361 lines
12 KiB
Python
361 lines
12 KiB
Python
import numpy as np
|
|
from numpy import sin, cos, sqrt, arctan2
|
|
import ellipsoide
|
|
import runge_kutta as rk
|
|
import winkelumrechnungen as wu
|
|
from scipy.special import factorial as fact
|
|
from math import comb
|
|
import GHA_triaxial.numeric_examples_panou as ne_panou
|
|
import GHA_triaxial.numeric_examples_karney as ne_karney
|
|
from ellipsoide import EllipsoidTriaxial
|
|
from typing import Callable, Tuple, List
|
|
from numpy.typing import NDArray
|
|
|
|
|
|
def pq_ell(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
|
|
"""
|
|
Berechnung von p und q in elliptischen Koordinaten
|
|
Panou, Korakitits 2019
|
|
:param ell: Ellipsoid
|
|
:param point: Punkt
|
|
:return: p und q
|
|
"""
|
|
x, y, z = point
|
|
n = ell.func_n(point)
|
|
|
|
beta, lamb = ell.cart2ell(point)
|
|
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
|
|
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
|
|
|
|
c1 = x ** 2 + y ** 2 + z ** 2 - (ell.ax ** 2 + ell.ay ** 2 + ell.b ** 2)
|
|
c0 = (ell.ax ** 2 * ell.ay ** 2 + ell.ax ** 2 * ell.b ** 2 + ell.ay ** 2 * ell.b ** 2 -
|
|
(ell.ay ** 2 + ell.b ** 2) * x ** 2 - (ell.ax ** 2 + ell.b ** 2) * y ** 2 - (
|
|
ell.ax ** 2 + ell.ay ** 2) * z ** 2)
|
|
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
|
|
|
|
F = ell.Ey ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(lamb) ** 2
|
|
p1 = -sqrt(L / (F * t2)) * ell.ax / ell.Ex * sqrt(B) * sin(lamb)
|
|
p2 = sqrt(L / (F * t2)) * ell.ay * cos(beta) * cos(lamb)
|
|
p3 = 1 / sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * sin(beta) * sin(2 * lamb)
|
|
p = np.array([p1, p2, p3])
|
|
q = np.array([n[1] * p[2] - n[2] * p[1],
|
|
n[2] * p[0] - n[0] * p[2],
|
|
n[0] * p[1] - n[1] * p[0]])
|
|
|
|
return p, q
|
|
|
|
def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
|
"""
|
|
Aufbau des DGL-Systems
|
|
:param ell: Ellipsoid
|
|
:return: DGL-System
|
|
"""
|
|
def ODE(s: float, v: NDArray) -> NDArray:
|
|
"""
|
|
DGL-System
|
|
:param s: unabhängige Variable
|
|
:param v: abhängige Variablen
|
|
:return: Ableitungen der abhängigen Variablen
|
|
"""
|
|
x, dxds, y, dyds, z, dzds = v
|
|
|
|
H = ell.func_H(np.array([x, y, z]))
|
|
h = dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
|
|
|
|
ddx = -(h/H)*x
|
|
ddy = -(h/H)*y/(1-ell.ee**2)
|
|
ddz = -(h/H)*z/(1-ell.ex**2)
|
|
|
|
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
|
|
return ODE
|
|
|
|
def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, num: int, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, List]:
|
|
"""
|
|
Panou, Korakitits 2019
|
|
:param ell:
|
|
:param point:
|
|
:param alpha0:
|
|
:param s:
|
|
:param num:
|
|
:param all_points:
|
|
:return:
|
|
"""
|
|
phi, lam, _ = ell.cart2geod(point, "ligas3")
|
|
p0 = ell.geod2cart(phi, lam, 0)
|
|
x0, y0, z0 = p0
|
|
|
|
p, q = pq_ell(ell, p0)
|
|
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
|
|
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
|
|
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
|
|
|
|
v_init = np.array([x0, dxds0, y0, dyds0, z0, dzds0])
|
|
|
|
ode = buildODE(ell)
|
|
|
|
_, werte = rk.rk4(ode, 0, v_init, s, num)
|
|
x1, dx1ds, y1, dy1ds, z1, dz1ds = werte[-1]
|
|
|
|
point1 = np.array([x1, y1, z1])
|
|
|
|
p1, q1 = pq_ell(ell, point1)
|
|
sigma = np.array([dx1ds, dy1ds, dz1ds])
|
|
P = float(p1 @ sigma)
|
|
Q = float(q1 @ sigma)
|
|
|
|
alpha1 = arctan2(P, Q)
|
|
|
|
if alpha1 < 0:
|
|
alpha1 += 2 * np.pi
|
|
|
|
if all_points:
|
|
return point1, alpha1, werte
|
|
else:
|
|
return point1, alpha1
|
|
|
|
# ---------------------------------------------------------------------------------------------------------------------
|
|
|
|
def pq_para(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
|
|
"""
|
|
Berechnung von p und q in parametrischen Koordinaten
|
|
Panou, Korakitits 2020
|
|
:param ell: Ellipsoid
|
|
:param point: Punkt
|
|
:return: p und q
|
|
"""
|
|
n = ell.func_n(point)
|
|
u, v = ell.cart2para(point)
|
|
|
|
# 41-47
|
|
G = sqrt(1 - ell.ex ** 2 * cos(u) ** 2 - ell.ee ** 2 * sin(u) ** 2 * sin(v) ** 2)
|
|
q = np.array([-1 / G * sin(u) * cos(v),
|
|
-1 / G * sqrt(1 - ell.ee ** 2) * sin(u) * sin(v),
|
|
1 / G * sqrt(1 - ell.ex ** 2) * cos(u)])
|
|
p = np.array([q[1] * n[2] - q[2] * n[1],
|
|
q[2] * n[0] - q[0] * n[2],
|
|
q[0] * n[1] - q[1] * n[0]])
|
|
|
|
t1 = np.dot(n, q)
|
|
t2 = np.dot(n, p)
|
|
t3 = np.dot(p, q)
|
|
if not (t1 < 1e-10 or t1 > 1-1e-10) and not (t2 < 1e-10 or t2 > 1-1e-10) and not (t3 < 1e-10 or t3 > 1-1e-10):
|
|
raise Exception("Fehler in den normierten Vektoren")
|
|
|
|
return p, q
|
|
|
|
def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int) -> Tuple[NDArray, float]:
|
|
"""
|
|
Panou, Korakitits 2020, 5ff.
|
|
:param ell:
|
|
:param point:
|
|
:param alpha0:
|
|
:param s:
|
|
:param maxM:
|
|
:return:
|
|
"""
|
|
x, y, z = point
|
|
|
|
# S. 6
|
|
x_m = [x]
|
|
y_m = [y]
|
|
z_m = [z]
|
|
|
|
p, q = pq_para(ell, point)
|
|
|
|
# 48-50
|
|
x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
|
|
y_m.append(p[1] * sin(alpha0) + q[1] * cos(alpha0))
|
|
z_m.append(p[2] * sin(alpha0) + q[2] * cos(alpha0))
|
|
|
|
# 34
|
|
H_ = lambda p: np.sum([comb(p, p - i) * (x_m[p - i] * x_m[i] +
|
|
1 / (1 - ell.ee ** 2) ** 2 * y_m[p - i] * y_m[i] +
|
|
1 / (1 - ell.ex ** 2) ** 2 * z_m[p - i] * z_m[i])
|
|
for i in range(0, p + 1)])
|
|
|
|
# 35
|
|
h_ = lambda q: np.sum([comb(q, q-j) * (x_m[q-j+1] * x_m[j+1] +
|
|
1 / (1 - ell.ee ** 2) * y_m[q-j+1] * y_m[j+1] +
|
|
1 / (1 - ell.ex ** 2) * z_m[q-j+1] * z_m[j+1])
|
|
for j in range(0, q+1)])
|
|
|
|
# 31
|
|
hH_ = lambda t: 1/H_(0) * (h_(t) - np.sum([comb(t, l-1) * H_(t+1-l) * hH_t[l-1] for l in range(1, t+1)]))
|
|
|
|
# 28-30
|
|
x_ = lambda m: - np.sum([comb(m-2, k) * hH_t[m-2-k] * x_m[k] for k in range(0, m-2+1)])
|
|
y_ = lambda m: -1 / (1-ell.ee**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * y_m[k] for k in range(0, m-2+1)])
|
|
z_ = lambda m: -1 / (1-ell.ex**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * z_m[k] for k in range(0, m-2+1)])
|
|
|
|
hH_t = []
|
|
a_m = []
|
|
b_m = []
|
|
c_m = []
|
|
for m in range(0, maxM+1):
|
|
if m >= 2:
|
|
hH_t.append(hH_(m-2))
|
|
x_m.append(x_(m))
|
|
y_m.append(y_(m))
|
|
z_m.append(z_(m))
|
|
fact_m = fact(m)
|
|
|
|
# 22-24
|
|
a_m.append(x_m[m] / fact_m)
|
|
b_m.append(y_m[m] / fact_m)
|
|
c_m.append(z_m[m] / fact_m)
|
|
|
|
# 19-21
|
|
x_s = 0
|
|
for a in reversed(a_m):
|
|
x_s = x_s * s + a
|
|
y_s = 0
|
|
for b in reversed(b_m):
|
|
y_s = y_s * s + b
|
|
z_s = 0
|
|
for c in reversed(c_m):
|
|
z_s = z_s * s + c
|
|
|
|
p1 = np.array([x_s, y_s, z_s])
|
|
p_s, q_s = pq_para(ell, p1)
|
|
|
|
# 57-59
|
|
dx_s = 0
|
|
for i, a in reversed(list(enumerate(a_m[1:], start=1))):
|
|
dx_s = dx_s * s + i * a
|
|
|
|
dy_s = 0
|
|
for i, b in reversed(list(enumerate(b_m[1:], start=1))):
|
|
dy_s = dy_s * s + i * b
|
|
|
|
dz_s = 0
|
|
for i, c in reversed(list(enumerate(c_m[1:], start=1))):
|
|
dz_s = dz_s * s + i * c
|
|
|
|
# 52-53
|
|
sigma = np.array([dx_s, dy_s, dz_s])
|
|
P = float(p_s @ sigma)
|
|
Q = float(q_s @ sigma)
|
|
|
|
# 51
|
|
alpha1 = arctan2(P, Q)
|
|
|
|
if alpha1 < 0:
|
|
alpha1 += 2 * np.pi
|
|
|
|
return p1, alpha1
|
|
|
|
|
|
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 16) -> Tuple[NDArray, float]:
|
|
if s > np.pi / maxPartCircum * ell.ax:
|
|
s /= 2
|
|
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
|
|
point_end, alpha_end = gha1_ana(ell, point_step, alpha_step, s, maxM, maxPartCircum)
|
|
else:
|
|
point_end, alpha_end = gha1_ana_step(ell, point, alpha0, s, maxM)
|
|
|
|
_, _, h = ell.cart2geod(point_end, "ligas3")
|
|
if h > 1e-5:
|
|
raise Exception("Analyitsche Methode ist explodiert, Punkt liegt nicht mehr auf dem Ellpsoid")
|
|
|
|
return point_end, alpha_end
|
|
|
|
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> Tuple[float, float, float]:
|
|
point = ell.para2cart(u, v)
|
|
beta, lamb = ell.para2ell(u, v)
|
|
|
|
p_para, q_para = pq_para(ell, point)
|
|
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
|
|
|
p_ell, q_ell = pq_ell(ell, point)
|
|
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
|
|
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
|
|
|
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
|
|
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
|
|
|
return beta, lamb, alpha_ell
|
|
|
|
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> Tuple[float, float, float]:
|
|
point = ell.ell2cart(beta, lamb)
|
|
u, v = ell.ell2para(beta, lamb)
|
|
|
|
p_ell, q_ell = pq_ell(ell, point)
|
|
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
|
|
|
p_para, q_para = pq_para(ell, point)
|
|
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
|
|
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
|
|
|
if np.linalg.norm(sigma_para - sigma_ell) > 1e-9:
|
|
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
|
|
|
return u, v, alpha_para
|
|
|
|
def func_sigma_ell(ell: EllipsoidTriaxial, point: NDArray, alpha: float) -> NDArray:
|
|
p, q = pq_ell(ell, point)
|
|
sigma = p * sin(alpha) + q * cos(alpha)
|
|
return sigma
|
|
|
|
def func_sigma_para(ell: EllipsoidTriaxial, point: NDArray, alpha: float) -> NDArray:
|
|
p, q = pq_para(ell, point)
|
|
sigma = p * sin(alpha) + q * cos(alpha)
|
|
return sigma
|
|
|
|
|
|
def louville_constant(ell: EllipsoidTriaxial, p0: NDArray, alpha: float) -> float:
|
|
beta, lamb = ell.cart2ell(p0)
|
|
l = ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2
|
|
return l
|
|
|
|
def louville_l2c(ell: EllipsoidTriaxial, l: float) -> float:
|
|
return sqrt((l + ell.Ee**2) / ell.Ex**2)
|
|
|
|
def louville_c2l(ell: EllipsoidTriaxial, c: float) -> float:
|
|
return ell.Ex**2 * c**2 - ell.Ee**2
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
|
|
# diffs_panou = []
|
|
# examples_panou = ne_panou.get_random_examples(5)
|
|
# for example in examples_panou:
|
|
# beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
|
|
# P0 = ell.ell2cart(beta0, lamb0)
|
|
#
|
|
# P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 100)
|
|
# beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
|
#
|
|
# _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
|
# P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 60)
|
|
# beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
|
# diffs_panou.append((abs(beta1-beta1_num), abs(lamb1-lamb1_num), abs(beta1-beta1_ana), abs(lamb1-lamb1_ana)))
|
|
# diffs_panou = np.array(diffs_panou)
|
|
# mask_360 = (diffs_panou > 359) & (diffs_panou < 361)
|
|
# diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
|
|
# print(diffs_panou)
|
|
|
|
ell: EllipsoidTriaxial = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
|
|
diffs_karney = []
|
|
# examples_karney = ne_karney.get_examples((30499, 30500, 40500))
|
|
examples_karney = ne_karney.get_random_examples(20)
|
|
for example in examples_karney:
|
|
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
|
|
P0 = ell.ell2cart(beta0, lamb0)
|
|
|
|
P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 10000)
|
|
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
|
|
|
try:
|
|
_, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
|
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 45, maxPartCircum=32)
|
|
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
|
except:
|
|
beta1_ana, lamb1_ana = np.inf, np.inf
|
|
|
|
diffs_karney.append((wu.rad2deg(abs(beta1-beta1_num)), wu.rad2deg(abs(lamb1-lamb1_num)), wu.rad2deg(abs(beta1-beta1_ana)), wu.rad2deg(abs(lamb1-lamb1_ana))))
|
|
diffs_karney = np.array(diffs_karney)
|
|
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
|
|
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
|
|
print(diffs_karney)
|