421 lines
15 KiB
Python
421 lines
15 KiB
Python
import numpy as np
|
||
from ellipsoide import EllipsoidTriaxial
|
||
import runge_kutta as rk
|
||
from typing import Tuple
|
||
from numpy.typing import NDArray
|
||
|
||
from utils_angle import arccot, cot, wrap_to_pi
|
||
|
||
|
||
def sph_azimuth(beta1, lam1, beta2, lam2):
|
||
# sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß)
|
||
dlam = wrap_to_pi(lam2 - lam1)
|
||
y = np.sin(dlam) * np.cos(beta2)
|
||
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
|
||
a = np.arctan2(y, x) # (-pi, pi]
|
||
if a < 0:
|
||
a += 2 * np.pi
|
||
return a
|
||
|
||
def BETA_LAMBDA(ell, beta, lamb):
|
||
|
||
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
|
||
LAMBDA = (ell.ax**2 * np.sin(lamb)**2 + ell.ay**2 * np.cos(lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)
|
||
|
||
# Erste Ableitungen von ΒETA und LAMBDA
|
||
BETA_ = (ell.ax**2 * ell.Ey**2 * np.sin(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2
|
||
LAMBDA_ = - (ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2
|
||
|
||
# Zweite Ableitungen von ΒETA und LAMBDA
|
||
BETA__ = ((2 * ell.ax**2 * ell.Ey**4 * np.sin(2*beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**3) + ((2 * ell.ax**2 * ell.Ey**2 * np.cos(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2)
|
||
LAMBDA__ = (((2 * ell.b**2 * ell.Ee**4 * np.sin(2*lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**3) -
|
||
((2 * ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2))
|
||
|
||
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||
F = 0
|
||
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||
|
||
# Erste Ableitungen von E und G
|
||
E_beta = BETA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - BETA * ell.Ey**2 * np.sin(2*beta)
|
||
E_lamb = BETA * ell.Ee**2 * np.sin(2*lamb)
|
||
|
||
G_beta = - LAMBDA * ell.Ey**2 * np.sin(2*beta)
|
||
G_lamb = LAMBDA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + LAMBDA * ell.Ee**2 * np.sin(2*lamb)
|
||
|
||
# Zweite Ableitungen von E und G
|
||
E_beta_beta = BETA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - 2 * BETA_ * ell.Ey**2 * np.sin(2*beta) - 2 * BETA * ell.Ey**2 * np.cos(2*beta)
|
||
E_beta_lamb = BETA_ * ell.Ee**2 * np.sin(2*lamb)
|
||
E_lamb_lamb = 2 * BETA * ell.Ee**2 * np.cos(2*lamb)
|
||
|
||
G_beta_beta = - 2 * LAMBDA * ell.Ey**2 * np.cos(2*beta)
|
||
G_beta_lamb = - LAMBDA_ * ell.Ey**2 * np.sin(2*beta)
|
||
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
|
||
|
||
return (BETA, LAMBDA, E, G,
|
||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||
E_beta, E_lamb, G_beta, G_lamb,
|
||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||
G_beta_beta, G_beta_lamb, G_lamb_lamb)
|
||
|
||
def p_coef(beta, lamb):
|
||
|
||
(BETA, LAMBDA, E, G,
|
||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||
E_beta, E_lamb, G_beta, G_lamb,
|
||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(ell, beta, lamb)
|
||
|
||
p_3 = - 0.5 * (E_lamb / G)
|
||
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
|
||
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
|
||
p_0 = 0.5 * (G_beta / E)
|
||
|
||
p_33 = - 0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G ** 2))
|
||
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G ** 2)) - 0.5 * ((E * E_beta_beta - E_beta * E_beta) / (E ** 2))
|
||
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2)) - ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2))
|
||
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E ** 2))
|
||
|
||
return (BETA, LAMBDA, E, G,
|
||
p_3, p_2, p_1, p_0,
|
||
p_33, p_22, p_11, p_00)
|
||
|
||
def buildODElamb():
|
||
def ODE(lamb, v):
|
||
beta, beta_p, X3, X4 = v
|
||
|
||
(BETA, LAMBDA, E, G,
|
||
p_3, p_2, p_1, p_0,
|
||
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
|
||
|
||
dbeta = beta_p
|
||
dbeta_p = p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
|
||
dX3 = X4
|
||
dX4 = (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
|
||
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
|
||
return np.array([dbeta, dbeta_p, dX3, dX4])
|
||
|
||
return ODE
|
||
|
||
def q_coef(beta, lamb):
|
||
|
||
(BETA, LAMBDA, E, G,
|
||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||
E_beta, E_lamb, G_beta, G_lamb,
|
||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(ell, beta, lamb)
|
||
|
||
q_3 = - 0.5 * (G_beta / E)
|
||
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
|
||
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
|
||
q_0 = 0.5 * (E_lamb / G)
|
||
|
||
q_33 = - 0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E ** 2))
|
||
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E ** 2)) - 0.5 * ((G * G_lamb_lamb - G_lamb * G_lamb) / (G ** 2))
|
||
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2)) - ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2))
|
||
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G ** 2))
|
||
|
||
return (BETA, LAMBDA, E, G,
|
||
q_3, q_2, q_1, q_0,
|
||
q_33, q_22, q_11, q_00)
|
||
|
||
def buildODEbeta():
|
||
def ODE(beta, v):
|
||
lamb, lamb_p, Y3, Y4 = v
|
||
|
||
(BETA, LAMBDA, E, G,
|
||
q_3, q_2, q_1, q_0,
|
||
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
|
||
|
||
dlamb = lamb_p
|
||
dlamb_p = q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
|
||
dY3 = Y4
|
||
dY4 = (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
|
||
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
|
||
|
||
return np.array([dlamb, dlamb_p, dY3, dY4])
|
||
|
||
return ODE
|
||
|
||
# Panou 2013
|
||
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float,
|
||
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False
|
||
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
|
||
"""
|
||
|
||
:param ell: triaxiales Ellipsoid
|
||
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
|
||
:param lamb_1: elllipsoidische Länge Punkt 1
|
||
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
|
||
:param lamb_2: elllipsoidische Länge Punkt 2
|
||
:param n: Anzahl Schritte
|
||
:param epsilon:
|
||
:param iter_max: Maximale Anzhal Iterationen
|
||
:param all_points:
|
||
:return:
|
||
"""
|
||
|
||
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
|
||
|
||
if lamb_1 != lamb_2:
|
||
N = n
|
||
dlamb = lamb_2 - lamb_1
|
||
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
||
|
||
if abs(dlamb) < 1e-15:
|
||
beta_0 = 0.0
|
||
else:
|
||
(_, _, E1, G1, *_) = BETA_LAMBDA(ell, beta_1, lamb_1)
|
||
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
||
|
||
ode_lamb = buildODElamb()
|
||
|
||
def solve_newton(beta_p0_init: float):
|
||
beta_p0 = float(beta_p0_init)
|
||
|
||
for _ in range(iter_max):
|
||
startwerte = np.array([beta_1, beta_p0, 0.0, 1.0], dtype=float)
|
||
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
|
||
|
||
beta_end, beta_p_end, X3_end, X4_end = states[-1]
|
||
delta = beta_end - beta_2
|
||
|
||
if abs(delta) < epsilon:
|
||
return True, beta_p0, lamb_list, states
|
||
|
||
d_beta_end_d_beta0 = X3_end
|
||
if abs(d_beta_end_d_beta0) < 1e-20:
|
||
return False, None, None, None
|
||
|
||
step = delta / d_beta_end_d_beta0
|
||
max_step = 0.5
|
||
if abs(step) > max_step:
|
||
step = np.sign(step) * max_step
|
||
|
||
beta_p0 = beta_p0 - step
|
||
|
||
return False, None, None, None
|
||
|
||
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
||
(_, _, E1, G1, *_) = BETA_LAMBDA(ell, beta_1, lamb_1)
|
||
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
||
|
||
guesses = [
|
||
beta_p0_sph,
|
||
0.5 * beta_p0_sph,
|
||
2.0 * beta_p0_sph,
|
||
-beta_p0_sph,
|
||
-0.5 * beta_p0_sph,
|
||
]
|
||
|
||
best = None
|
||
|
||
for g in guesses:
|
||
ok, beta_p0_sol, lamb_list_cand, states_cand = solve_newton(g)
|
||
if not ok:
|
||
continue
|
||
|
||
beta_arr_c = np.array([st[0] for st in states_cand], dtype=float)
|
||
beta_p_arr_c = np.array([st[1] for st in states_cand], dtype=float)
|
||
lamb_arr_c = np.array(lamb_list_cand, dtype=float)
|
||
|
||
integrand = np.zeros(N + 1)
|
||
for i in range(N + 1):
|
||
(_, _, Ei, Gi, *_) = BETA_LAMBDA(ell, beta_arr_c[i], lamb_arr_c[i])
|
||
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi)
|
||
|
||
h = abs(dlamb) / N
|
||
if N % 2 == 0:
|
||
S = integrand[0] + integrand[-1] \
|
||
+ 4.0 * np.sum(integrand[1:-1:2]) \
|
||
+ 2.0 * np.sum(integrand[2:-1:2])
|
||
s_cand = h / 3.0 * S
|
||
else:
|
||
s_cand = np.trapz(integrand, dx=h)
|
||
|
||
if (best is None) or (s_cand < best[0]):
|
||
best = (s_cand, beta_p0_sol, lamb_list_cand, states_cand)
|
||
|
||
if best is None:
|
||
raise RuntimeError("Keine Multi-Start-Variante konvergiert.")
|
||
|
||
s_best, beta_0, lamb_list, werte = best
|
||
|
||
beta_arr = np.zeros(N + 1)
|
||
# lamb_arr = np.zeros(N + 1)
|
||
lamb_arr = np.array(lamb_list)
|
||
beta_p_arr = np.zeros(N + 1)
|
||
|
||
for i, state in enumerate(werte):
|
||
# lamb_arr[i] = state[0]
|
||
# beta_arr[i] = state[1]
|
||
# beta_p_arr[i] = state[2]
|
||
beta_arr[i] = state[0]
|
||
beta_p_arr[i] = state[1]
|
||
|
||
(_, _, E1, G1,
|
||
*_) = BETA_LAMBDA(ell, beta_arr[0], lamb_arr[0])
|
||
(_, _, E2, G2,
|
||
*_) = BETA_LAMBDA(ell, beta_arr[-1], lamb_arr[-1])
|
||
|
||
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
|
||
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
|
||
|
||
integrand = np.zeros(N + 1)
|
||
for i in range(N + 1):
|
||
(_, _, Ei, Gi,
|
||
*_) = BETA_LAMBDA(ell, beta_arr[i], lamb_arr[i])
|
||
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
|
||
|
||
h = abs(dlamb) / N
|
||
if N % 2 == 0:
|
||
S = integrand[0] + integrand[-1] \
|
||
+ 4.0 * np.sum(integrand[1:-1:2]) \
|
||
+ 2.0 * np.sum(integrand[2:-1:2])
|
||
s = h / 3.0 * S
|
||
else:
|
||
s = np.trapz(integrand, dx=h)
|
||
|
||
beta0 = beta_arr[0]
|
||
lamb0 = lamb_arr[0]
|
||
c = np.sqrt(
|
||
(np.cos(beta0) ** 2 + (ell.Ee**2 / ell.Ex**2) * np.sin(beta0) ** 2) * np.sin(alpha_1) ** 2
|
||
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
|
||
)
|
||
|
||
if all_points:
|
||
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||
else:
|
||
return alpha_1, alpha_2, s
|
||
|
||
else: # lamb_1 == lamb_2
|
||
N = n
|
||
dbeta = beta_2 - beta_1
|
||
|
||
if abs(dbeta) < 1e-15:
|
||
if all_points:
|
||
return 0, 0, 0, np.array([]), np.array([])
|
||
else:
|
||
return 0, 0, 0
|
||
|
||
lamb_0 = 0
|
||
|
||
ode_beta = buildODEbeta()
|
||
|
||
for i in range(iter_max):
|
||
startwerte = [lamb_1, lamb_0, 0.0, 1.0]
|
||
|
||
beta_list, werte = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False)
|
||
|
||
beta_end = beta_list[-1]
|
||
lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
|
||
|
||
d_lamb_end_d_lambda0 = Y3_end
|
||
delta = lamb_end - lamb_2
|
||
|
||
if abs(delta) < epsilon:
|
||
break
|
||
|
||
if abs(d_lamb_end_d_lambda0) < 1e-20:
|
||
raise RuntimeError("Abbruch (Ableitung ~ 0).")
|
||
|
||
max_step = 1.0
|
||
step = delta / d_lamb_end_d_lambda0
|
||
if abs(step) > max_step:
|
||
step = np.sign(step) * max_step
|
||
|
||
lamb_0 = lamb_0 - step
|
||
|
||
beta_list, werte = rk.rk4(ode_beta, beta_1, np.array([lamb_1, lamb_0, 0.0, 1.0]), dbeta, N, False)
|
||
|
||
# beta_arr = np.zeros(N + 1)
|
||
beta_arr = np.array(beta_list)
|
||
lamb_arr = np.zeros(N + 1)
|
||
lambda_p_arr = np.zeros(N + 1)
|
||
|
||
for i, state in enumerate(werte):
|
||
# beta_arr[i] = state[0]
|
||
# lamb_arr[i] = state[1]
|
||
# lambda_p_arr[i] = state[2]
|
||
lamb_arr[i] = state[0]
|
||
lambda_p_arr[i] = state[1]
|
||
|
||
# Azimute
|
||
(BETA1, LAMBDA1, E1, G1,
|
||
*_) = BETA_LAMBDA(ell, beta_arr[0], lamb_arr[0])
|
||
(BETA2, LAMBDA2, E2, G2,
|
||
*_) = BETA_LAMBDA(ell, beta_arr[-1], lamb_arr[-1])
|
||
|
||
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0])
|
||
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1])
|
||
|
||
integrand = np.zeros(N + 1)
|
||
for i in range(N + 1):
|
||
(_, _, Ei, Gi,
|
||
*_) = BETA_LAMBDA(ell, beta_arr[i], lamb_arr[i])
|
||
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
|
||
|
||
h = abs(dbeta) / N
|
||
if N % 2 == 0:
|
||
S = integrand[0] + integrand[-1] \
|
||
+ 4.0 * np.sum(integrand[1:-1:2]) \
|
||
+ 2.0 * np.sum(integrand[2:-1:2])
|
||
s = h / 3.0 * S
|
||
else:
|
||
s = np.trapz(integrand, dx=h)
|
||
|
||
if all_points:
|
||
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||
else:
|
||
return alpha_1, alpha_2, s
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# ell = EllipsoidTriaxial.init_name("Fiction")
|
||
# # beta1 = np.deg2rad(75)
|
||
# # lamb1 = np.deg2rad(-90)
|
||
# # beta2 = np.deg2rad(75)
|
||
# # lamb2 = np.deg2rad(66)
|
||
# # a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2)
|
||
# # print(aus.gms("a1", a1, 4))
|
||
# # print(aus.gms("a2", a2, 4))
|
||
# # print(s)
|
||
# cart1 = ell.para2cart(0, 0)
|
||
# cart2 = ell.para2cart(0.4, 1.4)
|
||
# beta1, lamb1 = ell.cart2ell(cart1)
|
||
# beta2, lamb2 = ell.cart2ell(cart2)
|
||
#
|
||
# a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
|
||
# print(s)
|
||
|
||
# ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
||
# diffs_panou = []
|
||
# examples_panou = ne_panou.get_random_examples(4)
|
||
# for example in examples_panou:
|
||
# beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
|
||
# P0 = ell.ell2cart(beta0, lamb0)
|
||
# try:
|
||
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
||
# diffs_panou.append(
|
||
# (wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
|
||
# except:
|
||
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
||
# diffs_panou = np.array(diffs_panou)
|
||
# print(diffs_panou)
|
||
#
|
||
# ell = EllipsoidTriaxial.init_name("KarneyTest2024")
|
||
# diffs_karney = []
|
||
# # examples_karney = ne_karney.get_examples((30500, 40500))
|
||
# examples_karney = ne_karney.get_random_examples(2)
|
||
# for example in examples_karney:
|
||
# beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
|
||
#
|
||
# try:
|
||
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
||
# diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
|
||
# except:
|
||
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
||
# diffs_karney = np.array(diffs_karney)
|
||
# print(diffs_karney)
|
||
|
||
pass
|