Files
Masterprojekt/GHA_triaxial/gha1_ana.py
2026-02-11 12:08:46 +01:00

146 lines
4.4 KiB
Python

import math
from math import comb
from typing import Tuple
import numpy as np
from numpy import arctan2, cos, sin
from numpy.typing import NDArray
import winkelumrechnungen as wu
from GHA_triaxial.utils import pq_para
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int) -> Tuple[NDArray, float]:
"""
Panou, Korakitits 2020, 5ff.
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha0: Azimut im Startpunkt
:param s: Strecke
:param maxM: maximale Ordnung
:return: Zwischenpunkt, Azimut im Zwischenpunkt
"""
x, y, z = point
# S. 6
x_m = [x]
y_m = [y]
z_m = [z]
p, q = pq_para(ell, point)
# 48-50
x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
y_m.append(p[1] * sin(alpha0) + q[1] * cos(alpha0))
z_m.append(p[2] * sin(alpha0) + q[2] * cos(alpha0))
# 34
H_ = lambda p: np.sum([comb(p, p - i) * (x_m[p - i] * x_m[i] +
1 / (1 - ell.ee ** 2) ** 2 * y_m[p - i] * y_m[i] +
1 / (1 - ell.ex ** 2) ** 2 * z_m[p - i] * z_m[i])
for i in range(0, p + 1)])
# 35
h_ = lambda q: np.sum([comb(q, q-j) * (x_m[q-j+1] * x_m[j+1] +
1 / (1 - ell.ee ** 2) * y_m[q-j+1] * y_m[j+1] +
1 / (1 - ell.ex ** 2) * z_m[q-j+1] * z_m[j+1])
for j in range(0, q+1)])
# 31
hH_ = lambda t: 1/H_(0) * (h_(t) - np.sum([comb(t, l-1) * H_(t+1-l) * hH_t[l-1] for l in range(1, t+1)]))
# 28-30
x_ = lambda m: - np.sum([comb(m-2, k) * hH_t[m-2-k] * x_m[k] for k in range(0, m-2+1)])
y_ = lambda m: -1 / (1-ell.ee**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * y_m[k] for k in range(0, m-2+1)])
z_ = lambda m: -1 / (1-ell.ex**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * z_m[k] for k in range(0, m-2+1)])
hH_t = []
a_m = []
b_m = []
c_m = []
for m in range(0, maxM+1):
if m >= 2:
hH_t.append(hH_(m-2))
x_m.append(x_(m))
y_m.append(y_(m))
z_m.append(z_(m))
fact_m = math.factorial(m)
# 22-24
a_m.append(x_m[m] / fact_m)
b_m.append(y_m[m] / fact_m)
c_m.append(z_m[m] / fact_m)
# 19-21
x_s = 0
for a in reversed(a_m):
x_s = x_s * s + a
y_s = 0
for b in reversed(b_m):
y_s = y_s * s + b
z_s = 0
for c in reversed(c_m):
z_s = z_s * s + c
p1 = np.array([x_s, y_s, z_s])
p_s, q_s = pq_para(ell, p1)
# 57-59
dx_s = 0
for i, a in reversed(list(enumerate(a_m[1:], start=1))):
dx_s = dx_s * s + i * a
dy_s = 0
for i, b in reversed(list(enumerate(b_m[1:], start=1))):
dy_s = dy_s * s + i * b
dz_s = 0
for i, c in reversed(list(enumerate(c_m[1:], start=1))):
dz_s = dz_s * s + i * c
# 52-53
sigma = np.array([dx_s, dy_s, dz_s])
P = float(p_s @ sigma)
Q = float(q_s @ sigma)
# 51
alpha1 = arctan2(P, Q)
if alpha1 < 0:
alpha1 += 2 * np.pi
return p1, wrap_0_2pi(alpha1)
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> Tuple[NDArray, float]:
"""
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha0: Azimut im Startpunkt
:param s: Strecke
:param maxM: maximale Ordnung
:param maxPartCircum: maximale Aufteilung (1/x halber Ellipsoidumfang)
:return: Zielpunkt, Azimut im Zielpunkt
"""
if s > np.pi / maxPartCircum * ell.ax:
s /= 2
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
point_end, alpha_end = gha1_ana(ell, point_step, alpha_step, s, maxM, maxPartCircum)
else:
point_end, alpha_end = gha1_ana_step(ell, point, alpha0, s, maxM)
_, _, h = ell.cart2geod(point_end, "ligas3")
if h > 1e-5:
raise Exception("GHA1_ana: explodiert, Punkt liegt nicht mehr auf dem Ellipsoid")
return point_end, wrap_0_2pi(alpha_end)
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
p0 = ell.ell2cart(wu.deg2rad(10), wu.deg2rad(20))
p1, alpha1 = gha1_ana(ell, p0, wu.deg2rad(36), 200000, 70)
print(p1, wu.rad2gms(alpha1))