247 lines
8.7 KiB
Python
247 lines
8.7 KiB
Python
import numpy as np
|
|
import winkelumrechnungen as wu
|
|
import ausgaben as aus
|
|
import jacobian_Ligas
|
|
|
|
|
|
class EllipsoidBiaxial:
|
|
def __init__(self, a: float, b: float):
|
|
self.a = a
|
|
self.b = b
|
|
self.c = a ** 2 / b
|
|
self.e = np.sqrt(a ** 2 - b ** 2) / a
|
|
self.e_ = np.sqrt(a ** 2 - b ** 2) / b
|
|
|
|
@classmethod
|
|
def init_name(cls, name: str):
|
|
if name == "Bessel":
|
|
a = 6377397.15508
|
|
b = 6356078.96290
|
|
return cls(a, b)
|
|
elif name == "Hayford":
|
|
a = 6378388
|
|
f = 1/297
|
|
b = a - a * f
|
|
return cls(a, b)
|
|
elif name == "Krassowski":
|
|
a = 6378245
|
|
f = 298.3
|
|
b = a - a * f
|
|
return cls(a, b)
|
|
elif name == "WGS84":
|
|
a = 6378137
|
|
f = 298.257223563
|
|
b = a - a * f
|
|
return cls(a, b)
|
|
|
|
@classmethod
|
|
def init_af(cls, a: float, f: float):
|
|
b = a - a * f
|
|
return cls(a, b)
|
|
|
|
V = lambda self, phi: np.sqrt(1 + self.e_ ** 2 * np.cos(phi) ** 2)
|
|
M = lambda self, phi: self.c / self.V(phi) ** 3
|
|
N = lambda self, phi: self.c / self.V(phi)
|
|
|
|
beta2psi = lambda self, beta: np.arctan(self.a / self.b * np.tan(beta))
|
|
beta2phi = lambda self, beta: np.arctan(self.a ** 2 / self.b ** 2 * np.tan(beta))
|
|
|
|
psi2beta = lambda self, psi: np.arctan(self.b / self.a * np.tan(psi))
|
|
psi2phi = lambda self, psi: np.arctan(self.a / self.b * np.tan(psi))
|
|
|
|
phi2beta = lambda self, phi: np.arctan(self.b ** 2 / self.a ** 2 * np.tan(phi))
|
|
phi2psi = lambda self, phi: np.arctan(self.b / self.a * np.tan(phi))
|
|
|
|
phi2p = lambda self, phi: self.N(phi) * np.cos(phi)
|
|
|
|
def ellipsoidische_Koords (self, Eh, Ephi, x, y, z):
|
|
p = np.sqrt(x**2+y**2)
|
|
print(f"p = {round(p, 5)} m")
|
|
|
|
lamb = np.arctan(y/x)
|
|
|
|
phi_null = np.arctan(z/p*(1-self.e**2)**-1)
|
|
|
|
hi = [0]
|
|
phii = [phi_null]
|
|
|
|
i = 0
|
|
|
|
while True:
|
|
N = self.a*(1-self.e**2*np.sin(phii[i])**2)**(-1/2)
|
|
h = p/np.cos(phii[i])-N
|
|
phi = np.arctan(z/p*(1-(self.e**2*N)/(N+h))**(-1))
|
|
hi.append(h)
|
|
phii.append(phi)
|
|
dh = abs(hi[i]-h)
|
|
dphi = abs(phii[i]-phi)
|
|
i = i+1
|
|
if dh < Eh:
|
|
if dphi < Ephi:
|
|
break
|
|
for i in range(len(phii)):
|
|
print(f"P3[{i}]: {aus.gms('phi', phii[i], 5)}\th = {round(hi[i], 5)} m")
|
|
return phi, lamb, h
|
|
|
|
class EllipsoidTriaxial:
|
|
def __init__(self, ax: float, ay: float, b: float):
|
|
self.ax = ax
|
|
self.ay = ay
|
|
self.b = b
|
|
self.ex = np.sqrt((self.ax**2 - self.b**2) / self.ax**2)
|
|
self.ey = np.sqrt((self.ay**2 - self.b**2) / self.ay**2)
|
|
self.ee = np.sqrt((self.ax**2 - self.ay**2) / self.ax**2)
|
|
self.ex_ = np.sqrt((self.ax**2 - self.b**2) / self.b**2)
|
|
self.ey_ = np.sqrt((self.ay**2 - self.b**2) / self.b**2)
|
|
self.ee_ = np.sqrt((self.ax**2 - self.ay**2) / self.ay**2)
|
|
|
|
@classmethod
|
|
def init_name(cls, name: str):
|
|
if name == "BursaFialova1993":
|
|
ax = 6378171.36
|
|
ay = 6378101.61
|
|
b = 6356751.84
|
|
return cls(ax, ay, b)
|
|
elif name == "BursaSima1980":
|
|
ax = 6378172
|
|
ay = 6378102.7
|
|
b = 6356752.6
|
|
return cls(ax, ay, b)
|
|
elif name == "Eitschberger1978":
|
|
ax = 6378173.435
|
|
ay = 6378103.9
|
|
b = 6356754.4
|
|
return cls(ax, ay, b)
|
|
elif name == "Bursa1972":
|
|
ax = 6378173
|
|
ay = 6378104
|
|
b = 6356754
|
|
return cls(ax, ay, b)
|
|
elif name == "Bursa1970":
|
|
ax = 6378173
|
|
ay = 6378105
|
|
b = 6356754
|
|
return cls(ax, ay, b)
|
|
|
|
def ell2cart(self, beta, lamb, u):
|
|
"""
|
|
Panou 2014 12ff.
|
|
:param beta: ellipsoidische Breite
|
|
:param lamb: ellipsoidische Länge
|
|
:param u: Höhe
|
|
:return: kartesische Koordinaten
|
|
"""
|
|
beta = wu.deg2rad(beta)
|
|
lamb = wu.deg2rad(lamb)
|
|
|
|
# s1 = u**2 - self.b**2
|
|
# s2 = -self.ay**2 * np.sin(beta)**2 - self.b**2 * np.cos(beta)**2
|
|
# s3 = -self.ax**2 * np.sin(lamb)**2 - self.ay**2 * np.cos(lamb)**2
|
|
# print(s1, s2, s3)
|
|
|
|
x = np.sqrt(u**2 + self.ex**2) * np.sqrt(np.cos(beta)**2 + self.ee**2/self.ex**2 * np.sin(beta)**2) * np.cos(lamb)
|
|
y = np.sqrt(u**2 + self.ey**2) * np.cos(beta) * np.sin(lamb)
|
|
z = u * np.sin(beta) * np.sqrt(1 - self.ee**2/self.ex**2 * np.cos(lamb)**2)
|
|
|
|
return x, y, z
|
|
|
|
def cart2ell(self, x, y, z):
|
|
"""
|
|
Panou 2014 15ff.
|
|
:param x:
|
|
:param y:
|
|
:param z:
|
|
:return:
|
|
"""
|
|
c2 = self.ax**2 + self.ay**2 + self.b**2 - x**2 - y**2 - z**2
|
|
c1 = (self.ax**2 * self.ay**2 + self.ax**2 * self.b**2 + self.ay**2 * self.b**2 -
|
|
(self.ay**2+self.b**2) * x**2 - (self.ax**2 + self.b**2) * y**2 - (self.ax**2 + self.ay**2) * z**2)
|
|
c0 = (self.ax**2 * self.ay**2 * self.b**2 - self.ay**2 * self.b**2 * x**2 -
|
|
self.ax**2 * self.b**2 * y**2 - self.ax**2 * self.ay**2 * z**2)
|
|
|
|
p = (c2**2 - 3*c1) / 9
|
|
q = (9*c1*c2 - 27*c0 - 2*c2**3) / 54
|
|
omega = np.arccos(q / np.sqrt(p**3))
|
|
|
|
s1 = 2 * np.sqrt(p) * np.cos(omega/3) - c2/3
|
|
s2 = 2 * np.sqrt(p) * np.cos(omega/3 - 2*np.pi/3) - c2/3
|
|
s3 = 2 * np.sqrt(p) * np.cos(omega/3 - 4*np.pi/3) - c2/3
|
|
# print(s1, s2, s3)
|
|
|
|
beta = np.arctan(np.sqrt((-self.b**2 - s2) / (self.ay**2 + s2)))
|
|
lamb = np.arctan(np.sqrt((-self.ay**2 - s3) / (self.ax**2 + s3)))
|
|
u = np.sqrt(self.b**2 + s1)
|
|
|
|
return beta, lamb, u
|
|
|
|
def cart2geod(self, mode: str, xG, yG, zG, maxIter=30, maxLoa=0.005):
|
|
"""
|
|
Ligas 2012
|
|
:param mode:
|
|
:param xG:
|
|
:param yG:
|
|
:param zG:
|
|
:param maxIter:
|
|
:param maxLoa:
|
|
:return:
|
|
"""
|
|
rG = np.sqrt(xG**2 + yG**2 + zG**2)
|
|
pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64)
|
|
|
|
E = 1 / self.ax**2
|
|
F = 1 / self.ay**2
|
|
G = 1 / self.b**2
|
|
|
|
i = 0
|
|
loa = np.inf
|
|
|
|
while i < maxIter and loa > maxLoa:
|
|
if mode == "ligas1":
|
|
invJ, fxE = jacobian_Ligas.case1(E, F, G, np.array([xG, yG, zG]), pE)
|
|
elif mode == "ligas2":
|
|
invJ, fxE = jacobian_Ligas.case2(E, F, G, np.array([xG, yG, zG]), pE)
|
|
elif mode == "ligas3":
|
|
invJ, fxE = jacobian_Ligas.case3(E, F, G, np.array([xG, yG, zG]), pE)
|
|
pEi = pE.reshape(-1, 1) - invJ @ fxE.reshape(-1, 1)
|
|
pEi = pEi.reshape(1, -1).flatten()
|
|
loa = np.sqrt((pEi[0]-pE[0])**2 + (pEi[1]-pE[1])**2 + (pEi[2]-pE[2])**2)
|
|
pE = pEi
|
|
i += 1
|
|
|
|
phi = np.arctan((1-self.ee**2) / (1-self.ex**2) * pE[2] / np.sqrt((1-self.ee**2)**2 * pE[0]**2 + pE[1]**2))
|
|
lamb = np.arctan(1/(1-self.ee**2) * pE[1]/pE[0])
|
|
h = np.sign(zG-pE[2]) * np.sign(pE[2]) * np.sqrt((pE[0]-xG)**2 + (pE[1]-yG)**2 + (pE[2]-zG)**2)
|
|
|
|
return phi, lamb, h
|
|
|
|
def geod2cart(self, phi, lamb, h):
|
|
v = self.ax / np.sqrt(1 - self.ex**2*np.sin(phi)**2-self.ee**2*np.cos(phi)**2*np.sin(lamb)**2)
|
|
xG = (v + h) * np.cos(phi) * np.cos(lamb)
|
|
yG = (v * (1-self.ee**2) + h) * np.cos(phi) * np.sin(lamb)
|
|
zG = (v * (1-self.ex**2) + h) * np.sin(phi)
|
|
return xG, yG, zG
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ellips = EllipsoidTriaxial.init_name("Eitschberger1978")
|
|
# ellips = EllipsoidTriaxial.init_name("Bursa1972")
|
|
# carts = ellips.ell2cart(10, 30, 6378172)
|
|
# ells = ellips.cart2ell(carts[0], carts[1], carts[2])
|
|
|
|
# carts = ellips.ell2cart(10, 25, 6378293.435)
|
|
# print(aus.gms("beta", ells[0], 3), aus.gms("lambda", ells[1], 3), "u =", ells[2])
|
|
stellen = 20
|
|
geod1 = ellips.cart2geod("ligas1", 5712200, 2663400, 1106000)
|
|
print(aus.gms("phi", geod1[0], stellen), aus.gms("lambda", geod1[1], stellen), "h =", geod1[2])
|
|
geod2 = ellips.cart2geod("ligas2", 5712216.95426783, 2663487.024865021, 1106098.8415910944)
|
|
print(aus.gms("phi", geod2[0], stellen), aus.gms("lambda", geod2[1], stellen), "h =", geod2[2])
|
|
geod3 = ellips.cart2geod("ligas3", 5712216.95426783, 2663487.024865021, 1106098.8415910944)
|
|
print(aus.gms("phi", geod3[0], stellen), aus.gms("lambda", geod3[1], stellen), "h =", geod3[2])
|
|
cart1 = ellips.geod2cart(geod1[0], geod1[1], geod1[2])
|
|
print(aus.xyz(cart1[0], cart1[1], cart1[2], 10))
|
|
cart2 = ellips.geod2cart(geod2[0], geod2[1], geod2[2])
|
|
print(aus.xyz(cart2[0], cart2[1], cart2[2], 10))
|
|
cart3 = ellips.geod2cart(geod3[0], geod3[1], geod3[2])
|
|
print(aus.xyz(cart3[0], cart3[1], cart3[2], 10))
|
|
pass
|