Files
2026-02-11 12:08:46 +01:00

202 lines
6.8 KiB
Python

from __future__ import annotations
from typing import Tuple
import numpy as np
from numpy import arctan2, cos, sin, sqrt
from numpy.typing import NDArray
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def sigma2alpha(ell: EllipsoidTriaxial, sigma: NDArray, point: NDArray) -> float:
"""
Berechnung des Azimuts an einem Punkt anhand der Ableitung zu den kartesischen Koordinaten
:param ell: Ellipsoid
:param sigma: Ableitungsvektor ver kartesischen Koordinaten
:param point: Punkt
:return: Azimuts
"""
p, q = pq_ell(ell, point)
P = float(p @ sigma)
Q = float(q @ sigma)
alpha = arctan2(P, Q)
return wrap_0_2pi(alpha)
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> Tuple[float, float, float]:
"""
Umrechnung des Azimuts bezogen auf parametrische Koordinaten zu ellipsoidischen
:param ell: Ellipsoid
:param u: parametrische Breite
:param v: parametrische Länge
:param alpha_para: Azimut bezogen auf parametrische Koordinaten
:return: Azimut bezogen auf ellipsoidische Koordinaten
"""
point = ell.para2cart(u, v)
beta, lamb = ell.para2ell(u, v)
p_para, q_para = pq_para(ell, point)
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
p_ell, q_ell = pq_ell(ell, point)
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-7:
raise Exception("alpha_para2ell: Differenz in den Richtungsableitungen")
return beta, lamb, wrap_0_2pi(alpha_ell)
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> Tuple[float, float, float]:
"""
Umrechnung des Azimuts bezogen auf ellipsoidische Koordinaten zu parametrischen
:param ell: Ellipsoid
:param beta: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:param alpha_ell: Azimut bezogen auf ellipsoidische Koordinaten
:return: Azimut bezogen auf parametrische Koordinaten
"""
point = ell.ell2cart(beta, lamb)
u, v = ell.ell2para(beta, lamb)
p_ell, q_ell = pq_ell(ell, point)
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
p_para, q_para = pq_para(ell, point)
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-7:
raise Exception("alpha_ell2para: Differenz in den Richtungsableitungen")
return u, v, wrap_0_2pi(alpha_para)
def func_sigma_ell(ell: EllipsoidTriaxial, point: NDArray, alpha_ell: float) -> NDArray:
"""
Berechnung der Richtungsableitungen in kartesischen Koordinaten aus ellipsoidischem Azimut
Panou (2019) [6]
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha_ell: ellipsoidischer Azimut
:return: Richtungsableitungen in kartesischen Koordinaten
"""
p, q = pq_ell(ell, point)
sigma = p * sin(alpha_ell) + q * cos(alpha_ell)
return sigma
def func_sigma_para(ell: EllipsoidTriaxial, point: NDArray, alpha_para: float) -> NDArray:
"""
Berechnung der Richtungsableitungen in kartesischen Koordinaten aus parametischem Azimut
Panou, Korakitis (2019) [6]
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha_para: parametrischer Azimut
:return: Richtungsableitungen in kartesischen Koordinaten
"""
p, q = pq_para(ell, point)
sigma = p * sin(alpha_para) + q * cos(alpha_para)
return sigma
def louville_constant(ell: EllipsoidTriaxial, p0: NDArray, alpha_ell: float) -> float:
"""
Berechnung der Louville Konstanten
Panou, Korakitis (2019) [6]
:param ell: Ellipsoid
:param p0: Punkt in kartesischen Koordinaten
:param alpha_ell: ellipsoidischer Azimut
:return:
"""
beta, lamb = ell.cart2ell(p0)
l = ell.Ey**2 * cos(beta)**2 * sin(alpha_ell)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha_ell)**2
return l
def pq_ell(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
"""
Berechnung von p (Tangente entlang konstantem beta) und q (Tangente entlang konstantem lambda)
Panou, Korakitits (2019) [5f.]
:param ell: Ellipsoid
:param point: Punkt
:return: p und q
"""
n = ell.func_n(point)
beta, lamb = ell.cart2ell(point)
if abs(cos(beta)) < 1e-15 and abs(np.sin(lamb)) < 1e-15:
if beta > 0:
p = np.array([0, -1, 0])
else:
p = np.array([0, 1, 0])
else:
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
_, t2 = ell.func_t12(point)
F = ell.Ey ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(lamb) ** 2
p1 = -sqrt(L / (F * t2)) * ell.ax / ell.Ex * sqrt(B) * sin(lamb)
p2 = sqrt(L / (F * t2)) * ell.ay * cos(beta) * cos(lamb)
p3 = 1 / sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * sin(beta) * sin(2 * lamb)
p = np.array([p1, p2, p3])
p = p / np.linalg.norm(p)
q = np.array([n[1] * p[2] - n[2] * p[1],
n[2] * p[0] - n[0] * p[2],
n[0] * p[1] - n[1] * p[0]])
q = q / np.linalg.norm(q)
return p, q
def pq_para(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
"""
Berechnung von p (Tangente entlang konstantem u) und q (Tangente entlang konstantem v)
Panou, Korakitits (2020)
:param ell: Ellipsoid
:param point: Punkt
:return: p und q
"""
n = ell.func_n(point)
u, v = ell.cart2para(point)
# 41-47
G = sqrt(1 - ell.ex ** 2 * cos(u) ** 2 - ell.ee ** 2 * sin(u) ** 2 * sin(v) ** 2)
q = np.array([-1 / G * sin(u) * cos(v),
-1 / G * sqrt(1 - ell.ee ** 2) * sin(u) * sin(v),
1 / G * sqrt(1 - ell.ex ** 2) * cos(u)])
p = np.array([q[1] * n[2] - q[2] * n[1],
q[2] * n[0] - q[0] * n[2],
q[0] * n[1] - q[1] * n[0]])
p = p / np.linalg.norm(p)
q = q / np.linalg.norm(q)
return p, q
def jacobi_konstante(beta: float, omega: float, alpha: float, ell: EllipsoidTriaxial) -> float:
"""
Jacobi-Konstante nach Karney (2025), Gl. (14)
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param alpha: Azimut alpha
:param ell: Ellipsoid
:return: Jacobi-Konstante
"""
gamma_jacobi = float((ell.k ** 2) * (np.cos(beta) ** 2) * (np.sin(alpha) ** 2) - (ell.k_ ** 2) * (np.sin(omega) ** 2) * (np.cos(alpha) ** 2))
return gamma_jacobi
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
alpha_para = 0
u, v = ell.ell2para(np.pi/2, 0)
alpha_ell = alpha_para2ell(ell, u, v, alpha_para)
pass