642 lines
22 KiB
Python
642 lines
22 KiB
Python
import numpy as np
|
|
from ellipsoide import EllipsoidTriaxial
|
|
from runge_kutta import rk4, rk4_step, rk4_end, rk4_integral
|
|
import GHA_triaxial.numeric_examples_karney as ne_karney
|
|
import GHA_triaxial.numeric_examples_panou as ne_panou
|
|
import winkelumrechnungen as wu
|
|
from typing import Tuple
|
|
from numpy.typing import NDArray
|
|
import ausgaben as aus
|
|
from utils_angle import cot, arccot, wrap_to_pi
|
|
|
|
|
|
def norm_a(a: float) -> float:
|
|
a = float(a) % (2 * np.pi)
|
|
return a
|
|
|
|
|
|
def azimut(E: float, G: float, dbeta_du: float, dlamb_du: float) -> float:
|
|
north = np.sqrt(E) * dbeta_du
|
|
east = np.sqrt(G) * dlamb_du
|
|
return norm_a(np.arctan2(east, north))
|
|
|
|
|
|
def sph_azimuth(beta1, lam1, beta2, lam2):
|
|
dlam = wrap_to_pi(lam2 - lam1)
|
|
y = np.sin(dlam) * np.cos(beta2)
|
|
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
|
|
a = np.arctan2(y, x)
|
|
if a < 0:
|
|
a += 2 * np.pi
|
|
return a
|
|
|
|
|
|
# Panou 2013
|
|
def gha2_num(
|
|
ell: EllipsoidTriaxial,
|
|
beta_0: float,
|
|
lamb_0: float,
|
|
beta_1: float,
|
|
lamb_1: float,
|
|
n: int = 16000,
|
|
epsilon: float = 10**-12,
|
|
iter_max: int = 30,
|
|
all_points: bool = False,
|
|
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
|
|
"""
|
|
:param ell: Ellipsoid
|
|
:param beta_0: Beta Punkt 0
|
|
:param lamb_0: Lambda Punkt 0
|
|
:param beta_1: Beta Punkt 1
|
|
:param lamb_1: Lambda Punkt 1
|
|
:param n: Anzahl Schritte
|
|
:param epsilon: Genauigkeit
|
|
:param iter_max: Maximale Iterationen
|
|
:param all_points: Ausgabe aller Punkte
|
|
:return: Azimut Startpunkt, Azumit Zielpunkt, Strecke
|
|
"""
|
|
|
|
ax2 = float(ell.ax) * float(ell.ax)
|
|
ay2 = float(ell.ay) * float(ell.ay)
|
|
b2 = float(ell.b) * float(ell.b)
|
|
Ex2 = float(ell.Ex) * float(ell.Ex)
|
|
Ey2 = float(ell.Ey) * float(ell.Ey)
|
|
Ee2 = float(ell.Ee) * float(ell.Ee)
|
|
Ey4 = Ey2 * Ey2
|
|
Ee4 = Ee2 * Ee2
|
|
two_pi = 2.0 * np.pi
|
|
|
|
# Berechnung Koeffizienten, Gaußschen Fundamentalgrößen 1. Ordnung sowie deren Ableitungen
|
|
def BETA_LAMBDA(beta, lamb):
|
|
sb = np.sin(beta)
|
|
cb = np.cos(beta)
|
|
sl = np.sin(lamb)
|
|
cl = np.cos(lamb)
|
|
|
|
sb2 = sb * sb
|
|
cb2 = cb * cb
|
|
sl2 = sl * sl
|
|
cl2 = cl * cl
|
|
|
|
s2b = 2.0 * sb * cb
|
|
c2b = cb2 - sb2
|
|
s2l = 2.0 * sl * cl
|
|
c2l = cl2 - sl2
|
|
|
|
denB = Ex2 - Ey2 * sb2
|
|
denL = Ex2 - Ee2 * cl2
|
|
|
|
BETA = (ay2 * sb2 + b2 * cb2) / denB
|
|
LAMBDA = (ax2 * sl2 + ay2 * cl2) / denL
|
|
|
|
BETA_ = (ax2 * Ey2 * s2b) / (denB * denB)
|
|
LAMBDA_ = -(b2 * Ee2 * s2l) / (denL * denL)
|
|
|
|
BETA__ = (2.0 * ax2 * Ey4 * (s2b * s2b)) / (denB * denB * denB) + (2.0 * ax2 * Ey2 * c2b) / (
|
|
denB * denB
|
|
)
|
|
LAMBDA__ = (2.0 * b2 * Ee4 * (s2l * s2l)) / (denL * denL * denL) - (2.0 * b2 * Ee2 * s2l) / (
|
|
denL * denL
|
|
)
|
|
|
|
Q = Ey2 * cb2 + Ee2 * sl2
|
|
|
|
E = BETA * Q
|
|
G = LAMBDA * Q
|
|
|
|
E_beta = BETA_ * Q - BETA * Ey2 * s2b
|
|
E_lamb = BETA * Ee2 * s2l
|
|
|
|
G_beta = -LAMBDA * Ey2 * s2b
|
|
G_lamb = LAMBDA_ * Q + LAMBDA * Ee2 * s2l
|
|
|
|
E_beta_beta = BETA__ * Q - 2.0 * BETA_ * Ey2 * s2b - 2.0 * BETA * Ey2 * c2b
|
|
E_beta_lamb = BETA_ * Ee2 * s2l
|
|
E_lamb_lamb = 2.0 * BETA * Ee2 * c2l
|
|
|
|
G_beta_beta = -2.0 * LAMBDA * Ey2 * c2b
|
|
G_beta_lamb = -LAMBDA_ * Ey2 * s2b
|
|
G_lamb_lamb = LAMBDA__ * Q + 2.0 * LAMBDA_ * Ee2 * s2l + 2.0 * LAMBDA * Ee2 * c2l
|
|
|
|
return (
|
|
BETA,
|
|
LAMBDA,
|
|
E,
|
|
G,
|
|
BETA_,
|
|
LAMBDA_,
|
|
BETA__,
|
|
LAMBDA__,
|
|
E_beta,
|
|
E_lamb,
|
|
G_beta,
|
|
G_lamb,
|
|
E_beta_beta,
|
|
E_beta_lamb,
|
|
E_lamb_lamb,
|
|
G_beta_beta,
|
|
G_beta_lamb,
|
|
G_lamb_lamb,
|
|
)
|
|
|
|
# Berechnung der ODE Koeffizienten für Fall 1 (lambda_0 != lambda_1)
|
|
def p_coef(beta, lamb):
|
|
(
|
|
BETA,
|
|
LAMBDA,
|
|
E,
|
|
G,
|
|
BETA_,
|
|
LAMBDA_,
|
|
BETA__,
|
|
LAMBDA__,
|
|
E_beta,
|
|
E_lamb,
|
|
G_beta,
|
|
G_lamb,
|
|
E_beta_beta,
|
|
E_beta_lamb,
|
|
E_lamb_lamb,
|
|
G_beta_beta,
|
|
G_beta_lamb,
|
|
G_lamb_lamb,
|
|
) = BETA_LAMBDA(beta, lamb)
|
|
|
|
p_3 = -0.5 * (E_lamb / G)
|
|
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
|
|
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
|
|
p_0 = 0.5 * (G_beta / E)
|
|
|
|
p_33 = -0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G**2))
|
|
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G**2)) - 0.5 * (
|
|
(E * E_beta_beta - E_beta * E_beta) / (E**2)
|
|
)
|
|
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G**2)) - (
|
|
(E * E_beta_lamb - E_beta * E_lamb) / (E**2)
|
|
)
|
|
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E**2))
|
|
|
|
return (BETA, LAMBDA, E, G, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00)
|
|
|
|
# Berechnung der ODE Koeffizienten für Fall 2 (lambda_0 == lambda_1)
|
|
def q_coef(beta, lamb):
|
|
(
|
|
BETA,
|
|
LAMBDA,
|
|
E,
|
|
G,
|
|
BETA_,
|
|
LAMBDA_,
|
|
BETA__,
|
|
LAMBDA__,
|
|
E_beta,
|
|
E_lamb,
|
|
G_beta,
|
|
G_lamb,
|
|
E_beta_beta,
|
|
E_beta_lamb,
|
|
E_lamb_lamb,
|
|
G_beta_beta,
|
|
G_beta_lamb,
|
|
G_lamb_lamb,
|
|
) = BETA_LAMBDA(beta, lamb)
|
|
|
|
q_3 = -0.5 * (G_beta / E)
|
|
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
|
|
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
|
|
q_0 = 0.5 * (E_lamb / G)
|
|
|
|
q_33 = -0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E**2))
|
|
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E**2)) - 0.5 * (
|
|
(G * G_lamb_lamb - G_lamb * G_lamb) / (G**2)
|
|
)
|
|
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E**2)) - (
|
|
(G * G_beta_lamb - G_beta * G_lamb) / (G**2)
|
|
)
|
|
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G**2))
|
|
|
|
return BETA, LAMBDA, E, G, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00
|
|
|
|
def integrand_lambda(lamb, y):
|
|
beta = y[0]
|
|
beta_p = y[1]
|
|
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
|
|
return np.sqrt(E * beta_p**2 + G)
|
|
|
|
def integrand_beta(beta, y):
|
|
lamb = y[0]
|
|
lamb_p = y[1]
|
|
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
|
|
return np.sqrt(E + G * lamb_p**2)
|
|
|
|
def solve_lambda_branch(beta0, lamb0, beta1, lamb1_target, N_run, N_newt, it_max):
|
|
dlamb = float(lamb1_target - lamb0)
|
|
if abs(dlamb) < 1e-15:
|
|
return None
|
|
|
|
sgn = 1.0 if dlamb >= 0.0 else -1.0
|
|
|
|
def ode_lamb(lamb, v):
|
|
beta, beta_p, X3, X4 = v
|
|
(_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
|
|
|
|
dbeta = beta_p
|
|
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
|
|
dX3 = X4
|
|
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
|
|
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
|
|
) * X4
|
|
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
|
|
|
|
alpha0_sph = sph_azimuth(beta0, lamb0, beta1, lamb1_target)
|
|
(_, _, E0, G0, *_) = BETA_LAMBDA(beta0, lamb0)
|
|
beta_p0_sph = np.sqrt(G0 / E0) * cot(alpha0_sph)
|
|
|
|
def solve_newton(beta_p0_init: float):
|
|
beta_p0 = float(beta_p0_init)
|
|
for _ in range(it_max):
|
|
v0 = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
|
|
_, y_end = rk4_end(ode_lamb, lamb0, v0, dlamb, N_newt)
|
|
|
|
beta_end, _, X3_end, _ = y_end
|
|
delta = beta_end - beta1
|
|
|
|
if abs(delta) < epsilon:
|
|
return True, beta_p0
|
|
|
|
if abs(X3_end) < 1e-20:
|
|
return False, None
|
|
|
|
step = delta / X3_end
|
|
step = float(np.clip(step, -0.5, 0.5))
|
|
beta_p0 -= step
|
|
|
|
return False, None
|
|
|
|
seeds = [beta_p0_sph, -beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
|
|
best = None
|
|
|
|
for seed in seeds:
|
|
ok, sol = solve_newton(seed)
|
|
if not ok:
|
|
continue
|
|
v0_sol = np.array([beta0, sol, 0.0, 1.0], dtype=float)
|
|
_, _, s_val = rk4_integral(ode_lamb, lamb0, v0_sol, dlamb, N_run, integrand_lambda)
|
|
if (best is None) or (s_val < best[0]):
|
|
best = (float(s_val), float(sol))
|
|
|
|
if best is None:
|
|
return None
|
|
|
|
return best[0], best[1], sgn, dlamb, ode_lamb
|
|
|
|
def solve_beta_branch(beta0, lamb0, beta1, lamb1, N_run, N_newt, it_max):
|
|
dbeta = float(beta1 - beta0)
|
|
if abs(dbeta) < 1e-15:
|
|
return None
|
|
|
|
sgn = 1.0 if dbeta >= 0.0 else -1.0
|
|
|
|
def ode_beta(beta, v):
|
|
lamb, lamb_p, Y3, Y4 = v
|
|
(_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
|
|
|
|
dlamb = lamb_p
|
|
dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
|
|
dY3 = Y4
|
|
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
|
|
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
|
|
) * Y4
|
|
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
|
|
|
|
def solve_newton(lamb_p0_init: float):
|
|
lamb_p0 = float(lamb_p0_init)
|
|
for _ in range(it_max):
|
|
v0 = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
|
|
_, y_end = rk4_end(ode_beta, beta0, v0, dbeta, N_newt)
|
|
|
|
lamb_end, _, Y3_end, _ = y_end
|
|
delta = lamb_end - lamb1
|
|
|
|
if abs(delta) < epsilon:
|
|
return True, lamb_p0
|
|
|
|
if abs(Y3_end) < 1e-20:
|
|
return False, None
|
|
|
|
step = delta / Y3_end
|
|
step = float(np.clip(step, -1.0, 1.0))
|
|
lamb_p0 -= step
|
|
|
|
return False, None
|
|
|
|
seeds = [0.0, 0.25, -0.25, 1.0, -1.0]
|
|
best = None
|
|
|
|
for seed in seeds:
|
|
ok, sol = solve_newton(seed)
|
|
if not ok:
|
|
continue
|
|
v0_sol = np.array([lamb0, sol, 0.0, 1.0], dtype=float)
|
|
_, _, s_val = rk4_integral(ode_beta, beta0, v0_sol, dbeta, N_run, integrand_beta)
|
|
if (best is None) or (s_val < best[0]):
|
|
best = (float(s_val), float(sol))
|
|
|
|
if best is None:
|
|
return None
|
|
|
|
return best[0], best[1], sgn, dbeta, ode_beta
|
|
|
|
lamb0 = float(wrap_to_pi(lamb_0))
|
|
lamb1 = float(wrap_to_pi(lamb_1))
|
|
beta0 = float(beta_0)
|
|
beta1 = float(beta_1)
|
|
|
|
N_full = int(n)
|
|
if N_full < 2:
|
|
N_full = 2
|
|
|
|
if all_points:
|
|
N_fast = min(2000, max(400, N_full // 10))
|
|
else:
|
|
N_fast = min(1500, max(300, N_full // 12))
|
|
|
|
k0 = int(np.round((lamb0 - lamb1) / two_pi))
|
|
lamb_targets = []
|
|
for dk in (-1, 0, 1):
|
|
lt = lamb1 + two_pi * float(k0 + dk)
|
|
dl = lt - lamb0
|
|
if abs(dl) <= np.pi + 1e-12:
|
|
lamb_targets.append(float(lt))
|
|
if not lamb_targets:
|
|
lamb_targets = [float(lamb1 + two_pi * float(k0))]
|
|
|
|
best_fast = None
|
|
|
|
for lt in lamb_targets:
|
|
if abs(lt - lamb0) >= 1e-15:
|
|
res = solve_lambda_branch(beta0, lamb0, beta1, lt, N_fast, min(N_fast, 800), min(iter_max, 12))
|
|
if res is None:
|
|
continue
|
|
s_fast, beta_p0_fast, sgn_fast, dlamb_fast, _ = res
|
|
cand = ("lambda", s_fast, lt, beta_p0_fast, sgn_fast, dlamb_fast)
|
|
else:
|
|
res = solve_beta_branch(beta0, lamb0, beta1, lamb1, N_fast, min(N_fast, 800), min(iter_max, 12))
|
|
if res is None:
|
|
continue
|
|
s_fast, lamb_p0_fast, sgn_fast, dbeta_fast, _ = res
|
|
cand = ("beta", s_fast, lt, lamb_p0_fast, sgn_fast, dbeta_fast)
|
|
|
|
if (best_fast is None) or (cand[1] < best_fast[1]):
|
|
best_fast = cand
|
|
|
|
if best_fast is None:
|
|
if abs(lamb1 - lamb0) >= 1e-15:
|
|
best_fast = ("lambda", 0.0, lamb1, None, 1.0, float(lamb1 - lamb0))
|
|
else:
|
|
best_fast = ("beta", 0.0, lamb1, None, 1.0, float(beta1 - beta0))
|
|
|
|
if best_fast[0] == "lambda":
|
|
lt = float(best_fast[2])
|
|
dlamb = float(lt - lamb0)
|
|
sgn = 1.0 if dlamb >= 0.0 else -1.0
|
|
|
|
def ode_lamb(lamb, v):
|
|
beta, beta_p, X3, X4 = v
|
|
(_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
|
|
|
|
dbeta = beta_p
|
|
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
|
|
dX3 = X4
|
|
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
|
|
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
|
|
) * X4
|
|
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
|
|
|
|
alpha0_sph = sph_azimuth(beta0, lamb0, beta1, lt)
|
|
(_, _, E0, G0, *_) = BETA_LAMBDA(beta0, lamb0)
|
|
beta_p0_sph = np.sqrt(G0 / E0) * cot(alpha0_sph)
|
|
|
|
beta_p0_init = best_fast[3]
|
|
if beta_p0_init is None:
|
|
beta_p0_init = beta_p0_sph
|
|
beta_p0_init = float(beta_p0_init)
|
|
|
|
N_newton = min(N_full, 4000)
|
|
|
|
def solve_newton_refine(beta_p0_init: float):
|
|
beta_p0 = float(beta_p0_init)
|
|
for _ in range(iter_max):
|
|
v0 = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
|
|
_, y_end = rk4_end(ode_lamb, lamb0, v0, dlamb, N_newton)
|
|
|
|
beta_end, _, X3_end, _ = y_end
|
|
delta = beta_end - beta1
|
|
|
|
if abs(delta) < epsilon:
|
|
return True, beta_p0
|
|
|
|
if abs(X3_end) < 1e-20:
|
|
return False, None
|
|
|
|
step = delta / X3_end
|
|
step = float(np.clip(step, -0.5, 0.5))
|
|
beta_p0 -= step
|
|
|
|
return False, None
|
|
|
|
ok, beta_p0_sol = solve_newton_refine(beta_p0_init)
|
|
|
|
if not ok:
|
|
seeds = [beta_p0_sph, -beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
|
|
best = None
|
|
for seed in seeds:
|
|
ok_s, sol_s = solve_newton_refine(seed)
|
|
if not ok_s:
|
|
continue
|
|
v0_s = np.array([beta0, sol_s, 0.0, 1.0], dtype=float)
|
|
_, _, s_s = rk4_integral(ode_lamb, lamb0, v0_s, dlamb, min(N_full, 2000), integrand_lambda)
|
|
if (best is None) or (s_s < best[0]):
|
|
best = (float(s_s), float(sol_s))
|
|
if best is None:
|
|
raise RuntimeError("GHA2_num: Keine Startwert-Variante konvergiert (lambda-Fall)")
|
|
beta_p0_sol = best[1]
|
|
|
|
beta_p0 = float(beta_p0_sol)
|
|
v0_final = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
|
|
|
|
if all_points:
|
|
lamb_list, states = rk4(ode_lamb, lamb0, v0_final, dlamb, N_full, False)
|
|
lamb_arr = np.array(lamb_list, dtype=float)
|
|
beta_arr = np.array([st[0] for st in states], dtype=float)
|
|
beta_p_arr = np.array([st[1] for st in states], dtype=float)
|
|
|
|
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
|
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
|
|
|
alpha_0 = azimut(E_start, G_start, dbeta_du=beta_p_arr[0] * sgn, dlamb_du=1.0 * sgn)
|
|
alpha_1 = azimut(E_end, G_end, dbeta_du=beta_p_arr[-1] * sgn, dlamb_du=1.0 * sgn)
|
|
|
|
integrand = np.zeros(N_full + 1, dtype=float)
|
|
for i in range(N_full + 1):
|
|
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
|
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
|
|
|
|
h = abs(dlamb) / N_full
|
|
if N_full % 2 == 0:
|
|
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(
|
|
integrand[2:-1:2]
|
|
)
|
|
s = h / 3.0 * S
|
|
else:
|
|
s = np.trapz(integrand, dx=h)
|
|
|
|
return float(alpha_0), float(alpha_1), float(s), beta_arr, lamb_arr
|
|
|
|
_, y_end, s = rk4_integral(ode_lamb, lamb0, v0_final, dlamb, N_full, integrand_lambda)
|
|
beta_end, beta_p_end, _, _ = y_end
|
|
|
|
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0)
|
|
alpha_0 = azimut(E_start, G_start, dbeta_du=beta_p0 * sgn, dlamb_du=1.0 * sgn)
|
|
|
|
(_, _, E_end, G_end, *_) = BETA_LAMBDA(float(beta_end), float(lamb0 + dlamb))
|
|
alpha_1 = azimut(E_end, G_end, dbeta_du=float(beta_p_end) * sgn, dlamb_du=1.0 * sgn)
|
|
|
|
return float(alpha_0), float(alpha_1), float(s)
|
|
|
|
# Fall 2 (lambda_0 == lambda_1)
|
|
N = int(n)
|
|
dbeta = float(beta_1 - beta_0)
|
|
|
|
if abs(dbeta) < 1e-15:
|
|
if all_points:
|
|
return 0.0, 0.0, 0.0, np.array([]), np.array([])
|
|
return 0.0, 0.0, 0.0
|
|
|
|
sgn = 1.0 if dbeta >= 0.0 else -1.0
|
|
|
|
def ode_beta(beta, v):
|
|
lamb, lamb_p, Y3, Y4 = v
|
|
(_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
|
|
|
|
dlamb = lamb_p
|
|
dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
|
|
dY3 = Y4
|
|
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
|
|
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
|
|
) * Y4
|
|
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
|
|
|
|
lamb_p0 = float(best_fast[3]) if (best_fast[0] == "beta" and best_fast[3] is not None) else 0.0
|
|
|
|
for _ in range(iter_max):
|
|
v0 = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
|
|
_, y_end = rk4_end(ode_beta, beta0, v0, dbeta, N)
|
|
|
|
lamb_end, _, Y3_end, _ = y_end
|
|
delta = lamb_end - lamb1
|
|
|
|
if abs(delta) < epsilon:
|
|
break
|
|
|
|
if abs(Y3_end) < 1e-20:
|
|
raise RuntimeError("GHA2_num: Ableitung ~ 0 im beta-Fall")
|
|
|
|
step = delta / Y3_end
|
|
step = float(np.clip(step, -1.0, 1.0))
|
|
lamb_p0 -= step
|
|
|
|
v0_final = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
|
|
|
|
if all_points:
|
|
beta_list, states = rk4(ode_beta, beta0, v0_final, dbeta, N, False)
|
|
beta_arr = np.array(beta_list, dtype=float)
|
|
lamb_arr = np.array([st[0] for st in states], dtype=float)
|
|
lamb_p_arr = np.array([st[1] for st in states], dtype=float)
|
|
|
|
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
|
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
|
|
|
alpha_0 = azimut(E_start, G_start, dbeta_du=1.0 * sgn, dlamb_du=lamb_p_arr[0] * sgn)
|
|
alpha_1 = azimut(E_end, G_end, dbeta_du=1.0 * sgn, dlamb_du=lamb_p_arr[-1] * sgn)
|
|
|
|
integrand = np.zeros(N + 1, dtype=float)
|
|
for i in range(N + 1):
|
|
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
|
integrand[i] = np.sqrt(Ei + Gi * lamb_p_arr[i] ** 2)
|
|
|
|
h = abs(dbeta) / N
|
|
if N % 2 == 0:
|
|
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(
|
|
integrand[2:-1:2]
|
|
)
|
|
s = h / 3.0 * S
|
|
else:
|
|
s = np.trapz(integrand, dx=h)
|
|
|
|
return float(alpha_0), float(alpha_1), float(s), beta_arr, lamb_arr
|
|
|
|
_, y_end, s = rk4_integral(ode_beta, beta0, v0_final, dbeta, N, integrand_beta)
|
|
lamb_end, lamb_p_end, _, _ = y_end
|
|
|
|
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0)
|
|
alpha_0 = azimut(E_start, G_start, dbeta_du=1.0 * sgn, dlamb_du=lamb_p0 * sgn)
|
|
|
|
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta1, float(lamb_end))
|
|
alpha_1 = azimut(E_end, G_end, dbeta_du=1.0 * sgn, dlamb_du=float(lamb_p_end) * sgn)
|
|
|
|
return float(alpha_0), float(alpha_1), float(s)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
|
# beta1 = np.deg2rad(75)
|
|
# lamb1 = np.deg2rad(-90)
|
|
# beta2 = np.deg2rad(75)
|
|
# lamb2 = np.deg2rad(66)
|
|
# a0, a1, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
|
|
# print(aus.gms("a0", a0, 4))
|
|
# print(aus.gms("a1", a1, 4))
|
|
# print("s: ", s)
|
|
# # print(aus.gms("a2", a2, 4))
|
|
# # print(s)
|
|
# cart1 = ell.para2cart(0, 0)
|
|
# cart2 = ell.para2cart(0.4, 1.4)
|
|
# beta1, lamb1 = ell.cart2ell(cart1)
|
|
# beta2, lamb2 = ell.cart2ell(cart2)
|
|
#
|
|
# a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
|
|
# print(s)
|
|
|
|
# ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
|
# diffs_panou = []
|
|
# examples_panou = ne_panou.get_random_examples(4)
|
|
# for example in examples_panou:
|
|
# beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
|
|
# P0 = ell.ell2cart(beta0, lamb0)
|
|
# try:
|
|
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
|
# diffs_panou.append(
|
|
# (wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
|
|
# except:
|
|
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
|
# diffs_panou = np.array(diffs_panou)
|
|
# print(diffs_panou)
|
|
#
|
|
# ell = EllipsoidTriaxial.init_name("KarneyTest2024")
|
|
# diffs_karney = []
|
|
# # examples_karney = ne_karney.get_examples((30500, 40500))
|
|
# examples_karney = ne_karney.get_random_examples(2)
|
|
# for example in examples_karney:
|
|
# beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
|
|
#
|
|
# try:
|
|
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
|
# diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
|
|
# except:
|
|
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
|
# diffs_karney = np.array(diffs_karney)
|
|
# print(diffs_karney)
|
|
|
|
pass
|