.gms2rad([91,7,30.9337]), wu.gms2rad([91,7,30.8672]), 19547128.7971),
(wu.deg2rad(60), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(175), 0.06207487624,
wu.gms2rad([2,52,26.2393]), wu.gms2rad([177,4,13.6373]), 6705715.1610),
(wu.deg2rad(75), wu.deg2rad(0), wu.deg2rad(80), wu.deg2rad(120), 0.11708984898,
wu.gms2rad([23,20,34.7823]), wu.gms2rad([140,55,32.6385]), 2482501.2608),
(wu.deg2rad(80), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(90), 0.17478427424,
wu.gms2rad([72,26,50.4024]), wu.gms2rad([159,38,30.3547]), 3519745.1283)
]
table2 = [
(wu.deg2rad(0), wu.deg2rad(-90), wu.deg2rad(0), wu.deg2rad(89.5), 1.00000000000,
wu.gms2rad([90,0,0.0000]), wu.gms2rad([90,0,0.0000]), 19981849.8629),
(wu.deg2rad(1), wu.deg2rad(-90), wu.deg2rad(1), wu.deg2rad(89.5), 0.18979826428,
wu.gms2rad([10,56,33.6952]), wu.gms2rad([169,3,26.4359]), 19776667.0342),
(wu.deg2rad(5), wu.deg2rad(-90), wu.deg2rad(5), wu.deg2rad(89), 0.09398403161,
wu.gms2rad([5,24,48.3899]), wu.gms2rad([174,35,12.6880]), 18889165.0873),
(wu.deg2rad(30), wu.deg2rad(-90), wu.deg2rad(30), wu.deg2rad(86), 0.06004022935,
wu.gms2rad([3,58,23.8038]), wu.gms2rad([176,2,7.2825]), 13331814.6078),
(wu.deg2rad(60), wu.deg2rad(-90), wu.deg2rad(60), wu.deg2rad(78), 0.06076096484,
wu.gms2rad([6,56,46.4585]), wu.gms2rad([173,11,5.9592]), 6637321.6350),
(wu.deg2rad(75), wu.deg2rad(-90), wu.deg2rad(75), wu.deg2rad(66), 0.05805851008,
wu.gms2rad([12,40,34.9009]), wu.gms2rad([168,20,26.7339]), 3267941.2812),
(wu.deg2rad(80), wu.deg2rad(-90), wu.deg2rad(80), wu.deg2rad(55), 0.05817384452,
wu.gms2rad([18,35,40.7848]), wu.gms2rad([164,25,34.0017]), 2132316.9048)
]
table3 = [
(wu.deg2rad(0), wu.deg2rad(0.5), wu.deg2rad(80), wu.deg2rad(0.5), 0.05680316848,
wu.gms2rad([0,-0,16.0757]), wu.gms2rad([0,1,32.5762]), 8831874.3717),
(wu.deg2rad(-1), wu.deg2rad(5), wu.deg2rad(75), wu.deg2rad(5), 0.05659149555,
wu.gms2rad([0,-1,47.2105]), wu.gms2rad([0,6,54.0958]), 8405370.4947),
(wu.deg2rad(-5), wu.deg2rad(30), wu.deg2rad(60), wu.deg2rad(30), 0.04921108945,
wu.gms2rad([0,-4,22.3516]), wu.gms2rad([0,8,42.0756]), 7204083.8568),
(wu.deg2rad(-30), wu.deg2rad(45), wu.deg2rad(30), wu.deg2rad(45), 0.04017812574,
wu.gms2rad([0,-3,41.2461]), wu.gms2rad([0,3,41.2461]), 6652788.1287),
(wu.deg2rad(-60), wu.deg2rad(60), wu.deg2rad(5), wu.deg2rad(60), 0.02843082609,
wu.gms2rad([0,-8,40.4575]), wu.gms2rad([0,4,22.1675]), 7213412.4477),
(wu.deg2rad(-75), wu.deg2rad(85), wu.deg2rad(1), wu.deg2rad(85), 0.00497802414,
wu.gms2rad([0,-6,44.6115]), wu.gms2rad([0,1,47.0474]), 8442938.5899),
(wu.deg2rad(-80), wu.deg2rad(89.5), wu.deg2rad(0), wu.deg2rad(89.5), 0.00050178253,
wu.gms2rad([0,-1,27.9705]), wu.gms2rad([0,0,16.0490]), 8888783.7815)
]
table4 = [
(wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(90), 1.00000000000,
wu.gms2rad([90,0,0.0000]), wu.gms2rad([90,0,0.0000]), 10018754.1714),
(wu.deg2rad(1), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(179.5), 0.30320665822,
wu.gms2rad([17,39,11.0942]), wu.gms2rad([162,20,58.9032]), 19884417.8083),
(wu.deg2rad(5), wu.deg2rad(0), wu.deg2rad(-80), wu.deg2rad(170), 0.03104258442,
wu.gms2rad([178,12,51.5083]), wu.gms2rad([10,17,52.6423]), 11652530.7514),
(wu.deg2rad(30), wu.deg2rad(0), wu.deg2rad(-75), wu.deg2rad(120), 0.24135347134,
wu.gms2rad([163,49,4.4615]), wu.gms2rad([68,49,50.9617]), 14057886.8752),
(wu.deg2rad(60), wu.deg2rad(0), wu.deg2rad(-60), wu.deg2rad(40), 0.19408499032,
wu.gms2rad([157,9,33.5589]), wu.gms2rad([157,9,33.5589]), 13767414.8267),
(wu.deg2rad(75), wu.deg2rad(0), wu.deg2rad(-30), wu.deg2rad(0.5), 0.00202789418,
wu.gms2rad([179,33,3.8613]), wu.gms2rad([179,51,57.0077]), 11661713.4496),
(wu.deg2rad(80), wu.deg2rad(0), wu.deg2rad(-5), wu.deg2rad(120), 0.15201222384,
wu.gms2rad([61,5,33.9600]), wu.gms2rad([171,13,22.0148]), 11105138.2902),
(wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(0), 0.00000000000,
wu.gms2rad([0,0,0.0000]), wu.gms2rad([0,0,0.0000]), 6663348.2060)
]
tables = [table1, table2, table3, table4]
def get_example(table, example):
table -= 1
example -= 1
return tables[table][example]
def get_tables():
return tables
if __name__ == "__main__":
test = get_example(1, 4)
pass

191
GHA_triaxial/panou.py Normal file
View File

@@ -0,0 +1,191 @@
import numpy as np
from numpy import sin, cos, sqrt, arctan2
import ellipsoide
import Numerische_Integration.num_int_runge_kutta as rk
import winkelumrechnungen as wu
import ausgaben as aus
import GHA.rk as ghark
from scipy.special import factorial as fact
from math import comb
import GHA_triaxial.numeric_examples_panou as nep
# Panou, Korakitits 2019
def gha1_num_old(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, num):
phi, lamb, h = ell.cart2geod(point, "ligas3")
x, y, z = ell.geod2cart(phi, lamb, 0)
p, q = ell.p_q(x, y, z)
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
h = lambda dxds, dyds, dzds: dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
f1 = lambda x, dxds, y, dyds, z, dzds: dxds
f2 = lambda x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / ell.func_H(x, y, z) * x
f3 = lambda x, dxds, y, dyds, z, dzds: dyds
f4 = lambda x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / ell.func_H(x, y, z) * y/(1-ell.ee**2)
f5 = lambda x, dxds, y, dyds, z, dzds: dzds
f6 = lambda x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / ell.func_H(x, y, z) * z/(1-ell.ex**2)
funktionswerte = rk.verfahren([f1, f2, f3, f4, f5, f6], [x, dxds0, y, dyds0, z, dzds0], s, num, fein=False)
P2 = funktionswerte[-1]
P2 = (P2[0], P2[2], P2[4])
return P2
def buildODE(ell):
def ODE(v):
x, dxds, y, dyds, z, dzds = v
H = ell.func_H(x, y, z)
h = dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
ddx = -(h/H)*x
ddy = -(h/H)*y/(1-ell.ee**2)
ddz = -(h/H)*z/(1-ell.ex**2)
return [dxds, ddx, dyds, ddy, dzds, ddz]
return ODE
def gha1_num(ell, point, alpha0, s, num):
phi, lam, _ = ell.cart2geod(point, "ligas3")
x0, y0, z0 = ell.geod2cart(phi, lam, 0)
p, q = ell.p_q(x0, y0, z0)
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
v_init = [x0, dxds0, y0, dyds0, z0, dzds0]
F = buildODE(ell)
werte = rk.rk_chat(F, v_init, s, num)
x1, _, y1, _, z1, _ = werte[-1]
return x1, y1, z1
def checkLiouville(ell: ellipsoide.EllipsoidTriaxial, points):
constantValues = []
for point in points:
x = point[1]
dxds = point[2]
y = point[3]
dyds = point[4]
z = point[5]
dzds = point[6]
values = ell.p_q(x, y, z)
p = values["p"]
q = values["q"]
t1 = values["t1"]
t2 = values["t2"]
P = p[0]*dxds + p[1]*dyds + p[2]*dzds
Q = q[0]*dxds + q[1]*dyds + q[2]*dzds
alpha = arctan2(P, Q)
c = ell.ay**2 - (t1 * sin(alpha)**2 + t2 * cos(alpha)**2)
constantValues.append(c)
pass
def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
"""
Panou, Korakitits 2020, 5ff.
:param ell:
:param point:
:param alpha0:
:param s:
:param maxM:
:return:
"""
x, y, z = point
x_m = [x]
y_m = [y]
z_m = [z]
# erste Ableitungen (7-8)
H = x ** 2 + y ** 2 / (1 - ell.ee ** 2) ** 2 + z ** 2 / (1 - ell.ex ** 2) ** 2
sqrtH = sqrt(H)
n = np.array([x / sqrtH,
y / ((1-ell.ee**2) * sqrtH),
z / ((1-ell.ex**2) * sqrtH)])
u, v = ell.cart2para(np.array([x, y, z]))
G = sqrt(1 - ell.ex**2 * cos(u)**2 - ell.ee**2 * sin(u)**2 * sin(v)**2)
q = np.array([-1/G * sin(u) * cos(v),
-1/G * sqrt(1-ell.ee**2) * sin(u) * sin(v),
1/G * sqrt(1-ell.ex**2) * cos(u)])
p = np.array([q[1]*n[2] - q[2]*n[1],
q[2]*n[0] - q[0]*n[2],
q[0]*n[1] - q[1]*n[0]])
x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
y_m.append(p[1] * sin(alpha0) + q[1] * cos(alpha0))
z_m.append(p[2] * sin(alpha0) + q[2] * cos(alpha0))
# H Ableitungen (7)
H_ = lambda p: np.sum([comb(p, i) * (x_m[p - i] * x_m[i] +
1 / (1-ell.ee**2) ** 2 * y_m[p-i] * y_m[i] +
1 / (1-ell.ex**2) ** 2 * z_m[p-i] * z_m[i]) for i in range(0, p+1)])
# h Ableitungen (7)
h_ = lambda q: np.sum([comb(q, j) * (x_m[q-j+1] * x_m[j+1] +
1 / (1 - ell.ee ** 2) * y_m[q-j+1] * y_m[j+1] +
1 / (1 - ell.ex ** 2) * z_m[q-j+1] * z_m[j+1]) for j in range(0, q+1)])
# h/H Ableitungen (6)
hH_ = lambda t: 1/H_(0) * (h_(t) - fact(t) *
np.sum([H_(t+1-l) / (fact(t+1-l) * fact(l-1)) * hH_t[l-1] for l in range(1, t+1)]))
# xm, ym, zm Ableitungen (6)
x_ = lambda m: -np.sum([comb(m-2, k) * hH_t[m-2-k] * x_m[k] for k in range(0, m-2+1)])
y_ = lambda m: -1 / (1-ell.ee**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * y_m[k] for k in range(0, m-2+1)])
z_ = lambda m: -1 / (1-ell.ex**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * z_m[k] for k in range(0, m-2+1)])
hH_t = []
a_m = []
b_m = []
c_m = []
for m in range(0, maxM+1):
if m >= 2:
hH_t.append(hH_(m-2))
x_m.append(x_(m))
y_m.append(y_(m))
z_m.append(z_(m))
a_m.append(x_m[m] / fact(m))
b_m.append(y_m[m] / fact(m))
c_m.append(z_m[m] / fact(m))
# am, bm, cm (6)
x_s = 0
for a in reversed(a_m):
x_s = x_s * s + a
y_s = 0
for b in reversed(b_m):
y_s = y_s * s + b
z_s = 0
for c in reversed(c_m):
z_s = z_s * s + c
return x_s, y_s, z_s
pass
if __name__ == "__main__":
# ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978")
ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
# ellbi = ellipsoide.EllipsoidTriaxial.init_name("Bessel-biaxial")
re = ellipsoide.EllipsoidBiaxial.init_name("Bessel")
# Panou 2013, 7, Table 1, beta0=60°
beta0, lamb0, beta1, lamb1, c, alpha0, alpha1, s = nep.get_example(table=1, example=5)
P0 = ell.ell2cart(beta0, lamb0)
P1 = ell.ell2cart(beta1, lamb1)
# P1_num = gha1_num(ell, P0, alpha0, s, 1000)
P1_num = gha1_num(ell, P0, alpha0, s, 10000)
P1_ana = gha1_ana(ell, P0, alpha0, s, 30)
pass

View File

@@ -0,0 +1,339 @@
import numpy as np
from ellipsoide import EllipsoidTriaxial
import Numerische_Integration.num_int_runge_kutta as rk
import ausgaben as aus
# Panou 2013
def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, epsilon=10**-12, iter_max=30):
"""
:param ell: triaxiales Ellipsoid
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
:param lamb_1: elllipsoidische Länge Punkt 1
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
:param lamb_2: elllipsoidische Länge Punkt 2
:param n: Anzahl Schritte
:param epsilon:
:param iter_max: Maximale Anzhal Iterationen
:return:
"""
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
def arccot(x):
return np.arctan2(1.0, x)
def BETA_LAMBDA(beta, lamb):
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
LAMBDA = (ell.ax**2 * np.sin(lamb)**2 + ell.ay**2 * np.cos(lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)
# Erste Ableitungen von ΒETA und LAMBDA
BETA_ = (ell.ax**2 * ell.Ey**2 * np.sin(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2
LAMBDA_ = - (ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2
# Zweite Ableitungen von ΒETA und LAMBDA
BETA__ = ((2 * ell.ax**2 * ell.Ey**4 * np.sin(2*beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**3) + ((2 * ell.ax**2 * ell.Ey**2 * np.cos(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2)
LAMBDA__ = (((2 * ell.b**2 * ell.Ee**4 * np.sin(2*lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**3) -
((2 * ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2))
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
F = 0
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
# Erste Ableitungen von E und G
E_beta = BETA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - BETA * ell.Ey**2 * np.sin(2*beta)
E_lamb = BETA * ell.Ee**2 * np.sin(2*lamb)
G_beta = - LAMBDA * ell.Ey**2 * np.sin(2*beta)
G_lamb = LAMBDA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + LAMBDA * ell.Ee**2 * np.sin(2*lamb)
# Zweite Ableitungen von E und G
E_beta_beta = BETA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - 2 * BETA_ * ell.Ey**2 * np.sin(2*beta) - 2 * BETA * ell.Ey**2 * np.cos(2*beta)
E_beta_lamb = BETA_ * ell.Ee**2 * np.sin(2*lamb)
E_lamb_lamb = 2 * BETA * ell.Ee**2 * np.cos(2*lamb)
G_beta_beta = - 2 * LAMBDA * ell.Ey**2 * np.cos(2*beta)
G_beta_lamb = - LAMBDA_ * ell.Ey**2 * np.sin(2*beta)
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
return (BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb)
def p_coef(beta, lamb):
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
p_3 = - 0.5 * (E_lamb / G)
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
p_0 = 0.5 * (G_beta / E)
p_33 = - 0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G ** 2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G ** 2)) - 0.5 * ((E * E_beta_beta - E_beta * E_beta) / (E ** 2))
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2)) - ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2))
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E ** 2))
return (BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00)
def q_coef(beta, lamb):
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
q_3 = - 0.5 * (G_beta / E)
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
q_0 = 0.5 * (E_lamb / G)
q_33 = - 0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E ** 2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E ** 2)) - 0.5 * ((G * G_lamb_lamb - G_lamb * G_lamb) / (G ** 2))
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2)) - ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2))
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G ** 2))
return (BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00)
if lamb_1 != lamb_2:
def functions():
def f_beta(lamb, beta, beta_p, X3, X4):
return beta_p
def f_beta_p(lamb, beta, beta_p, X3, X4):
(BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
return p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
def f_X3(lamb, beta, beta_p, X3, X4):
return X4
def f_X4(lamb, beta, beta_p, X3, X4):
(BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
return (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
return [f_beta, f_beta_p, f_X3, f_X4]
N = n
dlamb = lamb_2 - lamb_1
if abs(dlamb) < 1e-15:
beta_0 = 0.0
else:
beta_0 = (beta_2 - beta_1) / (lamb_2 - lamb_1)
converged = False
iterations = 0
funcs = functions()
for i in range(iter_max):
iterations = i + 1
startwerte = [lamb_1, beta_1, beta_0, 0.0, 1.0]
werte = rk.verfahren(funcs, startwerte, dlamb, N)
lamb_end, beta_end, beta_p_end, X3_end, X4_end = werte[-1]
d_beta_end_d_beta0 = X3_end
delta = beta_end - beta_2
if abs(delta) < epsilon:
converged = True
break
if abs(d_beta_end_d_beta0) < 1e-20:
raise RuntimeError("Abbruch.")
max_step = 0.5
step = delta / d_beta_end_d_beta0
if abs(step) > max_step:
step = np.sign(step) * max_step
beta_0 = beta_0 - step
if not converged:
raise RuntimeError("konvergiert nicht.")
# Z
werte = rk.verfahren(funcs, [lamb_1, beta_1, beta_0, 0.0, 1.0], dlamb, N)
beta_arr = np.zeros(N + 1)
lamb_arr = np.zeros(N + 1)
beta_p_arr = np.zeros(N + 1)
for i, state in enumerate(werte):
lamb_arr[i] = state[0]
beta_arr[i] = state[1]
beta_p_arr[i] = state[2]
(_, _, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
h = abs(dlamb) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
beta0 = beta_arr[0]
lamb0 = lamb_arr[0]
c = np.sqrt(
(np.cos(beta0) ** 2 + (ell.Ee**2 / ell.Ex**2) * np.sin(beta0) ** 2) * np.sin(alpha_1) ** 2
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
)
return alpha_1, alpha_2, s
if lamb_1 == lamb_2:
N = n
dbeta = beta_2 - beta_1
if abs(dbeta) < 10**-15:
return 0, 0, 0
lamb_0 = 0
converged = False
iterations = 0
def functions_beta():
def g_lamb(beta, lamb, lamb_p, Y3, Y4):
return lamb_p
def g_lamb_p(beta, lamb, lamb_p, Y3, Y4):
(BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
return q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
def g_Y3(beta, lamb, lamb_p, Y3, Y4):
return Y4
def g_Y4(beta, lamb, lamb_p, Y3, Y4):
(BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
return (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
return [g_lamb, g_lamb_p, g_Y3, g_Y4]
funcs_beta = functions_beta()
for i in range(iter_max):
iterations = i + 1
startwerte = [beta_1, lamb_1, lamb_0, 0.0, 1.0]
werte = rk.verfahren(funcs_beta, startwerte, dbeta, N)
beta_end, lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
d_lamb_end_d_lambda0 = Y3_end
delta = lamb_end - lamb_2
if abs(delta) < epsilon:
converged = True
break
if abs(d_lamb_end_d_lambda0) < 1e-20:
raise RuntimeError("Abbruch (Ableitung ~ 0).")
max_step = 1.0
step = delta / d_lamb_end_d_lambda0
if abs(step) > max_step:
step = np.sign(step) * max_step
lamb_0 = lamb_0 - step
werte = rk.verfahren(funcs_beta, [beta_1, lamb_1, lamb_0, 0.0, 1.0], dbeta, N)
beta_arr = np.zeros(N + 1)
lamb_arr = np.zeros(N + 1)
lambda_p_arr = np.zeros(N + 1)
for i, state in enumerate(werte):
beta_arr[i] = state[0]
lamb_arr[i] = state[1]
lambda_p_arr[i] = state[2]
# Azimute
(BETA1, LAMBDA1, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(BETA2, LAMBDA2, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0])
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1])
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
h = abs(dbeta) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
return alpha_1, alpha_2, s
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
# beta1 = np.deg2rad(75)
# lamb1 = np.deg2rad(-90)
# beta2 = np.deg2rad(75)
# lamb2 = np.deg2rad(66)
# a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2)
# print(aus.gms("a1", a1, 4))
# print(aus.gms("a2", a2, 4))
# print(s)
cart1 = ell.para2cart(0, 0)
cart2 = ell.para2cart(0.4, 0.4)
beta1, lamb1 = ell.cart2ell(cart1)
beta2, lamb2 = ell.cart2ell(cart2)
a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=2500)
print(s)

119
Hansen_ES_CMA.py Normal file
View File

@@ -0,0 +1,119 @@
import numpy as np
def felli(x):
N = x.shape[0]
if N < 2:
raise ValueError("dimension must be greater than one")
exponents = np.arange(N) / (N - 1)
return float(np.sum((1e6 ** exponents) * (x ** 2)))
def escma():
#Initialization
# User defined input parameters
N = 10
xmean = np.random.rand(N)
sigma = 0.5
stopfitness = 1e-10
stopeval = int(1e3 * N**2)
# Strategy parameter setting: Selection
lambda_ = 4 + int(np.floor(3 * np.log(N)))
mu = lambda_ / 2.0
# muXone recombination weights
weights = np.log(mu + 0.5) - np.log(np.arange(1, int(mu) + 1))
mu = int(np.floor(mu))
weights = weights / np.sum(weights)
mueff = np.sum(weights)**2 / np.sum(weights**2)
# Strategy parameter setting: Adaptation
cc = (4 + mueff / N) / (N + 4 + 2 * mueff / N)
cs = (mueff + 2) / (N + mueff + 5)
c1 = 2 / ((N + 1.3)**2 + mueff)
cmu = min(1 - c1,
2 * (mueff - 2 + 1 / mueff) / ((N + 2)**2 + 2 * mueff))
damps = 1 + 2 * max(0, np.sqrt((mueff - 1) / (N + 1)) - 1) + cs
# Initialize dynamic (internal) strategy parameters and constants
pc = np.zeros(N)
ps = np.zeros(N)
B = np.eye(N)
D = np.eye(N)
C = B @ D @ (B @ D).T
eigeneval = 0
chiN = np.sqrt(N) * (1 - 1/(4*N) + 1/(21 * N**2))
#Generation Loop
counteval = 0
arx = np.zeros((N, lambda_))
arz = np.zeros((N, lambda_))
arfitness = np.zeros(lambda_)
while counteval < stopeval:
# Generate and evaluate lambda offspring
for k in range(lambda_):
arz[:, k] = np.random.randn(N)
arx[:, k] = xmean + sigma * (B @ D @ arz[:, k])
arfitness[k] = felli(arx[:, k])
counteval += 1
# Sort by fitness and compute weighted mean into xmean
idx = np.argsort(arfitness)
arfitness = arfitness[idx]
arindex = idx
xold = xmean.copy()
xmean = arx[:, arindex[:mu]] @ weights
zmean = arz[:, arindex[:mu]] @ weights
# Cumulation: Update evolution paths
ps = (1 - cs) * ps + np.sqrt(cs * (2 - cs) * mueff) * (B @ zmean)
norm_ps = np.linalg.norm(ps)
hsig = norm_ps / np.sqrt(1 - (1 - cs)**(2 * counteval / lambda_)) / chiN < \
(1.4 + 2 / (N + 1))
hsig = 1.0 if hsig else 0.0
pc = (1 - cc) * pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * (B @ D @ zmean)
# Adapt covariance matrix C
BDz = B @ D @ arz[:, arindex[:mu]]
C = (1 - c1 - cmu) * C \
+ c1 * (np.outer(pc, pc) + (1 - hsig) * cc * (2 - cc) * C) \
+ cmu * BDz @ np.diag(weights) @ BDz.T
# Adapt step-size sigma
sigma = sigma * np.exp((cs / damps) * (norm_ps / chiN - 1))
# Update B and D from C (Eigenzerlegung, O(N^2))
if counteval - eigeneval > lambda_ / ((c1 + cmu) * N * 10):
eigeneval = counteval
# enforce symmetry
C = (C + C.T) / 2.0
eigvals, B = np.linalg.eigh(C)
D = np.diag(np.sqrt(eigvals))
# Break, if fitness is good enough
if arfitness[0] <= stopfitness:
break
# Escape flat fitness, or better terminate?
if arfitness[0] == arfitness[int(np.ceil(0.7 * lambda_)) - 1]:
sigma = sigma * np.exp(0.2 + cs / damps)
print("warning: flat fitness, consider reformulating the objective")
print(f"{counteval}: {arfitness[0]}")
#Final Message
print(f"{counteval}: {arfitness[0]}")
xmin = arx[:, arindex[0]]
return xmin
if __name__ == "__main__":
xmin = escma()
print("Bestes gefundenes x:", xmin)
print("f(xmin) =", felli(xmin))

View File

@@ -1,4 +1,4 @@
def verfahren(funktionen: list, startwerte: list, weite: float, schritte: int) -> list: def verfahren(funktionen: list, startwerte: list, weite: float, schritte: int, fein: bool = True) -> list:
""" """
Runge-Kutta-Verfahren für ein beliebiges DGLS Runge-Kutta-Verfahren für ein beliebiges DGLS
:param funktionen: Liste mit allen Funktionen :param funktionen: Liste mit allen Funktionen
@@ -14,19 +14,21 @@ def verfahren(funktionen: list, startwerte: list, weite: float, schritte: int) -
zuschlaege_grob = zuschlaege(funktionen, werte[-1], h) zuschlaege_grob = zuschlaege(funktionen, werte[-1], h)
werte_grob = [werte[-1][j] if j == 0 else werte[-1][j] + zuschlaege_grob[j - 1] werte_grob = [werte[-1][j] if j == 0 else werte[-1][j] + zuschlaege_grob[j - 1]
for j in range(len(startwerte))] for j in range(len(startwerte))]
if fein:
zuschlaege_fein_1 = zuschlaege(funktionen, werte[-1], h / 2)
werte_fein_1 = [werte[-1][j] + h/2 if j == 0 else werte[-1][j]+zuschlaege_fein_1[j-1]
for j in range(len(startwerte))]
zuschlaege_fein_1 = zuschlaege(funktionen, werte[-1], h / 2) zuschlaege_fein_2 = zuschlaege(funktionen, werte_fein_1, h / 2)
werte_fein_1 = [werte[-1][j] + h/2 if j == 0 else werte[-1][j]+zuschlaege_fein_1[j-1] werte_fein_2 = [werte_fein_1[j] + h/2 if j == 0 else werte_fein_1[j]+zuschlaege_fein_2[j-1]
for j in range(len(startwerte))] for j in range(len(startwerte))]
zuschlaege_fein_2 = zuschlaege(funktionen, werte_fein_1, h / 2) werte_korr = [werte_fein_2[j] if j == 0 else werte_fein_2[j] + 1/15 * (werte_fein_2[j] - werte_grob[j])
werte_fein_2 = [werte_fein_1[j] + h/2 if j == 0 else werte_fein_1[j]+zuschlaege_fein_2[j-1] for j in range(len(startwerte))]
for j in range(len(startwerte))]
werte_korr = [werte_fein_2[j] if j == 0 else werte_fein_2[j] + 1/15 * (werte_fein_2[j] - werte_grob[j]) werte.append(werte_korr)
for j in range(len(startwerte))] else:
werte.append(werte_grob)
werte.append(werte_korr)
return werte return werte
@@ -60,3 +62,23 @@ def zuschlaege(funktionen: list, startwerte: list, h: float) -> list:
k_ = [(k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6 for i in range(len(k1))] k_ = [(k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6 for i in range(len(k1))]
return k_ return k_
def rk_chat(F, v0: list, weite: float, schritte: int):
h = weite/schritte
v = v0
werte = [v]
for _ in range(schritte):
k1 = F(v)
k2 = F([v[i] + 0.5 * h * k1[i] for i in range(6)])
k3 = F([v[i] + 0.5 * h * k2[i] for i in range(6)])
k4 = F([v[i] + h * k3[i] for i in range(6)])
v = [
v[i] + (h / 6) * (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i])
for i in range(6)
]
werte.append(v)
return werte

View File

@@ -1,14 +0,0 @@
from numpy import sqrt, cos, sin
import ellipsoide
import ausgaben as aus
import winkelumrechnungen as wu
re = ellipsoide.Ellipsoid.init_name("Bessel")
eta = lambda phi: sqrt(re.e_ ** 2 * cos(phi) ** 2)
A = wu.gms2rad([327,0,0])
phi = wu.gms2rad([35,0,0])
h = 3500
dA = eta(phi)**2 * h * sin(A)*cos(A) / re.N(phi)
print(aus.gms("dA", dA, 10))

BIN
assets/favicon.ico Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.2 KiB

View File

@@ -10,9 +10,7 @@ def xyz(x: float, y: float, z: float, stellen: int) -> str:
:param stellen: Anzahl Nachkommastellen :param stellen: Anzahl Nachkommastellen
:return: String zur Ausgabe der Koordinaten :return: String zur Ausgabe der Koordinaten
""" """
return f"""x = {(round(x,stellen))} m return f"""x = {(round(x,stellen))} m y = {(round(y,stellen))} m z = {(round(z,stellen))} m"""
y = {(round(y,stellen))} m
z = {(round(z,stellen))} m"""
def gms(name: str, rad: float, stellen: int) -> str: def gms(name: str, rad: float, stellen: int) -> str:

516
dashboard.py Normal file
View File

@@ -0,0 +1,516 @@
from dash import Dash, html, dcc, Input, Output, State, no_update
import dash
import plotly.graph_objects as go
import numpy as np
from GHA_triaxial.panou import gha1_ana
from GHA_triaxial.panou import gha1_num
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
from ellipsoide import EllipsoidTriaxial
import winkelumrechnungen as wu
import ausgaben as aus
app = Dash(__name__, suppress_callback_exceptions=True)
app.title = "Geodätische Hauptaufgaben"
def abplattung(a, b):
return (a - b) / a
def ellipsoid_figure(ell: EllipsoidTriaxial, title="Dreiachsiges Ellipsoid"):
fig = go.Figure()
# Darstellung
rx, ry, rz = 1.05*ell.ax, 1.05*ell.ay, 1.05*ell.b
fig.update_layout(
title=title,
scene=dict(
xaxis=dict(range=[-rx, rx], title="X [m]"),
yaxis=dict(range=[-ry, ry], title="Y [m]"),
zaxis=dict(range=[-rz, rz], title="Z [m]"),
aspectmode="data"
),
margin=dict(l=0, r=0, t=40, b=0),
)
# Ellipsoid
u = np.linspace(-np.pi/2, np.pi/2, 80)
v = np.linspace(-np.pi, np.pi, 160)
U, V = np.meshgrid(u, v)
X, Y, Z = ell.para2cart(U, V)
fig.add_trace(go.Surface(
x=X, y=Y, z=Z, showscale=False, opacity=0.7,
surfacecolor=np.zeros_like(X),
colorscale=[[0, "rgb(200,220,255)"], [1, "rgb(200,220,255)"]],
name="Ellipsoid"
))
return fig
def figure_constant_lines(fig, ell: EllipsoidTriaxial, coordsystem: str = "para"):
if coordsystem == "para":
constants_u = wu.deg2rad(np.arange(0, 360, 15))
all_v = np.linspace(-np.pi / 2, np.pi / 2, 361)
for u in constants_u:
xm, ym, zm = ell.para2cart(u, all_v)
fig.add_trace(go.Scatter3d(
x=xm, y=ym, z=zm, mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
all_u = np.linspace(0, 2 * np.pi, 361)
constants_v = wu.deg2rad(np.arange(-75, 90, 15))
for v in constants_v:
x, y, z = ell.para2cart(all_u, v)
fig.add_trace(go.Scatter3d(
x=x, y=y, z=z, mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
elif coordsystem == "ell":
constants_beta = wu.deg2rad(np.arange(-75, 90, 15))
all_lamb = np.linspace(0, 2 * np.pi, 361)
for beta in constants_beta:
xyz = ell.ell2cart(beta, all_lamb)
fig.add_trace(go.Scatter3d(
x=xyz[:, 0], y=xyz[:, 1], z=xyz[:, 2], mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
all_beta = np.linspace(-np.pi / 2, np.pi / 2, 361)
constants_lamb = wu.deg2rad(np.arange(0, 360, 15))
for lamb in constants_lamb:
xyz = ell.ell2cart(all_beta, lamb)
fig.add_trace(go.Scatter3d(
x=xyz[:, 0], y=xyz[:, 1], z=xyz[:, 2], mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
elif coordsystem == "geod":
constants_phi = wu.deg2rad(np.arange(-75, 90, 15))
all_lamb = np.linspace(0, 2 * np.pi, 361)
for phi in constants_phi:
x, y, z = ell.geod2cart(phi, all_lamb, 0)
fig.add_trace(go.Scatter3d(
x=x, y=y, z=z, mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
all_phi = np.linspace(-np.pi / 2, np.pi / 2, 361)
constants_lamb = wu.deg2rad(np.arange(0, 360, 15))
for lamb in constants_lamb:
x, y, z = ell.geod2cart(all_phi, lamb, 0)
fig.add_trace(go.Scatter3d(
x=x, y=y, z=z, mode="lines",
line=dict(width=1, color="black"),
showlegend=False
))
return fig
def figure_points(fig, points):
"""
:param fig: plotly.graph_objects.Figure
:param points: Punktliste [(name, (x,y,z), color)]
:return: plotly.graph_objects.Figure
"""
for name, (px, py, pz), color in points:
fig.add_trace(go.Scatter3d(
x=[px], y=[py], z=[pz],
mode="markers+text",
marker=dict(size=6, color=color),
text=[name], textposition="top center",
name=name, showlegend=False
))
return fig
def figure_lines(fig, lines):
"""
:param fig: plotly.graph_objects.Figure
:param lines: Linienliste [((x1,y1,z1), (x2,y2,z2), color)]
:return: plotly.graph_objects.Figure
"""
for (p1, p2, color) in lines:
xline = [p1[0], p2[0]]
yline = [p1[1], p2[1]]
zline = [p1[2], p2[2]]
fig.add_trace(go.Scatter3d(
x=xline, y=yline, z=zline,
mode="lines",
line=dict(width=4, color=color),
showlegend=False
))
return fig
app.layout = html.Div(
style={"fontFamily": "Arial", "padding": "5px", "width": "70%", "margin-left": "auto"},
children=[
html.H1("Geodätische Hauptaufgaben"),
html.H2("für dreiachsige Ellipsoide"),
html.Label("Ellipsoid wählen:"),
dcc.Dropdown(
id="dropdown-ellipsoid",
options=[
{"label": "BursaFialova1993", "value": "BursaFialova1993"},
{"label": "BursaSima1980", "value": "BursaSima1980"},
{"label": "BursaSima1980round", "value": "BursaSima1980round"},
{"label": "Eitschberger1978", "value": "Eitschberger1978"},
{"label": "Bursa1972", "value": "Bursa1972"},
{"label": "Bursa1970", "value": "Bursa1970"},
{"label": "BesselBiaxial", "value": "BesselBiaxial"},
{"label": "Fiction", "value": "Fiction"},
#{"label": "Ei", "value": "Ei"},
],
value="",
style={"width": "300px", "marginBottom": "20px"},
),
html.Label("Halbachsen:"),
dcc.Input(
id="input-ax",
type="number",
min=0,
placeholder="ax...[m]",
style={"marginBottom": "10px", "display": "block", "width": "300px"},
),
dcc.Input(
id="input-ay",
type="number",
min=0,
placeholder="ay...[m]",
style={"marginBottom": "10px", "display": "block", "width": "300px"},
),
dcc.Input(
id="input-b",
type="number",
min=0,
placeholder="b...[m]",
style={"marginBottom": "20px", "display": "block", "width": "300px"},
),
html.Button(
"Ellipsoid berechnen",
id="calc-ell",
n_clicks=0,
style={"marginRight": "10px", "marginBottom": "20px"},
),
html.Div(id="output-area", style={"marginBottom": "20px"}),
dcc.Tabs(
id="tabs-GHA",
value="tab-GHA1",
style={"marginRight": "10px", "marginBottom": "20px", "width": "50%"},
children=[
dcc.Tab(label="Erste Hauptaufgabe", value="tab-GHA1"),
dcc.Tab(label="Zweite Hauptaufgabe", value="tab-GHA2"),
],
),
html.Div(
id="tabs-GHA-out",
style={"marginRight": "10px", "marginBottom": "20px", "width": "50%"},
),
html.Div(id="output-gha1", style={"marginBottom": "20px"}),
html.Div(id="output-gha2", style={"marginBottom": "20px"}),
dcc.Graph(
id="ellipsoid-plot",
style={"height": "500px", "width": "700px"},
),
html.P(
"© 2025",
style={
"fontSize": "12px",
"color": "gray",
"textAlign": "center",
},
),
],
)
@app.callback(
Output("input-ax", "value"),
Output("input-ay", "value"),
Output("input-b", "value"),
Input("dropdown-ellipsoid", "value"),
)
def fill_inputs_from_dropdown(selected_ell):
if not selected_ell:
return None, None, None
ell = EllipsoidTriaxial.init_name(selected_ell)
ax = ell.ax
ay = ell.ay
b = ell.b
return ax, ay, b
@app.callback(
Output("output-area", "children"),
Input("calc-ell", "n_clicks"),
State("input-ax", "value"),
State("input-ay", "value"),
State("input-b", "value"),
)
def update_output(n_clicks, ax, ay, b):
if not n_clicks:
return ""
if n_clicks and ax is None or ay is None or b is None:
return html.Span("Bitte Ellipsoid auswählen!", style={"color": "red"})
if ay >= ax or b >= ay or ax <= 0 or ay <= 0 or b <= 0:
return html.Span("Eingabe inkorrekt.", style={"color": "red"})
ell = EllipsoidTriaxial(ax, ay, b)
return f"ex = {round(ell.ex, 6)}, ", f"ey = {round(ell.ey, 6)}, ", f"ee = {round(ell.ee, 6)}"
@app.callback(
Output("tabs-GHA-out", "children"),
Input("tabs-GHA", "value"),
)
def render_content(tab):
show1 = {"display": "block"} if tab == "tab-GHA1" else {"display": "none"}
show2 = {"display": "block"} if tab == "tab-GHA2" else {"display": "none"}
pane_gha1 = html.Div(
[
dcc.Input(id="input-GHA1-beta1", type="number", min=-90, max=90, placeholder="β1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA1-lamb1", type="number", min=-180, max=180, placeholder="λ1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA1-s", type="number", min=0, placeholder="s...[m]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA1-a", type="number", min=0, max=360, placeholder="α...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Checklist(
id="method-checklist-1",
options=[
{"label": "Analytisch", "value": "analytisch"},
{"label": "Numerisch", "value": "numerisch"},
{"label": "Stochastisch (ES)", "value": "stochastisch"},
],
value=[],
style={"marginBottom": "20px"},
),
html.Div(
[
html.Button(
"Berechnen",
id="button-calc-gha1",
n_clicks=0,
style={"marginRight": "10px"},
),
],
style={"marginBottom": "20px"},
),
],
id="pane-gha1",
style=show1,
)
pane_gha2 = html.Div(
[
dcc.Input(id="input-GHA2-beta1", type="number", min=-90, max=90, placeholder="β1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA2-lamb1", type="number", min=-180, max=180, placeholder="λ1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA2-beta2", type="number", min=-90, max=90, placeholder="β2...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA2-lamb2", type="number", min=-180, max=180, placeholder="λ2...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Checklist(
id="method-checklist-2",
options=[
{"label": "Numerisch", "value": "numerisch"},
{"label": "Stochastisch (ES)", "value": "stochastisch"},
],
value=[],
style={"marginBottom": "20px"},
),
html.Div(
[
html.Button(
"Berechnen",
id="button-calc-gha2",
n_clicks=0,
style={"marginRight": "10px"},
),
],
style={"marginBottom": "20px"},
),
],
id="pane-gha2",
style=show2,
)
return html.Div([pane_gha1, pane_gha2])
@app.callback(
Output("output-gha1", "children"),
Output("output-gha2", "children"),
Output("ellipsoid-plot", "figure"),
Input("button-calc-gha1", "n_clicks"),
Input("button-calc-gha2", "n_clicks"),
State("input-GHA1-beta1", "value"),
State("input-GHA1-lamb1", "value"),
State("input-GHA1-s", "value"),
State("input-GHA1-a", "value"),
State("input-GHA2-beta1", "value"),
State("input-GHA2-lamb1", "value"),
State("input-GHA2-beta2", "value"),
State("input-GHA2-lamb2", "value"),
State("input-ax", "value"),
State("input-ay", "value"),
State("input-b", "value"),
State("method-checklist-1", "value"),
State("method-checklist-2", "value"),
prevent_initial_call=True,
)
def calc_and_plot(n1, n2,
beta11, lamb11, s, a_deg,
beta21, lamb21, beta22, lamb22,
ax, ay, b, method1, method2):
if not (n1 or n2):
return no_update, no_update, no_update
if not ax or not ay or not b:
return html.Span("Bitte Ellipsoid auswählen!", style={"color": "red"}), "", go.Figure()
ell = EllipsoidTriaxial(ax, ay, b)
if dash.ctx.triggered_id == "button-calc-gha1":
if None in (beta11, lamb11, s, a_deg):
return html.Span("Bitte β₁, λ₁, s und α eingeben.", style={"color": "red"}), "", go.Figure()
beta_rad = wu.deg2rad(float(beta11))
lamb_rad = wu.deg2rad(float(lamb11))
alpha_rad = wu.deg2rad(float(a_deg))
s_val = float(s)
p1 = tuple(map(float, ell.ell2cart(beta_rad, lamb_rad)))
out1 = []
if "analytisch" in method1:
# ana
x2, y2, z2 = gha1_ana(ell, p1, alpha_rad, s_val, 70)
p2_ana = (float(x2), float(y2), float(z2))
beta2, lamb2 = ell.cart2ell([x2, y2, z2])
#out1 += f"kartesisch: x₂={p2[0]:.5f} m, y₂={p2[1]:.5f} m, z₂={p2[2]:.5f} m; ellipsoidisch: {aus.gms("β₂", beta2, 5)}, {aus.gms("λ₂", lamb2, 5)},"
out1.append(
html.Div([
html.Strong("Analytisch: "),
html.Br(),
html.Span(f"kartesisch: x₂={x2:.4f} m, y₂={y2:.4f} m, z₂={z2:.4f} m"),
html.Br(),
html.Span(f"ellipsoidisch: {aus.gms('β₂', beta2, 4)}, {aus.gms('λ₂', lamb2, 4)}")
])
)
if "numerisch" in method1:
# num
p2_num = gha1_num(ell, p1, alpha_rad, s_val, 10000)
beta2_num, lamb2_num = ell.cart2ell(p2_num)
out1.append(
html.Div([
html.Strong("Numerisch: "),
html.Br(),
html.Span(f"kartesisch: x₂={p2_num[0]:.4f} m, y₂={p2_num[1]:.4f} m, z₂={p2_num[2]:.4f} m"),
html.Br(),
html.Span(f"ellipsoidisch: {aus.gms('β₂', beta2_num, 4)}, {aus.gms('λ₂', lamb2_num, 4)}")
])
)
if "stochastisch" in method1:
# stoch
p2_stoch = "noch nicht implementiert.."
out1.append(
html.Div([
html.Strong("Stochastisch (ES): "),
html.Span(f"{p2_stoch}")
])
)
if not method1:
return html.Span("Bitte Berechnungsverfahren auswählen!", style={"color": "red"}), "", go.Figure()
fig = ellipsoid_figure(ell, title="Erste Hauptaufgabe - analystisch")
#fig = figure_constant_lines(fig, ell, "geod")
fig = figure_constant_lines(fig, ell, "ell")
#fig = figure_constant_lines(fig, ell, "para")
fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2_ana, "red")])
#out1 = f"kartesisch: x₂={p2[0]:.5f} m, y₂={p2[1]:.5f} m, z₂={p2[2]:.5f} m; ellipsoidisch: {aus.gms("β₂", beta2, 5)}, {aus.gms("λ₂", lamb2, 5)}, {p2_num}"
return out1, "", fig
if dash.ctx.triggered_id == "button-calc-gha2":
if None in (beta21, lamb21, beta22, lamb22):
return html.Span("Bitte β₁, λ₁, β₂, λ₂ eingeben.", style={"color": "red"}), "", go.Figure()
p1 = tuple(ell.ell2cart(np.deg2rad(float(beta21)), np.deg2rad(float(lamb21))))
p2 = tuple(ell.ell2cart(np.deg2rad(float(beta22)), np.deg2rad(float(lamb22))))
out2 = []
if "numerisch" in method2:
alpha_1, alpha_2, s12 = gha2_num(
ell,
np.deg2rad(float(beta21)), np.deg2rad(float(lamb21)),
np.deg2rad(float(beta22)), np.deg2rad(float(lamb22))
)
out2.append(
html.Div([
html.Strong("Numerisch: "),
html.Span(f"{aus.gms('α₁₂', alpha_1, 4)}, {aus.gms('α₂₁', alpha_2, 4)}, s = {s12:.4f} m"),
])
)
if "stochastisch" in method2:
# stoch
a_stoch = "noch nicht implementiert.."
out2.append(
html.Div([
html.Strong("Stochastisch (ES): "),
html.Span(f"{a_stoch}")
])
)
if not method2:
return html.Span("Bitte Berechnungsverfahren auswählen!", style={"color": "red"}), "", go.Figure()
fig = ellipsoid_figure(ell, title="Zweite Hauptaufgabe")
fig = figure_constant_lines(fig, ell, "ell")
fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2, "red")])
return "", out2, fig
return no_update, no_update, no_update
if __name__ == "__main__":
app.run(debug=False)

View File

@@ -1,9 +1,11 @@
import numpy as np import numpy as np
from numpy import sin, cos, arctan, arctan2, sqrt
import winkelumrechnungen as wu import winkelumrechnungen as wu
import ausgaben as aus import ausgaben as aus
import jacobian_Ligas
class Ellipsoid: class EllipsoidBiaxial:
def __init__(self, a: float, b: float): def __init__(self, a: float, b: float):
self.a = a self.a = a
self.b = b self.b = b
@@ -53,9 +55,9 @@ class Ellipsoid:
phi2p = lambda self, phi: self.N(phi) * np.cos(phi) phi2p = lambda self, phi: self.N(phi) * np.cos(phi)
def ellipsoidische_Koords (self, Eh, Ephi, x, y, z): def cart2ell(self, Eh, Ephi, x, y, z):
p = np.sqrt(x**2+y**2) p = np.sqrt(x**2+y**2)
print(f"p = {round(p, 5)} m") # print(f"p = {round(p, 5)} m")
lamb = np.arctan(y/x) lamb = np.arctan(y/x)
@@ -79,5 +81,497 @@ class Ellipsoid:
if dphi < Ephi: if dphi < Ephi:
break break
for i in range(len(phii)): for i in range(len(phii)):
print(f"P3[{i}]: {aus.gms('phi', phii[i], 5)}\th = {round(hi[i], 5)} m") # print(f"P3[{i}]: {aus.gms('phi', phii[i], 5)}\th = {round(hi[i], 5)} m")
pass
return phi, lamb, h return phi, lamb, h
def ell2cart(self, phi, lamb, h):
W = np.sqrt(1 - self.e**2 * np.sin(phi)**2)
N = self.a / W
x = (N+h) * np.cos(phi) * np.cos(lamb)
y = (N+h) * np.cos(phi) * np.sin(lamb)
z = (N * (1-self.e**2) + h) * np.sin(lamb)
return x, y, z
class EllipsoidTriaxial:
def __init__(self, ax: float, ay: float, b: float):
self.ax = ax
self.ay = ay
self.b = b
self.ex = np.sqrt((self.ax**2 - self.b**2) / self.ax**2)
self.ey = np.sqrt((self.ay**2 - self.b**2) / self.ay**2)
self.ee = np.sqrt((self.ax**2 - self.ay**2) / self.ax**2)
self.ex_ = np.sqrt((self.ax**2 - self.b**2) / self.b**2)
self.ey_ = np.sqrt((self.ay**2 - self.b**2) / self.b**2)
self.ee_ = np.sqrt((self.ax**2 - self.ay**2) / self.ay**2)
self.Ex = np.sqrt(self.ax**2 - self.b**2)
self.Ey = np.sqrt(self.ay**2 - self.b**2)
self.Ee = np.sqrt(self.ax**2 - self.ay**2)
@classmethod
def init_name(cls, name: str):
"""
Mögliche Ellipsoide: BursaFialova1993, BursaSima1980, Eitschberger1978, Bursa1972, Bursa1970, BesselBiaxial
:param name: Name des dreiachsigen Ellipsoids
"""
if name == "BursaFialova1993":
ax = 6378171.36
ay = 6378101.61
b = 6356751.84
return cls(ax, ay, b)
elif name == "BursaSima1980":
ax = 6378172
ay = 6378102.7
b = 6356752.6
return cls(ax, ay, b)
elif name == "BursaSima1980round":
# Panou 2013
ax = 6378172
ay = 6378103
b = 6356753
return cls(ax, ay, b)
elif name == "Eitschberger1978":
ax = 6378173.435
ay = 6378103.9
b = 6356754.4
return cls(ax, ay, b)
elif name == "Bursa1972":
ax = 6378173
ay = 6378104
b = 6356754
return cls(ax, ay, b)
elif name == "Bursa1970":
ax = 6378173
ay = 6378105
b = 6356754
return cls(ax, ay, b)
elif name == "BesselBiaxial":
ax = 6377397.15509
ay = 6377397.15508
b = 6356078.96290
return cls(ax, ay, b)
elif name == "Fiction":
ax = 6000000
ay = 5000000
b = 4000000
return cls(ax, ay, b)
elif name == "KarneyTest2024":
ax = np.sqrt(2)
ay = 1
b = 1 / np.sqrt(2)
return cls(ax, ay, b)
def point_on(self, point: np.ndarray) -> bool:
"""
Test, ob ein Punkt auf dem Ellipsoid liegt.
:param point: kartesische 3D-Koordinaten
:return: Punkt auf dem Ellispoid?
"""
value = point[0]**2/self.ax**2 + point[1]**2/self.ay**2 + point[2]**2/self.b**2
if abs(1-value) < 0.000001:
return True
else:
return False
def ellu2cart(self, beta: float, lamb: float, u: float) -> np.ndarray:
"""
Panou 2014 12ff.
Elliptische Breite+Länge sind nicht gleich der geodätischen
Verhältnisse des Ellipsoids bekannt, Größe verändern bis Punkt erreicht,
dann ist u die Größe entlang der z-Achse
:param beta: ellipsoidische Breite [rad]
:param lamb: ellipsoidische Länge [rad]
:param u: Größe entlang der z-Achse
:return: Punkt in kartesischen Koordinaten
"""
# s1 = u**2 - self.b**2
# s2 = -self.ay**2 * np.sin(beta)**2 - self.b**2 * np.cos(beta)**2
# s3 = -self.ax**2 * np.sin(lamb)**2 - self.ay**2 * np.cos(lamb)**2
# print(s1, s2, s3)
# xe = np.sqrt(((self.ax**2+s1) * (self.ax**2+s2) * (self.ax**2+s3)) /
# ((self.ax**2-self.ay**2) * (self.ax**2-self.b**2)))
# ye = np.sqrt(((self.ay**2+s1) * (self.ay**2+s2) * (self.ay**2+s3)) /
# ((self.ay**2-self.ax**2) * (self.ay**2-self.b**2)))
# ze = np.sqrt(((self.b**2+s1) * (self.b**2+s2) * (self.b**2+s3)) /
# ((self.b**2-self.ax**2) * (self.b**2-self.ay**2)))
x = np.sqrt(u**2 + self.Ex**2) * np.sqrt(np.cos(beta)**2 + self.Ee**2/self.Ex**2 * np.sin(beta)**2) * np.cos(lamb)
y = np.sqrt(u**2 + self.Ey**2) * np.cos(beta) * np.sin(lamb)
z = u * np.sin(beta) * np.sqrt(1 - self.Ee**2/self.Ex**2 * np.cos(lamb)**2)
return np.array([x, y, z])
def ell2cart(self, beta: float | np.ndarray, lamb: float | np.ndarray) -> np.ndarray:
"""
Panou, Korakitis 2019 2
:param beta: elliptische Breite [rad]
:param lamb: elliptische Länge [rad]
:return: Punkt in kartesischen Koordinaten
"""
beta = np.asarray(beta, dtype=float)
lamb = np.asarray(lamb, dtype=float)
beta, lamb = np.broadcast_arrays(beta, lamb)
B = self.Ex ** 2 * np.cos(beta) ** 2 + self.Ee ** 2 * np.sin(beta) ** 2
L = self.Ex ** 2 - self.Ee ** 2 * np.cos(lamb) ** 2
x = self.ax / self.Ex * np.sqrt(B) * np.cos(lamb)
y = self.ay * np.cos(beta) * np.sin(lamb)
z = self.b / self.Ex * np.sin(beta) * np.sqrt(L)
xyz = np.stack((x, y, z), axis=-1)
# Pole
mask_south = beta == -np.pi / 2
mask_north = beta == np.pi / 2
xyz[mask_south] = np.array([0, 0, -self.b])
xyz[mask_north] = np.array([0, 0, self.b])
# Äquator
mask_eq = beta == 0
xyz[mask_eq & (lamb == -np.pi / 2)] = np.array([0, -self.ay, 0])
xyz[mask_eq & (lamb == np.pi / 2)] = np.array([0, self.ay, 0])
xyz[mask_eq & (lamb == 0)] = np.array([self.ax, 0, 0])
xyz[mask_eq & (lamb == np.pi)] = np.array([-self.ax, 0, 0])
return xyz
def cart2ellu(self, point: np.ndarray) -> tuple[float, float, float]:
"""
Panou 2014 15ff.
:param point: Punkt in kartesischen Koordinaten
:return: elliptische Breite, elliptische Länge, Größe entlang der z-Achse
"""
x, y, z = point
c2 = self.ax**2 + self.ay**2 + self.b**2 - x**2 - y**2 - z**2
c1 = (self.ax**2 * self.ay**2 + self.ax**2 * self.b**2 + self.ay**2 * self.b**2 -
(self.ay**2+self.b**2) * x**2 - (self.ax**2 + self.b**2) * y**2 - (self.ax**2 + self.ay**2) * z**2)
c0 = (self.ax**2 * self.ay**2 * self.b**2 - self.ay**2 * self.b**2 * x**2 -
self.ax**2 * self.b**2 * y**2 - self.ax**2 * self.ay**2 * z**2)
p = (c2**2 - 3*c1) / 9
q = (9*c1*c2 - 27*c0 - 2*c2**3) / 54
omega = np.arccos(q / np.sqrt(p**3))
s1 = 2 * np.sqrt(p) * np.cos(omega/3) - c2/3
s2 = 2 * np.sqrt(p) * np.cos(omega/3 - 2*np.pi/3) - c2/3
s3 = 2 * np.sqrt(p) * np.cos(omega/3 - 4*np.pi/3) - c2/3
# print(s1, s2, s3)
beta = np.arctan(np.sqrt((-self.b**2 - s2) / (self.ay**2 + s2)))
if abs((-self.ay**2 - s3) / (self.ax**2 + s3)) > 1e-7:
lamb = np.arctan(np.sqrt((-self.ay**2 - s3) / (self.ax**2 + s3)))
else:
lamb = 0
u = np.sqrt(self.b**2 + s1)
return beta, lamb, u
def cart2ell(self, point: np.ndarray) -> tuple[float, float]:
"""
Panou, Korakitis 2019 2f.
:param point: Punkt in kartesischen Koordinaten
:return: elliptische Breite, elliptische Länge
"""
x, y, z = point
eps = 1e-9
if abs(x) < eps and abs(y) < eps: # Punkt in der z-Achse
beta = np.pi / 2 if z > 0 else -np.pi / 2
lamb = 0.0
return beta, lamb
elif abs(x) < eps and abs(z) < eps: # Punkt in der y-Achse
beta = 0.0
lamb = np.pi / 2 if y > 0 else -np.pi / 2
return beta, lamb
elif abs(y) < eps and abs(z) < eps: # Punkt in der x-Achse
beta = 0.0
lamb = 0.0 if x > 0 else np.pi
return beta, lamb
# ---- Allgemeiner Fall -----
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
self.ax ** 2 + self.ay ** 2) * z ** 2)
t2 = (-c1 + np.sqrt(c1 ** 2 - 4 * c0)) / 2
t1 = c0 / t2
num_beta = max(t1 - self.b ** 2, 0)
den_beta = max(self.ay ** 2 - t1, 0)
num_lamb = max(t2 - self.ay ** 2, 0)
den_lamb = max(self.ax ** 2 - t2, 0)
beta = np.arctan(np.sqrt(num_beta / den_beta))
lamb = np.arctan(np.sqrt(num_lamb / den_lamb))
if z < 0:
beta = -beta
if y < 0:
lamb = -lamb
if x < 0:
lamb = np.pi - lamb
if abs(x) < eps:
lamb = -np.pi/2 if y < 0 else np.pi/2
elif abs(y) < eps:
lamb = 0 if x > 0 else np.pi
elif abs(z) < eps:
beta = 0
return beta, lamb
def cart2geod(self, point: np.ndarray, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> tuple[float, float, float]:
"""
Ligas 2012
:param mode: ligas1, ligas2, oder ligas3
:param point: Punkt in kartesischen Koordinaten
:param maxIter: maximale Anzahl Iterationen
:param maxLoa: Level of Accuracy, das erreicht werden soll
:return: phi, lambda, h
"""
xG, yG, zG = point
eps = 1e-9
if abs(xG) < eps and abs(yG) < eps: # Punkt in der z-Achse
phi = np.pi / 2 if zG > 0 else -np.pi / 2
lamb = 0.0
h = abs(zG) - self.b
return phi, lamb, h
elif abs(xG) < eps and abs(zG) < eps: # Punkt in der y-Achse
phi = 0.0
lamb = np.pi / 2 if yG > 0 else -np.pi / 2
h = abs(yG) - self.ay
return phi, lamb, h
elif abs(yG) < eps and abs(zG) < eps: # Punkt in der x-Achse
phi = 0.0
lamb = 0.0 if xG > 0 else np.pi
h = abs(xG) - self.ax
return phi, lamb, h
rG = np.sqrt(xG ** 2 + yG ** 2 + zG ** 2)
pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64)
E = 1 / self.ax**2
F = 1 / self.ay**2
G = 1 / self.b**2
i = 0
loa = np.inf
while i < maxIter and loa > maxLoa:
if mode == "ligas1":
invJ, fxE = jacobian_Ligas.case1(E, F, G, np.array([xG, yG, zG]), pE)
elif mode == "ligas2":
invJ, fxE = jacobian_Ligas.case2(E, F, G, np.array([xG, yG, zG]), pE)
elif mode == "ligas3":
invJ, fxE = jacobian_Ligas.case3(E, F, G, np.array([xG, yG, zG]), pE)
pEi = pE.reshape(-1, 1) - invJ @ fxE.reshape(-1, 1)
pEi = pEi.reshape(1, -1).flatten()
loa = np.sqrt((pEi[0]-pE[0])**2 + (pEi[1]-pE[1])**2 + (pEi[2]-pE[2])**2)
pE = pEi
i += 1
phi = np.arctan((1-self.ee**2) / (1-self.ex**2) * pE[2] / np.sqrt((1-self.ee**2)**2 * pE[0]**2 + pE[1]**2))
lamb = np.arctan(1/(1-self.ee**2) * pE[1]/pE[0])
h = np.sign(zG - pE[2]) * np.sign(pE[2]) * np.sqrt((pE[0] - xG) ** 2 + (pE[1] - yG) ** 2 + (pE[2] - zG) ** 2)
if xG < 0 and yG < 0:
lamb = -np.pi + lamb
elif xG < 0:
lamb = np.pi + lamb
if abs(zG) < eps:
phi = 0
return phi, lamb, h
def geod2cart(self, phi: float | np.ndarray, lamb: float | np.ndarray, h: float) -> np.ndarray:
"""
Ligas 2012, 250
:param phi: geodätische Breite [rad]
:param lamb: geodätische Länge [rad]
:param h: Höhe über dem Ellipsoid
:return: kartesische Koordinaten
"""
v = self.ax / np.sqrt(1 - self.ex**2*np.sin(phi)**2-self.ee**2*np.cos(phi)**2*np.sin(lamb)**2)
xG = (v + h) * np.cos(phi) * np.cos(lamb)
yG = (v * (1-self.ee**2) + h) * np.cos(phi) * np.sin(lamb)
zG = (v * (1-self.ex**2) + h) * np.sin(phi)
return np.array([xG, yG, zG])
def cartonell(self, point: np.ndarray) -> tuple[np.ndarray, float, float, float]:
"""
Berechnung des Lotpunktes auf einem Ellipsoiden
:param point: Punkt in kartesischen Koordinaten, der gelotet werden soll
:return: Lotpunkt in kartesischen Koordinaten, geodätische Koordinaten des Punktes
"""
phi, lamb, h = self.cart2geod(point, "ligas3")
x, y, z = self. geod2cart(phi, lamb, 0)
return np.array([x, y, z]), phi, lamb, h
def cartellh(self, point: np.ndarray, h: float) -> np.ndarray:
"""
Punkt auf Ellipsoid hoch loten
:param point: Punkt auf dem Ellipsoid
:param h: Höhe über dem Ellipsoid
:return: hochgeloteter Punkt
"""
phi, lamb, _ = self.cart2geod(point, "ligas3")
pointH = self. geod2cart(phi, lamb, h)
return pointH
def para2cart(self, u: float | np.ndarray, v: float | np.ndarray) -> np.ndarray:
"""
Panou, Korakitits 2020, 4
:param u: Parameter u
:param v: Parameter v
:return: Punkt in kartesischen Koordinaten
"""
x = self.ax * np.cos(u) * np.cos(v)
y = self.ay * np.cos(u) * np.sin(v)
z = self.b * np.sin(u)
z = np.broadcast_to(z, np.shape(x))
return np.array([x, y, z])
def cart2para(self, point: np.ndarray) -> tuple[float, float]:
"""
Panou, Korakitits 2020, 4
:param point: Punkt in kartesischen Koordinaten
:return: parametrische Koordinaten
"""
x, y, z = point
u_check1 = z*np.sqrt(1 - self.ee**2)
u_check2 = np.sqrt(x**2 * (1-self.ee**2) + y**2) * np.sqrt(1-self.ex**2)
if u_check1 <= u_check2:
u = np.arctan2(u_check1, u_check2)
else:
u = np.pi/2 - np.arctan2(u_check2, u_check1)
v_check1 = y
v_check2 = x*np.sqrt(1-self.ee**2)
v_factor = np.sqrt(x**2*(1-self.ee**2)+y**2)
if v_check1 <= v_check2:
v = 2 * np.arctan2(v_check1, v_check2 + v_factor)
else:
v = np.pi/2 - 2 * np.arctan2(v_check2, v_check1 + v_factor)
return u, v
def ell2para(self, beta, lamb) -> tuple[float, float]:
cart = self.ell2cart(beta, lamb)
return self.cart2para(cart)
def para2ell(self, u, v) -> tuple[float, float]:
cart = self.para2cart(u, v)
return self.cart2ell(cart)
def para2geod(self, u: float, v: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> tuple[float, float, float]:
cart = self.para2cart(u, v)
return self.cart2geod(cart, mode, maxIter, maxLoa)
def geod2para(self, phi, lamb, h) -> tuple[float, float]:
cart = self.geod2cart(phi, lamb, h)
return self.cart2para(cart)
def ell2geod(self, beta, lamb, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> tuple[float, float, float]:
cart = self.ell2cart(beta, lamb)
return self.cart2geod(cart, mode, maxIter, maxLoa)
def func_H(self, x, y, z):
return x ** 2 + y ** 2 / (1 - self.ee ** 2) ** 2 + z ** 2 / (1 - self.ex ** 2) ** 2
def func_n(self, x, y, z, H=None):
if H is None:
H = self.func_H(x, y, z)
return np.array([x / sqrt(H),
y / ((1 - self.ee ** 2) * sqrt(H)),
z / ((1 - self.ex ** 2) * sqrt(H))])
def p_q(self, x, y, z) -> tuple[np.ndarray, np.ndarray]:
"""
Berechnung sämtlicher Größen
:param x: x
:param y: y
:param z: z
:return: Dictionary sämtlicher Größen
"""
n = self.func_n(x, y, z)
beta, lamb = self.cart2ell(np.array([x, y, z]))
B = self.Ex ** 2 * np.cos(beta) ** 2 + self.Ee ** 2 * np.sin(beta) ** 2
L = self.Ex ** 2 - self.Ee ** 2 * np.cos(lamb) ** 2
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
self.ax ** 2 + self.ay ** 2) * z ** 2)
t2 = (-c1 + np.sqrt(c1 ** 2 - 4 * c0)) / 2
t1 = c0 / t2
t2e = self.ax ** 2 * np.sin(lamb) ** 2 + self.ay ** 2 * np.cos(lamb) ** 2
t1e = self.ay ** 2 * np.sin(beta) ** 2 + self.b ** 2 * np.cos(beta) ** 2
F = self.Ey ** 2 * np.cos(beta) ** 2 + self.Ee ** 2 * np.sin(lamb) ** 2
p1 = -np.sqrt(L / (F * t2)) * self.ax / self.Ex * np.sqrt(B) * np.sin(lamb)
p2 = np.sqrt(L / (F * t2)) * self.ay * np.cos(beta) * np.cos(lamb)
p3 = 1 / np.sqrt(F * t2) * (self.b * self.Ee ** 2) / (2 * self.Ex) * np.sin(beta) * np.sin(2 * lamb)
# p1 = -np.sign(y) * np.sqrt(L / (F * t2)) * self.ax / (self.Ex * self.Ee) * np.sqrt(B) * np.sqrt(t2 - self.ay ** 2)
# p2 = np.sign(x) * np.sqrt(L / (F * t2)) * self.ay / (self.Ey * self.Ee) * np.sqrt((ell.ay ** 2 - t1) * (self.ax ** 2 - t2))
# p3 = np.sign(x) * np.sign(y) * np.sign(z) * 1 / np.sqrt(F * t2) * self.b / (self.Ex * self.Ey) * np.sqrt(
# (t1 - self.b ** 2) * (t2 - self.ay ** 2) * (self.ax ** 2 - t2))
p = np.array([p1, p2, p3])
q = np.array([n[1] * p[2] - n[2] * p[1],
n[2] * p[0] - n[0] * p[2],
n[0] * p[1] - n[1] * p[0]])
return p, q
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("Eitschberger1978")
diff_list = []
for beta_deg in range(-150, 210, 30):
for lamb_deg in range(-150, 210, 30):
beta = wu.deg2rad(beta_deg)
lamb = wu.deg2rad(lamb_deg)
point = ell.ell2cart(beta, lamb)
elli = ell.cart2ell(point)
cart_elli = ell.ell2cart(elli[0], elli[1])
diff_ell = np.sum(np.abs(point-cart_elli))
para = ell.cart2para(point)
cart_para = ell.para2cart(para[0], para[1])
diff_para = np.sum(np.abs(point-cart_para))
# geod = ell.cart2geod(point, "ligas1")
# cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
# diff_geod1 = np.sum(np.abs(point-cart_geod))
#
# geod = ell.cart2geod(point, "ligas2")
# cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
# diff_geod2 = np.sum(np.abs(point-cart_geod))
geod = ell.cart2geod(point, "ligas3")
cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
diff_geod3 = np.sum(np.abs(point-cart_geod))
diff_list.append([beta_deg, lamb_deg, diff_ell, diff_para, diff_geod3])
diff_list.append([diff_ell])
diff_list = np.array(diff_list)
pass

View File

@@ -1,78 +0,0 @@
from numpy import cos, sin, tan
import winkelumrechnungen as wu
import s_ellipse as s_ell
import ausgaben as aus
from ellipsoide import Ellipsoid
import Numerische_Integration.num_int_runge_kutta as rk
import GHA.gauss as gauss
import GHA.bessel as bessel
matrikelnummer = "6044051"
print(f"Matrikelnummer: {matrikelnummer}")
m4 = matrikelnummer[-4]
m3 = matrikelnummer[-3]
m2 = matrikelnummer[-2]
m1 = matrikelnummer[-1]
print(f"m1={m1}\tm2={m2}\tm3={m3}\tm4={m4}")
re = Ellipsoid.init_name("Bessel")
nks = 3
print(f"\na = {re.a} m\nb = {re.b} m\nc = {re.c} m\ne' = {re.e_}")
print("\n\nAufgabe 1 (via Reihenentwicklung)")
phi1 = re.beta2phi(wu.gms2rad([int("1"+m1), int("1"+m2), int("1"+m3)]))
print(f"{aus.gms('phi_P1', phi1, 5)}")
s = s_ell.reihenentwicklung(re.e_, re.c, phi1)
print(f'\ns_P1 = {round(s,nks)} m')
# s_poly = s_ell.polyapp_tscheby_bessel(phi1)
# print(f'Meridianbogenlänge: {round(s_poly,nks)} m (Polynomapproximation)')
print("\n\nAufgabe 2 (via Gauß´schen Mittelbreitenformeln)")
lambda1 = wu.gms2rad([int("1"+m3), int("1"+m2), int("1"+m4)])
A12 = wu.gms2rad([90, 0, 0])
s12 = float("1"+m4+m3+m2+"."+m1+"0")
# print("\nvia Runge-Kutta-Verfahren")
# re = Ellipsoid.init_name("Bessel")
# f_phi = lambda s, phi, lam, A: cos(A) * re.V(phi) ** 3 / re.c
# f_lam = lambda s, phi, lam, A: sin(A) * re.V(phi) / (cos(phi) * re.c)
# f_A = lambda s, phi, lam, A: tan(phi) * sin(A) * re.V(phi) / re.c
#
# funktionswerte = rk.verfahren([f_phi, f_lam, f_A],
# [0, phi1, lambda1, A12],
# s12, 1)
#
# for s, phi, lam, A in funktionswerte:
# print(f"{s} m, {aus.gms('phi', phi, nks)}, {aus.gms('lambda', lam, nks)}, {aus.gms('A', A, nks)}")
# print("via Gauß´schen Mittelbreitenformeln")
phi_p2, lambda_p2, A_p2 = gauss.gha1(Ellipsoid.init_name("Bessel"),
phi_p1=phi1,
lambda_p1=lambda1,
A_p1=A12,
s=s12, eps=wu.gms2rad([1*10**-8, 0, 00]))
print(f"\nP2: {aus.gms('phi', phi_p2[-1], nks)}\t\t{aus.gms('lambda', lambda_p2[-1], nks)}\t{aus.gms('A', A_p2[-1], nks)}")
# print("\nvia Verfahren nach Bessel")
# phi_p2, lambda_p2, A_p2 = bessel.gha1(Ellipsoid.init_name("Bessel"),
# phi_p1=phi1,
# lambda_p1=lambda1,
# A_p1=A12,
# s=s12)
# print(f"P2: {aus.gms('phi', phi_p2, nks)}, {aus.gms('lambda', lambda_p2, nks)}, {aus.gms('A', A_p2, nks)}")
print("\n\nAufgabe 3")
p = re.phi2p(phi_p2[-1])
print(f"p = {round(p,2)} m")
print("\n\nAufgabe 4")
x = float("4308"+m3+"94.556")
y = float("1214"+m2+"88.242")
z = float("4529"+m4+"03.878")
phi_p3, lambda_p3, h_p3 = re.ellipsoidische_Koords(0.001, wu.gms2rad([0, 0, 0.001]), x, y, z)
print(f"\nP3: {aus.gms('phi', phi_p3, nks)}, {aus.gms('lambda', lambda_p3, 5)}, h = {round(h_p3,nks)} m")

74
jacobian_Ligas.py Normal file
View File

@@ -0,0 +1,74 @@
import numpy as np
def case1(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
j11 = 2 * E * pE[0]
j12 = 2 * F * pE[1]
j13 = 2 * G * pE[2]
j21 = F * pE[1] - (pE[1] - pG[1]) * E
j22 = (pE[0] - pG[0]) * F - E * pE[0]
j23 = 0
j31 = G * pE[2] - (pE[2] - pG[2]) * E
j32 = 0
j33 = (pE[0] - pG[0]) * G - E * pE[0]
detJ = j11 * j22 * j33 - j21 * j12 * j33 - j31 * j13 * j22
invJ = 1/detJ * np.array([[j22*j33, -j12*j33, -j13*j22],
[-j21*j33, j11*j33-j13*j31, j13*j21],
[-j22*j31, j12*j31, j11*j22-j12*j21]])
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
(pE[0]-pG[0]) * F*pE[1] - (pE[1]-pG[1]) * E*pE[0],
(pE[0]-pG[0]) * G*pE[2] - (pE[2]-pG[2]) * E*pE[0]])
return invJ, fxE
def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
j11 = 2 * E * pE[0]
j12 = 2 * F * pE[1]
j13 = 2 * G * pE[2]
j21 = F * pE[1] - (pE[1] - pG[1]) * E
j22 = (pE[0] - pG[0]) * F - E * pE[0]
j23 = 0
j31 = 0
j32 = G * pE[2] - (pE[2] - pG[2]) * F
j33 = (pE[1] - pG[1]) * G - F * pE[1]
detJ = j11 * j22 * j33 - j21 * j12 * j33 + j21 * j13 * j32
if detJ == 0:
invJ, fxE = case3(E, F, G, pG, pE)
else:
invJ = 1/detJ * np.array([[j22*j33, -(j12*j33-j13*j32), -j13*j22],
[-j21*j33, j11*j33, j13*j21],
[j21*j32, -j11*j32, j11*j22-j12*j21]])
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
(pE[0]-pG[0]) * F*pE[1] - (pE[1]-pG[1]) * E*pE[0],
(pE[1]-pG[1]) * G*pE[2] - (pE[2]-pG[2]) * F*pE[1]])
return invJ, fxE
def case3(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
j11 = 2 * E * pE[0]
j12 = 2 * F * pE[1]
j13 = 2 * G * pE[2]
j21 = G * pE[2] - (pE[2] - pG[2]) * E
j22 = 0
j23 = (pE[0] - pG[0]) * G - E * pE[0]
j31 = 0
j32 = G * pE[2] - (pE[2] - pG[2]) * F
j33 = (pE[1] - pG[1]) * G - F * pE[1]
detJ = -j11 * j23 * j32 - j21 * j12 * j33 + j21 * j13 * j32
if detJ == 0:
invJ, fxE = case2(E, F, G, pG, pE)
else:
invJ = 1/detJ * np.array([[-j23*j32, -(j12*j33-j13*j32), j12*j23],
[-j21*j33, j11*j33, -(j11*j23-j13*j21)],
[j21*j32, -j11*j32, -j12*j21]])
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
(pE[0]-pG[0]) * G*pE[2] - (pE[2]-pG[2]) * E*pE[0],
(pE[1]-pG[1]) * G*pE[2] - (pE[2]-pG[2]) * F*pE[1]])
return invJ, fxE

78
kugel.py Normal file
View File

@@ -0,0 +1,78 @@
import numpy as np
def cart2sph(x, y, z):
r = np.sqrt(x**2 + y**2 + z**2)
phi = np.atan2(z, np.sqrt(x**2 + y**2))
lamb = np.atan2(y, x)
return r, np.rad2deg(phi), np.rad2deg(lamb)
def sph2cart(r, phi, lamb):
phi_rad = np.deg2rad(phi)
lamb_rad = np.deg2rad(lamb)
x = r * np.cos(phi_rad) * np.cos(lamb_rad)
y = r * np.cos(phi_rad) * np.sin(lamb_rad)
z = r * np.sin(phi_rad)
return x, y, z
def kugel_erste_gha(R, phi_1, lamb_1, s_d, a_12):
s = s_d / R
lamb_1_rad = np.deg2rad(lamb_1)
phi_1_rad = np.deg2rad(phi_1)
a_12_rad = np.deg2rad(a_12)
sin_satz = np.sin(s) * np.sin(a_12_rad)
sin_kos = np.cos(phi_1_rad) * np.cos(s) - np.sin(phi_1_rad) * np.sin(s) * np.cos(a_12_rad)
delta_lam = np.atan2(sin_satz, sin_kos)
lamb_2_rad = lamb_1_rad + delta_lam
phi_2_rad = np.asin(np.sin(phi_1_rad) * np.cos(s) + np.cos(phi_1_rad) * np.sin(s) * np.cos(a_12_rad))
sin_satz_2 = -np.cos(phi_1_rad) * np.sin(a_12_rad)
sin_kos_2 = np.sin(s) * np.sin(phi_1_rad) - np.cos(s) * np.cos(phi_1_rad) * np.cos(a_12_rad)
a_21_rad = np.atan2(sin_satz_2, sin_kos_2)
if a_21_rad < 0:
a_21_rad += 2 * np.pi
return np.rad2deg(phi_2_rad), np.rad2deg(lamb_2_rad), np.rad2deg(a_21_rad)
def kugel_zweite_gha(R, phi_1, lamb_1, phi_2, lamb_2):
phi_1_rad = np.deg2rad(phi_1)
lamb_1_rad = np.deg2rad(lamb_1)
phi_2_rad = np.deg2rad(phi_2)
lamb_2_rad = np.deg2rad(lamb_2)
sin_satz_1 = np.cos(phi_2_rad) * np.sin(lamb_2_rad - lamb_1_rad)
sin_kos_1 = np.cos(phi_1_rad) * np.sin(phi_2_rad) - np.sin(phi_1_rad) * np.cos(phi_2_rad) * np.cos(lamb_2_rad - lamb_1_rad)
a_12_rad = np.atan2(sin_satz_1, sin_kos_1)
kos = np.sin(phi_1_rad) * np.sin(phi_2_rad) + np.cos(phi_1_rad) * np.cos(phi_2_rad) * np.cos(lamb_2_rad - lamb_1_rad)
s = np.acos(kos)
s_d = R * s
sin_satz_2 = -np.cos(phi_1_rad) * np.sin(lamb_2_rad - lamb_1_rad)
sin_kos_2 = np.cos(phi_2_rad) * np.sin(phi_1_rad) - np.sin(phi_2_rad) * np.cos(phi_1_rad) * np.cos(lamb_2_rad - lamb_1_rad)
a_21_rad = np.atan2(sin_satz_2, sin_kos_2)
if a_21_rad < 0:
a_21_rad += 2 * np.pi
return s_d, np.rad2deg(a_12_rad), np.rad2deg(a_21_rad)
if __name__ == "__main__":
R = 6378815.904 # Bern
phi_1 = 10
lamb_1 = 40
a_12 = 100
s = 10000
phi_2, lamb_2, _ = kugel_erste_gha(R, phi_1, lamb_1, s, a_12)
print(kugel_erste_gha(R, phi_1, lamb_1, s, a_12))
print(kugel_zweite_gha(R, phi_1, lamb_1, phi_2, lamb_2))

30
show_constant_lines.py Normal file
View File

@@ -0,0 +1,30 @@
import numpy as np
import plotly.graph_objects as go
from ellipsoide import EllipsoidTriaxial
import winkelumrechnungen as wu
from dashboard import ellipsoid_figure
u = np.linspace(0, 2*np.pi, 51)
v = np.linspace(0, np.pi, 51)
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
points = []
lines = []
for u_i, u_value in enumerate(u):
for v_i, v_value in enumerate(v):
cart = ell.ell2cart(u_value, v_value)
if u_i != 0 and v_i != 0:
lines.append((points[-1], cart, "red"))
points.append(cart)
points = []
for v_i, v_value in enumerate(v):
for u_i, u_value in enumerate(u):
cart = ell.ell2cart(u_value, v_value)
if u_i != 0 and v_i != 0:
lines.append((points[-1], cart, "blue"))
points.append(cart)
ax = ell.ax
ay = ell.ay
b = ell.b
figu = ellipsoid_figure(ax, ay, b, lines=lines)
figu.show()

29
test.py Normal file
View File

@@ -0,0 +1,29 @@
import numpy as np
from scipy.special import factorial as fact
from math import comb
J = np.array([
[2, 3, 0],
[0, 3, 0],
[6, 0, 4]
])
xi = np.array([1, 2, 3])
xi_col = xi.reshape(-1, 1)
print(xi_col)
xi_row = xi_col.reshape(1, -1).flatten()
print(xi_row)
# Spaltenvektor-Variante
res_col = xi[:, None] - J @ xi[:, None]
# Zeilenvektor-Variante
res_row = xi[None, :] - xi[None, :] @ J
print("Spaltenvektor:")
print(res_col[0,0])
print("Zeilenvektor:")
print(res_row)
t = 5
l = 2
print(fact(t+1-l) / (fact(t+1-l) * fact(l-1)), comb(l-1, t+1-l))

84
test_algorithms.py Normal file
View File

@@ -0,0 +1,84 @@
import GHA_triaxial.numeric_examples_panou as nep
import ellipsoide
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
from GHA_triaxial.panou import gha1_ana, gha1_num
import numpy as np
import time
def test():
ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
tables = nep.get_tables()
diffs_gha1_num = []
diffs_gha1_ana = []
diffs_gha2_num = []
times_gha1_num = []
times_gha1_ana = []
times_gha2_num = []
for table in tables:
diffs_gha1_num.append([])
diffs_gha1_ana.append([])
diffs_gha2_num.append([])
times_gha1_num.append([])
times_gha1_ana.append([])
times_gha2_num.append([])
for example in table:
beta0, lamb0, beta1, lamb1, c, alpha0, alpha1, s = example
P0 = ell.ell2cart(beta0, lamb0)
P1 = ell.ell2cart(beta1, lamb1)
start = time.perf_counter()
try:
P1_num = gha1_num(ell, P0, alpha0, s, 10000)
end = time.perf_counter()
diff_P1_num = np.linalg.norm(P1 - P1_num)
except:
end = time.perf_counter()
diff_P1_num = None
time_gha1_num = end - start
start = time.perf_counter()
try:
P1_ana = gha1_ana(ell, P0, alpha0, s, 50)
end = time.perf_counter()
diff_P1_ana = np.linalg.norm(P1 - P1_ana)
except:
end = time.perf_counter()
diff_P1_ana = None
time_gha1_ana = end - start
start = time.perf_counter()
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=1000)
end = time.perf_counter()
diff_s_num = abs(s - s_num)
except:
end = time.perf_counter()
diff_s_num = None
time_gha2_num = None
time_gha2_num = end - start
diffs_gha1_num[-1].append(diff_P1_num)
diffs_gha1_ana[-1].append(diff_P1_ana)
diffs_gha2_num[-1].append(diff_s_num)
times_gha1_num[-1].append(time_gha1_num)
times_gha1_ana[-1].append(time_gha1_ana)
times_gha2_num[-1].append(time_gha2_num)
print(diffs_gha1_num, diffs_gha1_ana, diffs_gha2_num)
print(times_gha1_num, times_gha1_ana, times_gha2_num)
def display():
diffs = [[{'gha1_num': np.float64(3.410763124264611e-05), 'gha1_ana': np.float64(3.393273802112796e-05), 'gha2_num': np.float64(3.3931806683540344e-05)}, {'gha1_num': np.float64(0.0008736425000530604), 'gha1_ana': np.float64(0.0008736458415010259), 'gha2_num': None}, {'gha1_num': np.float64(0.0007739730058338136), 'gha1_ana': np.float64(0.0007739621469802854), 'gha2_num': np.float64(1.5832483768463135e-07)}, {'gha1_num': np.float64(0.00010554956741100295), 'gha1_ana': np.float64(8.814246009944831), 'gha2_num': np.float64(4.864111542701721e-05)}, {'gha1_num': np.float64(0.0002135908394614854), 'gha1_ana': np.float64(0.0002138610897967267), 'gha2_num': np.float64(5.0179407158866525)}, {'gha1_num': np.float64(0.00032727226891456654), 'gha1_ana': np.float64(0.00032734569198545905), 'gha2_num': np.float64(9.735533967614174e-05)}, {'gha1_num': np.float64(0.0005195973303787956), 'gha1_ana': np.float64(0.0005197766935509641), 'gha2_num': None}], [{'gha1_num': np.float64(1.780250537652368e-05), 'gha1_ana': np.float64(1.996805145339501e-05), 'gha2_num': np.float64(1.8164515495300293e-05)}, {'gha1_num': np.float64(4.8607540473363564e-05), 'gha1_ana': np.float64(2205539.954949392), 'gha2_num': None}, {'gha1_num': np.float64(0.00017376854985685854), 'gha1_ana': np.float64(328124.1513636429), 'gha2_num': np.float64(0.17443156614899635)}, {'gha1_num': np.float64(5.83429352558999e-05), 'gha1_ana': np.float64(0.01891628037258558), 'gha2_num': np.float64(1.4207654744386673)}, {'gha1_num': np.float64(0.0006421087024666934), 'gha1_ana': np.float64(0.0006420400127297228), 'gha2_num': np.float64(0.12751091085374355)}, {'gha1_num': np.float64(0.0004456207867164434), 'gha1_ana': np.float64(0.0004455649707698245), 'gha2_num': np.float64(0.00922046648338437)}, {'gha1_num': np.float64(0.0002340879908275419), 'gha1_ana': np.float64(0.00023422217242111216), 'gha2_num': np.float64(0.001307751052081585)}], [{'gha1_num': np.float64(976.6580096633622), 'gha1_ana': np.float64(976.6580096562798), 'gha2_num': np.float64(6.96033239364624e-05)}, {'gha1_num': np.float64(2825.2936643258527), 'gha1_ana': np.float64(2794.954866417055), 'gha2_num': np.float64(1.3615936040878296e-05)}, {'gha1_num': np.float64(1248.8942058074501), 'gha1_ana': np.float64(538.5550561841195), 'gha2_num': np.float64(3.722589462995529e-05)}, {'gha1_num': np.float64(2201.1793359793814), 'gha1_ana': np.float64(3735.376499414938), 'gha2_num': np.float64(1.4525838196277618e-05)}, {'gha1_num': np.float64(2262.134819997246), 'gha1_ana': np.float64(25549.567793410763), 'gha2_num': np.float64(9.328126907348633e-06)}, {'gha1_num': np.float64(2673.219788119847), 'gha1_ana': np.float64(21760.866677295206), 'gha2_num': np.float64(8.635222911834717e-06)}, {'gha1_num': np.float64(1708.758419275875), 'gha1_ana': np.float64(3792.1128807063437), 'gha2_num': np.float64(2.4085864424705505e-05)}], [{'gha1_num': np.float64(0.7854659044152204), 'gha1_ana': np.float64(0.785466068424286), 'gha2_num': np.float64(0.785466069355607)}, {'gha1_num': np.float64(237.79878717216718), 'gha1_ana': np.float64(1905080.064324282), 'gha2_num': None}, {'gha1_num': np.float64(55204.601699830164), 'gha1_ana': np.float64(55204.60175211949), 'gha2_num': None}, {'gha1_num': np.float64(12766.348063015519), 'gha1_ana': np.float64(12766.376619517901), 'gha2_num': np.float64(12582.786206113175)}, {'gha1_num': np.float64(29703.049988324146), 'gha1_ana': np.float64(29703.056427749252), 'gha2_num': np.float64(28933.668131249025)}, {'gha1_num': np.float64(43912.03007182513), 'gha1_ana': np.float64(43912.03007528712), 'gha2_num': None}, {'gha1_num': np.float64(28522.29828970693), 'gha1_ana': np.float64(28522.29830145182), 'gha2_num': None}, {'gha1_num': np.float64(17769.115549537233), 'gha1_ana': np.float64(17769.115549483362), 'gha2_num': np.float64(17769.121286311187)}]]
arr = []
for table in diffs:
for example in table:
arr.append([example['gha1_num'], example['gha1_ana'], example['gha2_num']])
arr = np.array(arr)
pass
if __name__ == "__main__":
# test()
display()

View File

@@ -1,4 +1,5 @@
from numpy import * from numpy import *
import numpy as np
def deg2gms(deg: float) -> list: def deg2gms(deg: float) -> list:
@@ -10,13 +11,13 @@ def deg2gms(deg: float) -> list:
:rtype: list :rtype: list
""" """
gra = deg // 1 gra = deg // 1
min = gra % 1 minu = gra % 1
gra = gra // 1 gra = gra // 1
min *= 60 minu *= 60
sek = min % 1 sek = minu % 1
min = min // 1 minu = minu // 1
sek *= 60 sek *= 60
return [gra, min, sek] return [gra, minu, sek]
def deg2gra(deg: float) -> float: def deg2gra(deg: float) -> float:
@@ -30,13 +31,13 @@ def deg2gra(deg: float) -> float:
return deg * 10/9 return deg * 10/9
def deg2rad(deg: float) -> float: def deg2rad(deg: float | np.ndarray) -> float | np.ndarray:
""" """
Umrechnung von Grad in Radiant Umrechnung von Grad in Radiant
:param deg: Winkel in Grad :param deg: Winkel in Grad
:type deg: float :type deg: float or np.ndarray
:return: Winkel in Radiant :return: Winkel in Radiant
:rtype: float :rtype: float or np.ndarray
""" """
return deg * pi / 180 return deg * pi / 180
@@ -51,13 +52,13 @@ def gra2gms(gra: float) -> list:
""" """
deg = gra2deg(gra) deg = gra2deg(gra)
gra = deg // 1 gra = deg // 1
min = gra % 1 minu = gra % 1
gra = gra // 1 gra = gra // 1
min *= 60 minu *= 60
sek = min % 1 sek = minu % 1
min = min // 1 minu = minu // 1
sek *= 60 sek *= 60
return [gra, min, sek] return [gra, minu, sek]
def gra2rad(gra: float) -> float: def gra2rad(gra: float) -> float:
@@ -113,13 +114,13 @@ def rad2gms(rad: float) -> list:
:rtype: list :rtype: list
""" """
deg = rad2deg(rad) deg = rad2deg(rad)
min = deg % 1 minu = deg % 1
gra = deg // 1 gra = deg // 1
min *= 60 minu *= 60
sek = min % 1 sek = minu % 1
min = min // 1 minu = minu // 1
sek *= 60 sek *= 60
return [gra, min, sek] return [gra, minu, sek]
def gms2rad(gms: list) -> float: def gms2rad(gms: list) -> float: