import numpy as np import winkelumrechnungen as wu import ausgaben as aus import jacobian_Ligas class EllipsoidBiaxial: def __init__(self, a: float, b: float): self.a = a self.b = b self.c = a ** 2 / b self.e = np.sqrt(a ** 2 - b ** 2) / a self.e_ = np.sqrt(a ** 2 - b ** 2) / b @classmethod def init_name(cls, name: str): if name == "Bessel": a = 6377397.15508 b = 6356078.96290 return cls(a, b) elif name == "Hayford": a = 6378388 f = 1/297 b = a - a * f return cls(a, b) elif name == "Krassowski": a = 6378245 f = 298.3 b = a - a * f return cls(a, b) elif name == "WGS84": a = 6378137 f = 298.257223563 b = a - a * f return cls(a, b) @classmethod def init_af(cls, a: float, f: float): b = a - a * f return cls(a, b) V = lambda self, phi: np.sqrt(1 + self.e_ ** 2 * np.cos(phi) ** 2) M = lambda self, phi: self.c / self.V(phi) ** 3 N = lambda self, phi: self.c / self.V(phi) beta2psi = lambda self, beta: np.arctan(self.a / self.b * np.tan(beta)) beta2phi = lambda self, beta: np.arctan(self.a ** 2 / self.b ** 2 * np.tan(beta)) psi2beta = lambda self, psi: np.arctan(self.b / self.a * np.tan(psi)) psi2phi = lambda self, psi: np.arctan(self.a / self.b * np.tan(psi)) phi2beta = lambda self, phi: np.arctan(self.b ** 2 / self.a ** 2 * np.tan(phi)) phi2psi = lambda self, phi: np.arctan(self.b / self.a * np.tan(phi)) phi2p = lambda self, phi: self.N(phi) * np.cos(phi) def ellipsoidische_Koords (self, Eh, Ephi, x, y, z): p = np.sqrt(x**2+y**2) print(f"p = {round(p, 5)} m") lamb = np.arctan(y/x) phi_null = np.arctan(z/p*(1-self.e**2)**-1) hi = [0] phii = [phi_null] i = 0 while True: N = self.a*(1-self.e**2*np.sin(phii[i])**2)**(-1/2) h = p/np.cos(phii[i])-N phi = np.arctan(z/p*(1-(self.e**2*N)/(N+h))**(-1)) hi.append(h) phii.append(phi) dh = abs(hi[i]-h) dphi = abs(phii[i]-phi) i = i+1 if dh < Eh: if dphi < Ephi: break for i in range(len(phii)): print(f"P3[{i}]: {aus.gms('phi', phii[i], 5)}\th = {round(hi[i], 5)} m") return phi, lamb, h class EllipsoidTriaxial: def __init__(self, ax: float, ay: float, b: float): self.ax = ax self.ay = ay self.b = b self.ex = np.sqrt((self.ax**2 - self.b**2) / self.ax**2) self.ey = np.sqrt((self.ay**2 - self.b**2) / self.ay**2) self.ee = np.sqrt((self.ax**2 - self.ay**2) / self.ax**2) self.ex_ = np.sqrt((self.ax**2 - self.b**2) / self.b**2) self.ey_ = np.sqrt((self.ay**2 - self.b**2) / self.b**2) self.ee_ = np.sqrt((self.ax**2 - self.ay**2) / self.ay**2) @classmethod def init_name(cls, name: str): if name == "BursaFialova1993": ax = 6378171.36 ay = 6378101.61 b = 6356751.84 return cls(ax, ay, b) elif name == "BursaSima1980": ax = 6378172 ay = 6378102.7 b = 6356752.6 return cls(ax, ay, b) elif name == "Eitschberger1978": ax = 6378173.435 ay = 6378103.9 b = 6356754.4 return cls(ax, ay, b) elif name == "Bursa1972": ax = 6378173 ay = 6378104 b = 6356754 return cls(ax, ay, b) elif name == "Bursa1970": ax = 6378173 ay = 6378105 b = 6356754 return cls(ax, ay, b) def ell2cart(self, beta, lamb, u): """ Panou 2014 12ff. :param beta: ellipsoidische Breite :param lamb: ellipsoidische Länge :param u: Höhe :return: kartesische Koordinaten """ beta = wu.deg2rad(beta) lamb = wu.deg2rad(lamb) # s1 = u**2 - self.b**2 # s2 = -self.ay**2 * np.sin(beta)**2 - self.b**2 * np.cos(beta)**2 # s3 = -self.ax**2 * np.sin(lamb)**2 - self.ay**2 * np.cos(lamb)**2 # print(s1, s2, s3) x = np.sqrt(u**2 + self.ex**2) * np.sqrt(np.cos(beta)**2 + self.ee**2/self.ex**2 * np.sin(beta)**2) * np.cos(lamb) y = np.sqrt(u**2 + self.ey**2) * np.cos(beta) * np.sin(lamb) z = u * np.sin(beta) * np.sqrt(1 - self.ee**2/self.ex**2 * np.cos(lamb)**2) return x, y, z def cart2ell(self, x, y, z): """ Panou 2014 15ff. :param x: :param y: :param z: :return: """ c2 = self.ax**2 + self.ay**2 + self.b**2 - x**2 - y**2 - z**2 c1 = (self.ax**2 * self.ay**2 + self.ax**2 * self.b**2 + self.ay**2 * self.b**2 - (self.ay**2+self.b**2) * x**2 - (self.ax**2 + self.b**2) * y**2 - (self.ax**2 + self.ay**2) * z**2) c0 = (self.ax**2 * self.ay**2 * self.b**2 - self.ay**2 * self.b**2 * x**2 - self.ax**2 * self.b**2 * y**2 - self.ax**2 * self.ay**2 * z**2) p = (c2**2 - 3*c1) / 9 q = (9*c1*c2 - 27*c0 - 2*c2**3) / 54 omega = np.arccos(q / np.sqrt(p**3)) s1 = 2 * np.sqrt(p) * np.cos(omega/3) - c2/3 s2 = 2 * np.sqrt(p) * np.cos(omega/3 - 2*np.pi/3) - c2/3 s3 = 2 * np.sqrt(p) * np.cos(omega/3 - 4*np.pi/3) - c2/3 # print(s1, s2, s3) beta = np.arctan(np.sqrt((-self.b**2 - s2) / (self.ay**2 + s2))) lamb = np.arctan(np.sqrt((-self.ay**2 - s3) / (self.ax**2 + s3))) u = np.sqrt(self.b**2 + s1) return beta, lamb, u def cart2geod(self, mode: str, xG, yG, zG, maxIter=30, maxLoa=0.005): """ Ligas 2012 :param mode: :param xG: :param yG: :param zG: :param maxIter: :param maxLoa: :return: """ rG = np.sqrt(xG**2 + yG**2 + zG**2) pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64) E = 1 / self.ax**2 F = 1 / self.ay**2 G = 1 / self.b**2 i = 0 loa = np.inf while i < maxIter and loa > maxLoa: if mode == "ligas1": invJ, fxE = jacobian_Ligas.case1(E, F, G, np.array([xG, yG, zG]), pE) elif mode == "ligas2": invJ, fxE = jacobian_Ligas.case2(E, F, G, np.array([xG, yG, zG]), pE) elif mode == "ligas3": invJ, fxE = jacobian_Ligas.case3(E, F, G, np.array([xG, yG, zG]), pE) pEi = pE.reshape(-1, 1) - invJ @ fxE.reshape(-1, 1) pEi = pEi.reshape(1, -1).flatten() loa = np.sqrt((pEi[0]-pE[0])**2 + (pEi[1]-pE[1])**2 + (pEi[2]-pE[2])**2) pE = pEi i += 1 phi = np.arctan((1-self.ee**2) / (1-self.ex**2) * pE[2] / np.sqrt((1-self.ee**2)**2 * pE[0]**2 + pE[1]**2)) lamb = np.arctan(1/(1-self.ee**2) * pE[1]/pE[0]) h = np.sign(zG-pE[2]) * np.sign(pE[2]) * np.sqrt((pE[0]-xG)**2 + (pE[1]-yG)**2 + (pE[2]-zG)**2) return phi, lamb, h def geod2cart(self, phi, lamb, h): v = self.ax / np.sqrt(1 - self.ex**2*np.sin(phi)**2-self.ee**2*np.cos(phi)**2*np.sin(lamb)**2) xG = (v + h) * np.cos(phi) * np.cos(lamb) yG = (v * (1-self.ee**2) + h) * np.cos(phi) * np.sin(lamb) zG = (v * (1-self.ex**2) + h) * np.sin(phi) return xG, yG, zG if __name__ == "__main__": ellips = EllipsoidTriaxial.init_name("Eitschberger1978") # ellips = EllipsoidTriaxial.init_name("Bursa1972") # carts = ellips.ell2cart(10, 30, 6378172) # ells = ellips.cart2ell(carts[0], carts[1], carts[2]) # carts = ellips.ell2cart(10, 25, 6378293.435) # print(aus.gms("beta", ells[0], 3), aus.gms("lambda", ells[1], 3), "u =", ells[2]) stellen = 20 geod1 = ellips.cart2geod("ligas1", 5712200, 2663400, 1106000) print(aus.gms("phi", geod1[0], stellen), aus.gms("lambda", geod1[1], stellen), "h =", geod1[2]) geod2 = ellips.cart2geod("ligas2", 5712216.95426783, 2663487.024865021, 1106098.8415910944) print(aus.gms("phi", geod2[0], stellen), aus.gms("lambda", geod2[1], stellen), "h =", geod2[2]) geod3 = ellips.cart2geod("ligas3", 5712216.95426783, 2663487.024865021, 1106098.8415910944) print(aus.gms("phi", geod3[0], stellen), aus.gms("lambda", geod3[1], stellen), "h =", geod3[2]) cart1 = ellips.geod2cart(geod1[0], geod1[1], geod1[2]) print(aus.xyz(cart1[0], cart1[1], cart1[2], 10)) cart2 = ellips.geod2cart(geod2[0], geod2[1], geod2[2]) print(aus.xyz(cart2[0], cart2[1], cart2[2], 10)) cart3 = ellips.geod2cart(geod3[0], geod3[1], geod3[2]) print(aus.xyz(cart3[0], cart3[1], cart3[2], 10)) pass