Anfang triaxial
This commit is contained in:
@@ -4,7 +4,7 @@ import ausgaben as aus
|
||||
import winkelumrechnungen as wu
|
||||
|
||||
|
||||
re = ellipsoide.Ellipsoid.init_name("Bessel")
|
||||
re = ellipsoide.EllipsoidBiaxial.init_name("Bessel")
|
||||
eta = lambda phi: sqrt(re.e_ ** 2 * cos(phi) ** 2)
|
||||
|
||||
A = wu.gms2rad([327,0,0])
|
||||
|
||||
@@ -3,7 +3,7 @@ import winkelumrechnungen as wu
|
||||
import ausgaben as aus
|
||||
|
||||
|
||||
class Ellipsoid:
|
||||
class EllipsoidBiaxial:
|
||||
def __init__(self, a: float, b: float):
|
||||
self.a = a
|
||||
self.b = b
|
||||
@@ -81,3 +81,47 @@ class Ellipsoid:
|
||||
for i in range(len(phii)):
|
||||
print(f"P3[{i}]: {aus.gms('phi', phii[i], 5)}\th = {round(hi[i], 5)} m")
|
||||
return phi, lamb, h
|
||||
|
||||
class EllipsoidTriaxial:
|
||||
def __init__(self, ax: float, ay: float, b: float):
|
||||
self.ax = ax
|
||||
self.ay = ay
|
||||
self.b = b
|
||||
self.ex = np.sqrt(self.ax**2 - self.b**2)
|
||||
self.ey = np.sqrt(self.ay**2 - self.b**2)
|
||||
self.ee = np.sqrt(self.ax**2 - self.ay**2)
|
||||
|
||||
@classmethod
|
||||
def init_name(cls, name: str):
|
||||
if name == "BursaFialova1993":
|
||||
ax = 6378171.36
|
||||
ay = 6378101.61
|
||||
b = 6356751.84
|
||||
return cls(ax, ay, b)
|
||||
elif name == "BursaSima1980":
|
||||
ax = 6378172
|
||||
ay = 6378102.7
|
||||
b = 6356752.6
|
||||
return cls(ax, ay, b)
|
||||
elif name == "Eitschberger1978":
|
||||
ax = 6378173.435
|
||||
ay = 6378103.9
|
||||
b = 6356754.4
|
||||
return cls(ax, ay, b)
|
||||
elif name == "Bursa1972":
|
||||
ax = 6378173
|
||||
ay = 6378104
|
||||
b = 6356754
|
||||
return cls(ax, ay, b)
|
||||
elif name == "Bursa1970":
|
||||
ax = 6378173
|
||||
ay = 6378105
|
||||
b = 6356754
|
||||
return cls(ax, ay, b)
|
||||
|
||||
def ell2cart(self, beta, lamb, u):
|
||||
s1 = u**2 - self.b**2
|
||||
s2 = -self.ay**2 * np.sin(beta)**2 - self.b**2 * np.cos(beta)**2
|
||||
s3 = -self.ax**2 * np.sin(lamb)**2 - self.ay**2 * np.cos(lamb)**2
|
||||
|
||||
x = np.sqrt(u**2 + self.ex**2) * np.sqrt(np.cos(beta)**2 + self.ee**2/self.ex**2 * np.sin(beta)**2)
|
||||
@@ -2,7 +2,7 @@ from numpy import cos, sin, tan
|
||||
import winkelumrechnungen as wu
|
||||
import s_ellipse as s_ell
|
||||
import ausgaben as aus
|
||||
from ellipsoide import Ellipsoid
|
||||
from ellipsoide import EllipsoidBiaxial
|
||||
import Numerische_Integration.num_int_runge_kutta as rk
|
||||
import GHA.gauss as gauss
|
||||
import GHA.bessel as bessel
|
||||
@@ -16,7 +16,7 @@ m2 = matrikelnummer[-2]
|
||||
m1 = matrikelnummer[-1]
|
||||
print(f"m1={m1}\tm2={m2}\tm3={m3}\tm4={m4}")
|
||||
|
||||
re = Ellipsoid.init_name("Bessel")
|
||||
re = EllipsoidBiaxial.init_name("Bessel")
|
||||
nks = 3
|
||||
|
||||
print(f"\na = {re.a} m\nb = {re.b} m\nc = {re.c} m\ne' = {re.e_}")
|
||||
@@ -49,7 +49,7 @@ s12 = float("1"+m4+m3+m2+"."+m1+"0")
|
||||
# print(f"{s} m, {aus.gms('phi', phi, nks)}, {aus.gms('lambda', lam, nks)}, {aus.gms('A', A, nks)}")
|
||||
|
||||
# print("via Gauß´schen Mittelbreitenformeln")
|
||||
phi_p2, lambda_p2, A_p2 = gauss.gha1(Ellipsoid.init_name("Bessel"),
|
||||
phi_p2, lambda_p2, A_p2 = gauss.gha1(EllipsoidBiaxial.init_name("Bessel"),
|
||||
phi_p1=phi1,
|
||||
lambda_p1=lambda1,
|
||||
A_p1=A12,
|
||||
|
||||
3
koord_umrechnung_triaxial.py
Normal file
3
koord_umrechnung_triaxial.py
Normal file
@@ -0,0 +1,3 @@
|
||||
import numpy as np
|
||||
|
||||
def ell2cart()
|
||||
Reference in New Issue
Block a user