Files
Masterprojekt/GHA_triaxial/gha1_ES.py
2026-02-05 21:03:59 +01:00

245 lines
8.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from __future__ import annotations
from typing import List, Optional, Tuple
import numpy as np
from ellipsoide import EllipsoidTriaxial
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.gha1_approx import gha1_approx
from Hansen_ES_CMA import escma
from utils_angle import wrap_to_pi
from numpy.typing import NDArray
def ellipsoid_formparameter(ell: EllipsoidTriaxial):
"""
Berechnet die Formparameter des dreiachsigen Ellipsoiden nach Karney (2025), Gl. (2)
:param ell: Ellipsoid
:return: e, k und k'
"""
nenner = np.sqrt(max(ell.ax * ell.ax - ell.b * ell.b, 0.0))
k = np.sqrt(max(ell.ay * ell.ay - ell.b * ell.b, 0.0)) / nenner
k_ = np.sqrt(max(ell.ax * ell.ax - ell.ay * ell.ay, 0.0)) / nenner
e = np.sqrt(max(ell.ax * ell.ax - ell.b * ell.b, 0.0)) / ell.ay
return e, k, k_
def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
-> Tuple[NDArray, NDArray, NDArray, float, float, NDArray]:
"""
Analytische ENU-Basis in ellipsoidische Koordinaten (β, ω) nach Karney (2025), S. 2
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param ell: Ellipsoid
:return: E_hat = Einheitsrichtung entlang wachsendem ω (East)
N_hat = Einheitsrichtung entlang wachsendem β (North)
U_hat = Einheitsnormale (Up)
En & Nn = Längen der unnormierten Ableitungen
R (XYZ) = Punkt in XYZ
"""
# Berechnungshilfen
omega = wrap_to_pi(omega)
cb = np.cos(beta)
sb = np.sin(beta)
co = np.cos(omega)
so = np.sin(omega)
# D = sqrt(a^2 - c^2)
D = np.sqrt(ell.ax*ell.ax - ell.b*ell.b)
# Sx = sqrt(a^2 - b^2 sin^2β - c^2 cos^2β)
Sx = np.sqrt(ell.ax*ell.ax - ell.ay*ell.ay*(sb*sb) - ell.b*ell.b*(cb*cb))
# Sz = sqrt(a^2 sin^2ω + b^2 cos^2ω - c^2)
Sz = np.sqrt(ell.ax*ell.ax*(so*so) + ell.ay*ell.ay*(co*co) - ell.b*ell.b)
# Karney Gl. (4)
X = ell.ax * co * Sx / D
Y = ell.ay * cb * so
Z = ell.b * sb * Sz / D
R = np.array([X, Y, Z], dtype=float)
# --- Ableitungen - Karney Gl. (5a,b,c)---
# E = ∂R/∂ω
dX_dw = -ell.ax * so * Sx / D
dY_dw = ell.ay * cb * co
dZ_dw = ell.b * sb * (so * co * (ell.ax*ell.ax - ell.ay*ell.ay) / Sz) / D
E = np.array([dX_dw, dY_dw, dZ_dw], dtype=float)
# N = ∂R/∂β
dX_db = ell.ax * co * (sb * cb * (ell.b*ell.b - ell.ay*ell.ay) / Sx) / D
dY_db = -ell.ay * sb * so
dZ_db = ell.b * cb * Sz / D
N = np.array([dX_db, dY_db, dZ_db], dtype=float)
# U = Grad(x^2/a^2 + y^2/b^2 + z^2/c^2 - 1)
U = np.array([X/(ell.ax*ell.ax), Y/(ell.ay*ell.ay), Z/(ell.b*ell.b)], dtype=float)
En = np.linalg.norm(E)
Nn = np.linalg.norm(N)
Un = np.linalg.norm(U)
N_hat = N / Nn
E_hat = E / En
U_hat = U / Un
return E_hat, N_hat, U_hat, En, Nn, R
def jacobi_konstante(beta: float, omega: float, alpha: float, ell: EllipsoidTriaxial) -> float:
"""
Jacobi-Konstante nach Karney (2025), Gl. (14)
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param alpha: Azimut alpha
:param ell: Ellipsoid
:return: Jacobi-Konstante
"""
e, k, k_ = ellipsoid_formparameter(ell)
gamma_jacobi = float((k ** 2) * (np.cos(beta) ** 2) * (np.sin(alpha) ** 2) - (k_ ** 2) * (np.sin(omega) ** 2) * (np.cos(alpha) ** 2))
return gamma_jacobi
def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_hat_curr: NDArray, U_hat_curr: NDArray) -> float:
"""
Berechnet das Azimut in der lokalen Tangentialebene am aktuellen Punkt P_curr, gemessen
an der Bewegungsrichtung vom vorherigen Punkt P_prev nach P_curr.
:param P_prev: vorheriger Punkt
:param P_curr: aktueller Punkt
:param E_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param N_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param U_hat_curr: Einheitsnormalenvektor am Punkt P_curr
:return: Azimut in Radiant
"""
v = (P_curr - P_prev).astype(float)
vT = v - float(np.dot(v, U_hat_curr)) * U_hat_curr
vT_hat = vT / np.linalg.norm(vT)
sE = float(np.dot(vT_hat, E_hat_curr))
sN = float(np.dot(vT_hat, N_hat_curr))
return wrap_to_pi(float(np.arctan2(sE, sN)))
def optimize_next_point(beta_i: float, omega_i: float, alpha_target: float, ds: float, gamma0: float,
ell: EllipsoidTriaxial, maxSegLen: float = 1000.0, sigma0: float = None) -> Tuple[float, float, NDArray, float]:
"""
:param beta_i:
:param omega_i:
:param alpha_target:
:param ds:
:param gamma0:
:param ell:
:param maxSegLen:
:param sigma0:
:return:
"""
# Startbasis (für Predictor + optionales alpha_start)
E_i, N_i, U_i, En_i, Nn_i, P_i = ENU_beta_omega(beta_i, omega_i, ell)
# Predictor: dβ ≈ ds cosα / |N|, dω ≈ ds sinα / |E|
d_beta = ds * float(np.cos(alpha_target)) / Nn_i
d_omega = ds * float(np.sin(alpha_target)) / En_i
beta_pred = beta_i + d_beta
omega_pred = wrap_to_pi(omega_i + d_omega)
xmean = np.array([beta_pred, omega_pred], dtype=float)
if sigma0 is None:
R0 = (ell.ax + ell.ay + ell.b) / 3
sigma0 = 1e-3 * (ds / R0)
def fitness(x: NDArray) -> float:
beta = x[0]
omega = wrap_to_pi(x[1])
P = ell.ell2cart(beta, omega)
d = float(np.linalg.norm(P - P_i))
# length penalty
J_len = ((d - ds) / ds) ** 2
if d > maxSegLen * 1.02:
J_len += 1e3 * ((d / maxSegLen) - 1.02) ** 2
w_len = 1.0
# alpha at end, computed using previous point (for Jacobi gamma)
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta, omega, ell)
alpha_end = azimuth_at_ESpoint(P_i, P, E_j, N_j, U_j)
# Jacobi gamma at candidate/end
g_end = jacobi_konstante(beta, omega, alpha_end, ell)
J_gamma = (g_end - gamma0) ** 2
w_gamma = 10
return float(w_len * J_len + w_gamma * J_gamma)
xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0) # Aufruf CMA-ES
beta_best = float(np.clip(float(xb[0]), -0.499999 * np.pi, 0.499999 * np.pi))
omega_best = wrap_to_pi(float(xb[1]))
P_best = ell.ell2cart(beta_best, omega_best)
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta_best, omega_best, ell)
alpha_end = azimuth_at_ESpoint(P_i, P_best, E_j, N_j, U_j)
return beta_best, omega_best, P_best, alpha_end
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000):
"""
:param ell:
:param beta0:
:param omega0:
:param alpha0:
:param s_total:
:param maxSegLen:
:return:
"""
beta = float(beta0)
omega = wrap_to_pi(float(omega0))
alpha = wrap_to_pi(float(alpha0))
gamma0 = jacobi_konstante(beta, omega, alpha, ell) # Referenz-γ0
points: List[NDArray] = [ell.ell2cart(beta, omega)]
alpha_end: List[float] = [alpha]
s_acc = 0.0
step = 0
nsteps_est = int(np.ceil(s_total / maxSegLen))
while s_acc < s_total - 1e-9:
step += 1
ds = min(maxSegLen, s_total - s_acc)
print(f"[GHA1-ES] Step {step}/{nsteps_est} ds={ds:.3f} m s_acc={s_acc:.3f} m beta={beta:.6f} omega={omega:.6f} alpha={alpha:.6f}")
beta, omega, P, alpha = optimize_next_point(beta_i=beta, omega_i=omega, alpha_target=alpha, ds=ds, gamma0=gamma0,
ell=ell, maxSegLen=maxSegLen)
s_acc += ds
points.append(P)
alpha_end.append(alpha)
if step > nsteps_est + 50:
raise RuntimeError("Zu viele Schritte vermutlich Konvergenzproblem / falsche Azimut-Konvention.")
Pk = points[-1]
alpha1 = alpha_end[-1]
return Pk, alpha1
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
s = 188891.650873
alpha0 = 70/(180/np.pi)
P0 = ell.ell2cart(5/(180/np.pi), -90/(180/np.pi))
point1, alpha1 = gha1_ana(ell, P0, alpha0=alpha0, s=s, maxM=100, maxPartCircum=32)
point1app, alpha1app = gha1_approx(ell, P0, alpha0=alpha0, s=s, ds=1000)
res, alpha = gha1_ES(ell, beta0=5/(180/np.pi), omega0=-90/(180/np.pi), alpha0=alpha0, s_total=s, maxSegLen=1000)
print(point1)
print(res)
print(alpha)
# print("alpha1 (am Endpunkt):", res.alpha1)
print(res - point1)
print(point1app - point1, "approx")