Compare commits

...

52 Commits

Author SHA1 Message Date
d90ff5df69 Ellipsoid-Auswahl angepasst 2026-02-11 13:44:53 +01:00
59ad560f36 Abgabe fertig 2026-02-11 12:08:46 +01:00
5a293a823a revert 4f7b9aaef0
revert Delete Tests/gha_resultsKarney.pkl
2026-02-11 11:00:48 +00:00
36b62059fc revert 798cace25d
revert Delete Tests/gha_resultsPanou.pkl
2026-02-11 11:00:33 +00:00
57a086f6cb revert b8d07307aa
revert Delete Tests/gha_resultsRandom.pkl
2026-02-11 11:00:23 +00:00
b8d07307aa Delete Tests/gha_resultsRandom.pkl 2026-02-11 10:58:53 +00:00
798cace25d Delete Tests/gha_resultsPanou.pkl 2026-02-11 10:58:47 +00:00
4f7b9aaef0 Delete Tests/gha_resultsKarney.pkl 2026-02-11 10:58:42 +00:00
1fbfb555a4 wraps 2026-02-10 21:10:11 +01:00
Tammo.Weber
db05f7b6db Merge remote-tracking branch 'origin/main' 2026-02-10 12:36:04 +01:00
Tammo.Weber
73e3694a2a Ausgabe von alpha GHA1 2026-02-10 12:35:35 +01:00
ffc8d3fbce Fehlermeldung dashboard 2026-02-10 11:36:15 +01:00
Tammo.Weber
fd02694ae4 Platzsparen 2026-02-09 21:36:46 +01:00
e1ac0415e7 Merge remote-tracking branch 'origin/main' 2026-02-09 16:28:55 +01:00
e7641ba64f , 2026-02-09 16:28:15 +01:00
Tammo.Weber
fc9bc5defb Optimierung 2026-02-09 15:30:24 +01:00
Tammo.Weber
2864ce50ff s kleiner 0 2026-02-09 11:50:07 +01:00
Tammo.Weber
b44c25928e Merge remote-tracking branch 'origin/main' 2026-02-09 11:45:29 +01:00
Tammo.Weber
67248f9ca9 Anpassungen im Plot 2026-02-09 11:44:52 +01:00
Tammo.Weber
71c13c568a Fehlerkorrektur 2026-02-09 11:43:50 +01:00
19887e4ac5 Merge remote-tracking branch 'origin/main' 2026-02-09 11:29:38 +01:00
737e4730aa dashboard streckenelemente kleiner 0 zulässig 2026-02-09 11:29:15 +01:00
Tammo.Weber
020d282420 Merge remote-tracking branch 'origin/main' 2026-02-09 10:17:11 +01:00
Tammo.Weber
cefa98e3b7 Zweiter Parameter bei GHA1 ana 2026-02-09 10:16:57 +01:00
e8624159e2 karney gruppen 2026-02-08 19:31:52 +01:00
Tammo.Weber
cfab70ac55 Meldung wenn Berechung fehlschlägt 2026-02-08 17:51:55 +01:00
ee85e8b0e6 . 2026-02-08 16:28:59 +01:00
02ce0c0b4a nochmal 2026-02-07 22:03:07 +01:00
3fd967e843 Exceptions einheitlich 2026-02-07 19:35:15 +01:00
322ac94299 Exceptions einheitlich 2026-02-07 19:34:54 +01:00
49d03786dc GHA1 ana richtig aufgerufen im Dashboard und im Test 2026-02-07 18:07:25 +01:00
ef99294502 all points 2026-02-06 16:28:34 +01:00
b3a73270c2 Merge remote-tracking branch 'origin/main' 2026-02-06 16:25:40 +01:00
7a425eae77 Lets go 2026-02-06 16:25:27 +01:00
Tammo.Weber
bd411a8cd7 Merge remote-tracking branch 'origin/main' 2026-02-06 16:01:25 +01:00
Tammo.Weber
d6f9bc4302 Kleinere Anpassungen und Fehler abfangen 2026-02-06 16:01:15 +01:00
50326ba246 Nice 2026-02-06 15:49:36 +01:00
Tammo.Weber
0eeb35f173 GHA1 ES mit Linie, Legende 2026-02-06 15:06:48 +01:00
2954c0ee3a Punktliste 2 2026-02-06 14:43:43 +01:00
476b51071b Merge remote-tracking branch 'origin/main' 2026-02-06 14:30:26 +01:00
a836d2d534 Punktliste 2026-02-06 14:30:11 +01:00
Tammo.Weber
7a2a843285 kleinere Optimierungen 2026-02-06 14:10:48 +01:00
Tammo.Weber
9591045ee2 GHA1 ES implementiert 2026-02-06 13:06:32 +01:00
Tammo.Weber
81ca8a4770 GHA1 analytisch Ordnung variabel 2026-02-06 12:35:55 +01:00
6e63b3c965 Geile Änderungen 2026-02-06 11:32:48 +01:00
af8ac02e5b Merge remote-tracking branch 'origin/main' 2026-02-06 11:24:33 +01:00
e14869691b turbomäßige Anpassungen 2026-02-06 11:24:13 +01:00
Tammo.Weber
f68d11c031 Einmal ein Rechtschreibfehler und einmal in rad ausgegeben. 2026-02-06 11:15:42 +01:00
Tammo.Weber
5d4ed35f17 Anpassungen bei Zwischespeicherung etc. 2026-02-05 22:48:58 +01:00
Tammo.Weber
2ba4dad30d Merge remote-tracking branch 'origin/main'
# Conflicts:
#	GHA_triaxial/gha2_num.py
2026-02-05 21:44:28 +01:00
Tammo.Weber
dd5cf2d6a8 merge 2026-02-05 21:43:26 +01:00
Tammo.Weber
9f0554039c merge 2026-02-05 21:40:39 +01:00
38 changed files with 11488 additions and 2015 deletions

View File

@@ -1,7 +1,8 @@
import numpy as np
from numpy.typing import NDArray
def felli(x):
def felli(x: NDArray) -> float:
N = x.shape[0]
if N < 2:
raise ValueError("dimension must be greater than one")
@@ -11,8 +12,7 @@ def felli(x):
def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-14, stopeval=2000,
func_args=(), func_kwargs=None, seed=0,
bestEver = np.inf, noImproveGen = 0, absTolImprove = 1e-12, maxNoImproveGen = 100, sigmaImprove = 1e-12):
bestEver=np.inf, noImproveGen=0, absTolImprove=1e-12, maxNoImproveGen=100, sigmaImprove=1e-12):
if func_kwargs is None:
func_kwargs = {}
@@ -27,7 +27,7 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-14, stopeval=2000
N = xmean.shape[0]
if stopeval is None:
stopeval = int(1e3 * N**2)
stopeval = int(1e3 * N ** 2)
# Strategy parameter setting: Selection
lambda_ = 4 + int(np.floor(3 * np.log(N)))
@@ -37,14 +37,14 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-14, stopeval=2000
weights = np.log(mu + 0.5) - np.log(np.arange(1, int(mu) + 1))
mu = int(np.floor(mu))
weights = weights / np.sum(weights)
mueff = np.sum(weights)**2 / np.sum(weights**2)
mueff = np.sum(weights) ** 2 / np.sum(weights ** 2)
# Strategy parameter setting: Adaptation
cc = (4 + mueff / N) / (N + 4 + 2 * mueff / N)
cs = (mueff + 2) / (N + mueff + 5)
c1 = 2 / ((N + 1.3)**2 + mueff)
c1 = 2 / ((N + 1.3) ** 2 + mueff)
cmu = min(1 - c1,
2 * (mueff - 2 + 1 / mueff) / ((N + 2)**2 + 2 * mueff))
2 * (mueff - 2 + 1 / mueff) / ((N + 2) ** 2 + 2 * mueff))
damps = 1 + 2 * max(0, np.sqrt((mueff - 1) / (N + 1)) - 1) + cs
# Initialize dynamic (internal) strategy parameters and constants
@@ -54,7 +54,7 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-14, stopeval=2000
D = np.eye(N)
C = B @ D @ (B @ D).T
eigeneval = 0
chiN = np.sqrt(N) * (1 - 1/(4*N) + 1/(21 * N**2))
chiN = np.sqrt(N) * (1 - 1 / (4 * N) + 1 / (21 * N ** 2))
# Generation Loop
counteval = 0
@@ -64,7 +64,7 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-14, stopeval=2000
gen = 0
print(f' [CMA-ES] Start: lambda = {lambda_}, sigma ={round(sigma, 6)}, stopeval = {stopeval}')
# print(f' [CMA-ES] Start: lambda = {lambda_}, sigma ={round(sigma, 6)}, stopeval = {stopeval}')
while counteval < stopeval:
gen += 1
@@ -91,27 +91,24 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-14, stopeval=2000
bestEver = fbest
noImproveGen = 0
else:
noImproveGen = noImproveGen + 1
noImproveGen += 1
if gen == 1 or gen%50==0:
print(f' [CMA-ES] Gen {gen}, best = {round(fbest, 6)}, sigma = {sigma:.3g}')
if gen == 1 or gen % 50 == 0:
# print(f' [CMA-ES] Gen {gen}, best = {round(fbest, 6)}, sigma = {sigma:.3g}')
pass
if noImproveGen >= maxNoImproveGen:
print(f' [CMA-ES] Abbruch: keine Verbesserung > {round(absTolImprove, 3)} in {maxNoImproveGen} Generationen.')
# print(f' [CMA-ES] Abbruch: keine Verbesserung > {round(absTolImprove, 3)} in {maxNoImproveGen} Generationen.')
break
if sigma < sigmaImprove:
print(f' [CMA-ES] Abbruch: sigma zu klein {sigma:.3g}')
# print(f' [CMA-ES] Abbruch: sigma zu klein {sigma:.3g}')
break
# Cumulation: Update evolution paths
ps = (1 - cs) * ps + np.sqrt(cs * (2 - cs) * mueff) * (B @ zmean)
norm_ps = np.linalg.norm(ps)
hsig = norm_ps / np.sqrt(1 - (1 - cs)**(2 * counteval / lambda_)) / chiN < \
(1.4 + 2 / (N + 1))
hsig = norm_ps / np.sqrt(1 - (1 - cs) ** (2 * counteval / lambda_)) / chiN < (1.4 + 2 / (N + 1))
hsig = 1.0 if hsig else 0.0
pc = (1 - cc) * pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * (B @ D @ zmean)
@@ -140,17 +137,17 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-14, stopeval=2000
# Escape flat fitness, or better terminate?
if arfitness[0] == arfitness[int(np.ceil(0.7 * lambda_)) - 1]:
sigma = sigma * np.exp(0.2 + cs / damps)
print(' [CMA-ES] stopfitness erreicht.')
#print("warning: flat fitness, consider reformulating the objective")
# print(' [CMA-ES] stopfitness erreicht.')
# print("warning: flat fitness, consider reformulating the objective")
break
#print(f"{counteval}: {arfitness[0]}")
# print(f"{counteval}: {arfitness[0]}")
#Final Message
#print(f"{counteval}: {arfitness[0]}")
# Final Message
# print(f"{counteval}: {arfitness[0]}")
xmin = arx[:, arindex[0]]
bestValue = arfitness[0]
print(f' [CMA-ES] Ende: Gen = {gen}, best = {round(bestValue, 6)}')
# print(f' [CMA-ES] Ende: Gen = {gen}, best = {round(bestValue, 6)}')
return xmin

View File

@@ -1,26 +1,17 @@
from __future__ import annotations
from typing import List, Optional, Tuple
from typing import List, Tuple
import numpy as np
from ellipsoide import EllipsoidTriaxial
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.gha1_approx import gha1_approx
from Hansen_ES_CMA import escma
from utils_angle import wrap_to_pi
from numpy.typing import NDArray
def ellipsoid_formparameter(ell: EllipsoidTriaxial):
"""
Berechnet die Formparameter des dreiachsigen Ellipsoiden nach Karney (2025), Gl. (2)
:param ell: Ellipsoid
:return: e, k und k'
"""
nenner = np.sqrt(max(ell.ax * ell.ax - ell.b * ell.b, 0.0))
k = np.sqrt(max(ell.ay * ell.ay - ell.b * ell.b, 0.0)) / nenner
k_ = np.sqrt(max(ell.ax * ell.ax - ell.ay * ell.ay, 0.0)) / nenner
e = np.sqrt(max(ell.ax * ell.ax - ell.b * ell.b, 0.0)) / ell.ay
return e, k, k_
import winkelumrechnungen as wu
from ES.Hansen_ES_CMA import escma
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.gha1_approx import gha1_approx
from GHA_triaxial.utils import jacobi_konstante
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_mpi_pi
def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
@@ -37,7 +28,7 @@ def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
R (XYZ) = Punkt in XYZ
"""
# Berechnungshilfen
omega = wrap_to_pi(omega)
omega = wrap_mpi_pi(omega)
cb = np.cos(beta)
sb = np.sin(beta)
co = np.cos(omega)
@@ -58,45 +49,32 @@ def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
# --- Ableitungen - Karney Gl. (5a,b,c)---
# E = ∂R/∂ω
dX_dw = -ell.ax * so * Sx / D
dY_dw = ell.ay * cb * co
dY_dw = ell.ay * cb * co
dZ_dw = ell.b * sb * (so * co * (ell.ax*ell.ax - ell.ay*ell.ay) / Sz) / D
E = np.array([dX_dw, dY_dw, dZ_dw], dtype=float)
# N = ∂R/∂β
dX_db = ell.ax * co * (sb * cb * (ell.b*ell.b - ell.ay*ell.ay) / Sx) / D
dY_db = -ell.ay * sb * so
dZ_db = ell.b * cb * Sz / D
dZ_db = ell.b * cb * Sz / D
N = np.array([dX_db, dY_db, dZ_db], dtype=float)
# U = Grad(x^2/a^2 + y^2/b^2 + z^2/c^2 - 1)
U = np.array([X/(ell.ax*ell.ax), Y/(ell.ay*ell.ay), Z/(ell.b*ell.b)], dtype=float)
En = np.linalg.norm(E)
Nn = np.linalg.norm(N)
Un = np.linalg.norm(U)
En = float(np.linalg.norm(E))
Nn = float(np.linalg.norm(N))
Un = float(np.linalg.norm(U))
N_hat = N / Nn
E_hat = E / En
U_hat = U / Un
E_hat -= float(np.dot(E_hat, N_hat)) * N_hat
E_hat = E_hat / max(np.linalg.norm(E_hat), 1e-18)
return E_hat, N_hat, U_hat, En, Nn, R
def jacobi_konstante(beta: float, omega: float, alpha: float, ell: EllipsoidTriaxial) -> float:
"""
Jacobi-Konstante nach Karney (2025), Gl. (14)
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param alpha: Azimut alpha
:param ell: Ellipsoid
:return: Jacobi-Konstante
"""
e, k, k_ = ellipsoid_formparameter(ell)
gamma_jacobi = float((k ** 2) * (np.cos(beta) ** 2) * (np.sin(alpha) ** 2) - (k_ ** 2) * (np.sin(omega) ** 2) * (np.cos(alpha) ** 2))
return gamma_jacobi
def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_hat_curr: NDArray, U_hat_curr: NDArray) -> float:
"""
Berechnet das Azimut in der lokalen Tangentialebene am aktuellen Punkt P_curr, gemessen
@@ -110,11 +88,12 @@ def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_
"""
v = (P_curr - P_prev).astype(float)
vT = v - float(np.dot(v, U_hat_curr)) * U_hat_curr
vT_hat = vT / np.linalg.norm(vT)
vTn = max(np.linalg.norm(vT), 1e-18)
vT_hat = vT / vTn
sE = float(np.dot(vT_hat, E_hat_curr))
sN = float(np.dot(vT_hat, N_hat_curr))
return wrap_to_pi(float(np.arctan2(sE, sN)))
return wrap_mpi_pi(float(np.arctan2(sE, sN)))
def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float, gamma0: float,
@@ -136,10 +115,21 @@ def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float
# Startbasis
E_i, N_i, U_i, En_i, Nn_i, P_i = ENU_beta_omega(beta_i, omega_i, ell)
# Prediktor: dβ ≈ ds cosα / |N|, dω ≈ ds sinα / |E|
d_beta = ds * float(np.cos(alpha_i)) / Nn_i
d_omega = ds * float(np.sin(alpha_i)) / En_i
En_eff = max(En_i, 1e-9)
Nn_eff = max(Nn_i, 1e-9)
d_beta = ds * np.cos(alpha_i) / Nn_eff
d_omega = ds * np.sin(alpha_i) / En_eff
# optional: harte Schritt-Clamps (verhindert wrap-chaos)
d_beta = float(np.clip(d_beta, -0.2, 0.2)) # rad
d_omega = float(np.clip(d_omega, -0.2, 0.2)) # rad
# d_beta = ds * float(np.cos(alpha_i)) / Nn_i
# d_omega = ds * float(np.sin(alpha_i)) / En_i
beta_pred = beta_i + d_beta
omega_pred = wrap_to_pi(omega_i + d_omega)
omega_pred = wrap_mpi_pi(omega_i + d_omega)
xmean = np.array([beta_pred, omega_pred], dtype=float)
@@ -156,10 +146,10 @@ def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float
:return: Fitnesswert (f)
"""
beta = x[0]
omega = wrap_to_pi(x[1])
omega = wrap_mpi_pi(x[1])
P = ell.ell2cart(beta, omega) # in kartesischer Koordinaten
d = float(np.linalg.norm(P - P_i)) # Distanz zwischen
P = ell.ell2cart_karney(beta, omega) # in kartesischer Koordinaten
d = float(np.linalg.norm(P - P_i)) # Distanz zwischen
# maxSegLen einhalten
J_len = ((d - ds) / ds) ** 2
@@ -178,19 +168,19 @@ def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float
return f
xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0) # Aufruf CMA-ES
xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0) # Aufruf CMA-ES
beta_best = xb[0]
omega_best = wrap_to_pi(xb[1])
P_best = ell.ell2cart(beta_best, omega_best)
omega_best = wrap_mpi_pi(xb[1])
P_best = ell.ell2cart_karney(beta_best, omega_best)
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta_best, omega_best, ell)
alpha_end = azimuth_at_ESpoint(P_i, P_best, E_j, N_j, U_j)
return beta_best, omega_best, P_best, alpha_end
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000):
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000, all_points: bool = False)\
-> Tuple[NDArray, float, NDArray] | Tuple[NDArray, float]:
"""
Aufruf der 1. GHA mittels CMA-ES
:param ell: Ellipsoid
@@ -199,15 +189,16 @@ def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float,
:param alpha0: Azimut Startkoordinate
:param s_total: Gesamtstrecke
:param maxSegLen: maximale Segmentlänge
:return: Zielpunkt Pk und Azimut am Zielpunkt
:param all_points: Alle Punkte ausgeben?
:return: Zielpunkt Pk, Azimut am Zielpunkt und Punktliste
"""
beta = float(beta0)
omega = wrap_to_pi(float(omega0))
alpha = wrap_to_pi(float(alpha0))
omega = wrap_mpi_pi(float(omega0))
alpha = wrap_mpi_pi(float(alpha0))
gamma0 = jacobi_konstante(beta, omega, alpha, ell) # Referenz-γ0
gamma0 = jacobi_konstante(beta, omega, alpha, ell) # Referenz-γ0
points: List[NDArray] = [ell.ell2cart(beta, omega)]
P_all: List[NDArray] = [ell.ell2cart_karney(beta, omega)]
alpha_end: List[float] = [alpha]
s_acc = 0.0
@@ -216,35 +207,41 @@ def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float,
while s_acc < s_total - 1e-9:
step += 1
ds = min(maxSegLen, s_total - s_acc)
print(f"[GHA1-ES] Step {step}/{nsteps_est} ds={ds:.3f} m s_acc={s_acc:.3f} m beta={beta:.6f} omega={omega:.6f} alpha={alpha:.6f}")
# print(f"[GHA1-ES] Step {step}/{nsteps_est} ds={ds:.3f} m s_acc={s_acc:.3f} m beta={beta:.6f} omega={omega:.6f} alpha={alpha:.6f}")
beta, omega, P, alpha = optimize_next_point(beta_i=beta, omega_i=omega, alpha_i=alpha, ds=ds, gamma0=gamma0,
ell=ell, maxSegLen=maxSegLen)
s_acc += ds
points.append(P)
alpha_end.append(alpha)
P_all.append(P)
alpha_end.append(wrap_mpi_pi(alpha))
if step > nsteps_est + 50:
raise RuntimeError("Zu viele Schritte vermutlich Konvergenzproblem / falsche Azimut-Konvention.")
Pk = points[-1]
alpha1 = alpha_end[-1]
raise RuntimeError("GHA1_ES: Zu viele Schritte vermutlich Konvergenzproblem / falsche Azimut-Konvention.")
Pk = P_all[-1]
alpha1 = float(alpha_end[-1])
return Pk, alpha1
if all_points:
return Pk, alpha1, np.array(P_all)
else:
return Pk, alpha1
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
s = 188891.650873
alpha0 = 70/(180/np.pi)
P0 = ell.ell2cart(5/(180/np.pi), -90/(180/np.pi))
s = 180000
# alpha0 = 3
alpha0 = wu.gms2rad([5, 0, 0])
beta = 0
omega = 0
P0 = ell.ell2cart(beta, omega)
point1, alpha1 = gha1_ana(ell, P0, alpha0=alpha0, s=s, maxM=100, maxPartCircum=32)
point1app, alpha1app = gha1_approx(ell, P0, alpha0=alpha0, s=s, ds=1000)
res, alpha = gha1_ES(ell, beta0=5/(180/np.pi), omega0=-90/(180/np.pi), alpha0=alpha0, s_total=s, maxSegLen=1000)
res, alpha, points = gha1_ES(ell, beta0=beta, omega0=-omega, alpha0=alpha0, s_total=s, maxSegLen=1000)
print(point1)
print(res)
print(alpha)
print(points)
# print("alpha1 (am Endpunkt):", res.alpha1)
print(res - point1)
print(point1app - point1, "approx")

View File

@@ -1,14 +1,13 @@
from typing import Tuple
import numpy as np
from Hansen_ES_CMA import escma
from ellipsoide import EllipsoidTriaxial
from numpy.typing import NDArray
import plotly.graph_objects as go
from numpy.typing import NDArray
from ES.Hansen_ES_CMA import escma
from GHA_triaxial.gha2_num import gha2_num
from GHA_triaxial.utils import sigma2alpha
ell_ES: EllipsoidTriaxial = None
P_left: NDArray = None
P_right: NDArray = None
from ellipsoid_triaxial import EllipsoidTriaxial
def Sehne(P1: NDArray, P2: NDArray) -> float:
@@ -19,57 +18,57 @@ def Sehne(P1: NDArray, P2: NDArray) -> float:
:return: Bogenlänge s
"""
R12 = P2-P1
s = np.linalg.norm(R12)
s = float(np.linalg.norm(R12))
return s
def midpoint_fitness(x: tuple) -> float:
"""
Fitness für einen Mittelpunkt P_middle zwischen P_left und P_right auf dem triaxialen Ellipsoid:
- Minimiert d(P_left, P_middle) + d(P_middle, P_right)
- Erzwingt d(P_left,P_middle) d(P_middle,P_right) (echter Mittelpunkt im Sinne der Polygonkette)
:param x: enthält die Startwerte von u und v
:return: Fitnesswert (f)
"""
global ell_ES, P_left, P_right
u, v = x
P_middle = ell_ES.para2cart(u, v)
d1 = Sehne(P_left, P_middle)
d2 = Sehne(P_middle, P_right)
base = d1 + d2
# midpoint penalty (dimensionslos)
# relative Differenz, skaliert stabil über verschiedene Segmentlängen
denom = max(base, 1e-9)
pen_equal = ((d1 - d2) / denom) ** 2
w_equal = 10.0
f = base + denom * w_equal * pen_equal
return f
def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float = None, maxIter: int = 10000, all_points: bool = False):
def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float = None, all_points: bool = False) -> Tuple[float, float, float, NDArray] | Tuple[float, float, float]:
"""
Berechnen der 2. GHA mithilfe der CMA-ES.
Die CMA-ES optimiert sukzessive den Mittelpunkt zwischen Start- und Zielpunkt. Der Abbruch der Berechnung erfolgt, wenn alle Segmentlängen <= maxSegLen sind.
Die Distanzen zwischen den einzelnen Punkten werden als direkte 3D-Distanzen berechnet und aufaddiert.
:param ell: Parameter des triaxialen Ellipsoids
:param ell: Ellipsoid
:param P0: Startpunkt
:param Pk: Zielpunkt
:param maxSegLen: maximale Segmentlänge
:param maxIter: maximale Durchläufe der Mittelpunktsgenerierung
:param all_points: Ergebnisliste mit allen Punkte, die wahlweise mit ausgegeben werden kann
:return: Richtungswinkel des Start- und Zielpunktes und Gesamtlänge
:param all_points: Ergebnisliste mit allen Punkte, die wahlweise mit ausgegeben wird
:return: Richtungswinkel in RAD des Start- und Zielpunktes und Gesamtlänge
"""
global ell_ES
ell_ES = ell
P_left: NDArray = None
P_right: NDArray = None
def midpoint_fitness(x: tuple) -> float:
"""
Fitness für einen Mittelpunkt P_middle zwischen P_left und P_right auf dem triaxialen Ellipsoid:
- Minimiert d(P_left, P_middle) + d(P_middle, P_right)
- Erzwingt d(P_left,P_middle) d(P_middle,P_right) (echter Mittelpunkt im Sinne der Polygonkette)
:param x: enthält die Startwerte von u und v
:return: Fitnesswert (f)
"""
nonlocal P_left, P_right, ell
u, v = x
P_middle = ell.para2cart(u, v)
d1 = Sehne(P_left, P_middle)
d2 = Sehne(P_middle, P_right)
base = d1 + d2
# midpoint penalty (dimensionslos)
# relative Differenz, skaliert über verschiedene Segmentlängen
denom = max(base, 1e-9)
pen_equal = ((d1 - d2) / denom) ** 2
w_equal = 10.0
f = base + denom * w_equal * pen_equal
return f
R0 = (ell.ax + ell.ay + ell.b) / 3
if maxSegLen is None:
maxSegLen = R0 * 1 / (637.4*2) # 10km Segment bei mittleren Erdradius
maxSegLen = R0 * 1 / (637.4*2) # 10km Segment bei mittleren Erdradius
sigma_uv_nom = 1e-3 * (maxSegLen / R0) # ~1e-5
points: list[NDArray] = [P0, Pk]
startIter = 0
level = 0
@@ -82,48 +81,47 @@ def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float =
level += 1
new_points: list[NDArray] = [points[0]]
for i in range(len(points) - 1):
A = points[i]
B = points[i+1]
dAB = Sehne(A, B)
print(dAB)
# print(dAB)
if dAB > maxSegLen:
global P_left, P_right
# global P_left, P_right
P_left, P_right = A, B
Au, Av = ell_ES.cart2para(A)
Bu, Bv = ell_ES.cart2para(B)
Au, Av = ell.cart2para(A)
Bu, Bv = ell.cart2para(B)
u0 = (Au + Bu) / 2
v0 = Av + 0.5 * np.arctan2(np.sin(Bv - Av), np.cos(Bv - Av))
xmean = [u0, v0]
sigmaStep = sigma_uv_nom * (Sehne(A, B) / maxSegLen)
u, v = escma(midpoint_fitness, N=2, xmean=xmean, sigma=sigmaStep)
u, v = escma(midpoint_fitness, N=2, xmean=xmean, sigma=sigmaStep) # Aufruf CMA-ES
P_next = ell.para2cart(u, v)
new_points.append(P_next)
startIter += 1
maxIter = 10000
if startIter > maxIter:
raise RuntimeError("Abbruch: maximale Iterationen überschritten.")
raise RuntimeError("GHA2_ES: maximale Iterationen überschritten")
new_points.append(B)
points = new_points
print(f"[Level {level}] Punkte: {len(points)} | max Segment: {max_len:.3f} m")
# print(f"[Level {level}] Punkte: {len(points)} | max Segment: {max_len:.3f} m")
P_all = np.vstack(points)
totalLen = float(np.sum(np.linalg.norm(P_all[1:] - P_all[:-1], axis=1)))
if len(points) >= 3:
p0i = ell_ES.point_onto_ellipsoid(P0 + 10.0 * (points[1] - P0) / np.linalg.norm(points[1] - P0))
p0i = ell.point_onto_ellipsoid(P0 + 10.0 * (points[1] - P0) / np.linalg.norm(points[1] - P0))
sigma0 = (p0i - P0) / np.linalg.norm(p0i - P0)
alpha0 = sigma2alpha(ell_ES, sigma0, P0)
alpha0 = sigma2alpha(ell, sigma0, P0)
p1i = ell_ES.point_onto_ellipsoid(Pk - 10.0 * (Pk - points[-2]) / np.linalg.norm(Pk - points[-2]))
p1i = ell.point_onto_ellipsoid(Pk - 10.0 * (Pk - points[-2]) / np.linalg.norm(Pk - points[-2]))
sigma1 = (Pk - p1i) / np.linalg.norm(Pk - p1i)
alpha1 = sigma2alpha(ell_ES, sigma1, Pk)
alpha1 = sigma2alpha(ell, sigma1, Pk)
else:
alpha0 = None
alpha1 = None
@@ -166,7 +164,7 @@ if __name__ == '__main__':
beta0, lamb0 = (0.2, 0.1)
P0 = ell.ell2cart(beta0, lamb0)
beta1, lamb1 = (0.7, 0.3)
beta1, lamb1 = (0.3, 0.2)
P1 = ell.ell2cart(beta1, lamb1)
alpha0, alpha1, s_num, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=1000, all_points=True)
@@ -175,8 +173,10 @@ if __name__ == '__main__':
points_num.append(ell.ell2cart(beta, lamb))
points_num = np.array(points_num)
alpha0, alpha1, s, points = gha2_ES(ell, P0, P1, all_points=True)
alpha0, alpha1, s, points = gha2_ES(ell, P0, P1)
print(s_num)
print(s)
print(alpha0)
print(alpha1)
print(s - s_num)
show_points(points, points_num, P0, P1)

View File

@@ -1,13 +1,15 @@
import math
from math import comb
from typing import Tuple
import numpy as np
from numpy import sin, cos, arctan2
from numpy._typing import NDArray
from scipy.special import factorial as fact
from numpy import arctan2, cos, sin
from numpy.typing import NDArray
from ellipsoide import EllipsoidTriaxial
import winkelumrechnungen as wu
from GHA_triaxial.utils import pq_para
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int) -> Tuple[NDArray, float]:
@@ -64,7 +66,7 @@ def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: floa
x_m.append(x_(m))
y_m.append(y_(m))
z_m.append(z_(m))
fact_m = fact(m)
fact_m = math.factorial(m)
# 22-24
a_m.append(x_m[m] / fact_m)
@@ -109,10 +111,10 @@ def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: floa
if alpha1 < 0:
alpha1 += 2 * np.pi
return p1, alpha1
return p1, wrap_0_2pi(alpha1)
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 16) -> Tuple[NDArray, float]:
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> Tuple[NDArray, float]:
"""
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
@@ -131,6 +133,13 @@ def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, ma
_, _, h = ell.cart2geod(point_end, "ligas3")
if h > 1e-5:
raise Exception("Analytische Methode ist explodiert, Punkt liegt nicht mehr auf dem Ellipsoid")
raise Exception("GHA1_ana: explodiert, Punkt liegt nicht mehr auf dem Ellipsoid")
return point_end, alpha_end
return point_end, wrap_0_2pi(alpha_end)
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
p0 = ell.ell2cart(wu.deg2rad(10), wu.deg2rad(20))
p1, alpha1 = gha1_ana(ell, p0, wu.deg2rad(36), 200000, 70)
print(p1, wu.rad2gms(alpha1))

View File

@@ -1,11 +1,18 @@
import numpy as np
from ellipsoide import EllipsoidTriaxial
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.utils import func_sigma_ell, louville_constant
import plotly.graph_objects as go
import winkelumrechnungen as wu
from typing import Tuple
def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray]:
import numpy as np
import plotly.graph_objects as go
from numpy import cos, sin
from numpy.typing import NDArray
import winkelumrechnungen as wu
from GHA_triaxial.utils import louville_constant, pq_ell
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) \
-> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray, NDArray]:
"""
Berechung einer Näherungslösung der ersten Hauptaufgabe
:param ell: Ellipsoid
@@ -20,6 +27,8 @@ def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float,
points = [p0]
alphas = [alpha0]
s_curr = 0.0
last_sigma = None
last_p = None
while s_curr < s:
ds_step = min(ds, s - s_curr)
@@ -29,22 +38,33 @@ def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float,
p1 = points[-1]
alpha1 = alphas[-1]
sigma = func_sigma_ell(ell, p1, alpha1)
p, q = pq_ell(ell, p1)
if last_p is not None and np.dot(p, last_p) < 0:
p = -p
q = -q
last_p = p
sigma = p * sin(alpha1) + q * cos(alpha1)
if last_sigma is not None and np.dot(sigma, last_sigma) < 0:
sigma = -sigma
alpha1 += np.pi
alpha1 = wrap_0_2pi(alpha1)
p2 = p1 + ds_step * sigma
p2 = ell.point_onto_ellipsoid(p2)
dalpha = 1e-6
dalpha = 1e-9
l2 = louville_constant(ell, p2, alpha1)
dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha
alpha2 = alpha1 + (l0 - l2) / dl_dalpha
if abs(dl_dalpha) < 1e-20:
alpha2 = alpha1 + 0
else:
alpha2 = alpha1 + (l0 - l2) / dl_dalpha
points.append(p2)
alphas.append(alpha2)
alphas.append(wrap_0_2pi(alpha2))
ds_step = np.linalg.norm(p2 - p1)
s_curr += ds_step
if s_curr > 10000000:
pass
last_sigma = sigma
pass
if all_points:
return points[-1], alphas[-1], np.array(points), np.array(alphas)
@@ -78,11 +98,11 @@ def show_points(points: NDArray, p0: NDArray, p1: NDArray):
if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
P0 = ell.para2cart(0.2, 0.3)
alpha0 = wu.deg2rad(35)
s = 13000000
P1_app, alpha1_app, points, alphas = gha1_approx(ell, P0, alpha0, s, ds=10000, all_points=True)
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=60, maxPartCircum=16)
show_points(points, P0, P1_ana)
print(np.linalg.norm(P1_app - P1_ana))
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
P0 = ell.ell2cart(wu.deg2rad(15), wu.deg2rad(15))
alpha0 = wu.deg2rad(270)
s = 1
P1_app, alpha1_app, points, alphas = gha1_approx(ell, P0, alpha0, s, ds=0.1, all_points=True)
# P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=40, maxPartCircum=32)
# print(np.linalg.norm(P1_app - P1_ana))
# show_points(points, P0, P0)

View File

@@ -1,15 +1,16 @@
from typing import Callable, List, Tuple
import numpy as np
from numpy import sin, cos, arctan2
import ellipsoide
import runge_kutta as rk
import winkelumrechnungen as wu
import GHA_triaxial.numeric_examples_karney as ne_karney
from GHA_triaxial.gha1_ana import gha1_ana
from ellipsoide import EllipsoidTriaxial
from typing import Callable, Tuple, List
from numpy import arctan2, cos, sin
from numpy.typing import NDArray
import GHA_triaxial.numeric_examples_karney as ne_karney
import runge_kutta as rk
import winkelumrechnungen as wu
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.utils import alpha_ell2para, pq_ell
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def buildODE(ell: EllipsoidTriaxial) -> Callable:
@@ -75,8 +76,11 @@ def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, nu
alpha1 = arctan2(P, Q)
if alpha1 < 0:
alpha1 += 2 * np.pi
alpha1 = wrap_0_2pi(alpha1)
_, _, h = ell.cart2geod(point1, "ligas3")
if h > 1e-5:
raise Exception("GHA1_num: explodiert, Punkt liegt nicht mehr auf dem Ellipsoid")
if all_points:
return point1, alpha1, werte
@@ -104,7 +108,7 @@ if __name__ == "__main__":
# diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
# print(diffs_panou)
ell: EllipsoidTriaxial = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
ell: EllipsoidTriaxial = EllipsoidTriaxial.init_name("KarneyTest2024")
diffs_karney = []
# examples_karney = ne_karney.get_examples((30499, 30500, 40500))
examples_karney = ne_karney.get_random_examples(20)

View File

@@ -1,12 +1,13 @@
import numpy as np
from ellipsoide import EllipsoidTriaxial
from GHA_triaxial.gha2_num import gha2_num
import plotly.graph_objects as go
import winkelumrechnungen as wu
from numpy.typing import NDArray
from typing import Tuple
import numpy as np
import plotly.graph_objects as go
from numpy.typing import NDArray
import winkelumrechnungen as wu
from GHA_triaxial.gha2_num import gha2_num
from GHA_triaxial.utils import sigma2alpha
from ellipsoid_triaxial import EllipsoidTriaxial
def gha2_approx(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]:

View File

@@ -1,433 +1,643 @@
import numpy as np
from ellipsoide import EllipsoidTriaxial
import runge_kutta as rk
from typing import Tuple
import numpy as np
from numpy.typing import NDArray
from utils_angle import arccot, cot, wrap_to_pi
import GHA_triaxial.numeric_examples_karney as ne_karney
import GHA_triaxial.numeric_examples_panou as ne_panou
import ausgaben as aus
import winkelumrechnungen as wu
from ellipsoid_triaxial import EllipsoidTriaxial
from runge_kutta import rk4, rk4_end, rk4_integral
from utils_angle import cot, wrap_0_2pi, wrap_mpi_pi
def norm_a(a: float) -> float:
a = float(a) % (2 * np.pi)
return a
def azimut(E: float, G: float, dbeta_du: float, dlamb_du: float) -> float:
north = np.sqrt(E) * dbeta_du
east = np.sqrt(G) * dlamb_du
return norm_a(np.arctan2(east, north))
def sph_azimuth(beta1, lam1, beta2, lam2):
# sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß)
dlam = wrap_to_pi(lam2 - lam1)
dlam = wrap_mpi_pi(lam2 - lam1)
y = np.sin(dlam) * np.cos(beta2)
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
a = np.arctan2(y, x) # (-pi, pi]
a = np.arctan2(y, x)
if a < 0:
a += 2 * np.pi
return a
# Panou 2013
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float,
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
def gha2_num(
ell: EllipsoidTriaxial,
beta_0: float,
lamb_0: float,
beta_1: float,
lamb_1: float,
n: int = 16000,
epsilon: float = 10**-12,
iter_max: int = 30,
all_points: bool = False,
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
"""
:param ell: triaxiales Ellipsoid
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
:param lamb_1: elllipsoidische Länge Punkt 1
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
:param lamb_2: elllipsoidische Länge Punkt 2
:param ell: Ellipsoid
:param beta_0: Beta Punkt 0
:param lamb_0: Lambda Punkt 0
:param beta_1: Beta Punkt 1
:param lamb_1: Lambda Punkt 1
:param n: Anzahl Schritte
:param epsilon:
:param iter_max: Maximale Anzhal Iterationen
:param all_points:
:return:
:param epsilon: Genauigkeit
:param iter_max: Maximale Iterationen
:param all_points: Ausgabe aller Punkte
:return: Azimut Startpunkt, Azumit Zielpunkt, Strecke
"""
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
ax2 = float(ell.ax) * float(ell.ax)
ay2 = float(ell.ay) * float(ell.ay)
b2 = float(ell.b) * float(ell.b)
Ex2 = float(ell.Ex) * float(ell.Ex)
Ey2 = float(ell.Ey) * float(ell.Ey)
Ee2 = float(ell.Ee) * float(ell.Ee)
Ey4 = Ey2 * Ey2
Ee4 = Ee2 * Ee2
two_pi = 2.0 * np.pi
# Berechnung Koeffizienten, Gaußschen Fundamentalgrößen 1. Ordnung sowie deren Ableitungen
def BETA_LAMBDA(beta, lamb):
sb = np.sin(beta)
cb = np.cos(beta)
sl = np.sin(lamb)
cl = np.cos(lamb)
BETA = (ell.ay ** 2 * np.sin(beta) ** 2 + ell.b ** 2 * np.cos(beta) ** 2) / (
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2)
LAMBDA = (ell.ax ** 2 * np.sin(lamb) ** 2 + ell.ay ** 2 * np.cos(lamb) ** 2) / (
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2)
sb2 = sb * sb
cb2 = cb * cb
sl2 = sl * sl
cl2 = cl * cl
# Erste Ableitungen von ΒETA und LAMBDA
BETA_ = (ell.ax ** 2 * ell.Ey ** 2 * np.sin(2 * beta)) / (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2
LAMBDA_ = - (ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2
s2b = 2.0 * sb * cb
c2b = cb2 - sb2
s2l = 2.0 * sl * cl
c2l = cl2 - sl2
# Zweite Ableitungen von ΒETA und LAMBDA
BETA__ = ((2 * ell.ax ** 2 * ell.Ey ** 4 * np.sin(2 * beta) ** 2) / (
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 3) + (
(2 * ell.ax ** 2 * ell.Ey ** 2 * np.cos(2 * beta)) / (
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2)
LAMBDA__ = (((2 * ell.b ** 2 * ell.Ee ** 4 * np.sin(2 * lamb) ** 2) / (
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 3) -
((2 * ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2))
denB = Ex2 - Ey2 * sb2
denL = Ex2 - Ee2 * cl2
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
F = 0
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
BETA = (ay2 * sb2 + b2 * cb2) / denB
LAMBDA = (ax2 * sl2 + ay2 * cl2) / denL
# Erste Ableitungen von E und G
E_beta = BETA_ * (
ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) - BETA * ell.Ey ** 2 * np.sin(
2 * beta)
E_lamb = BETA * ell.Ee ** 2 * np.sin(2 * lamb)
BETA_ = (ax2 * Ey2 * s2b) / (denB * denB)
LAMBDA_ = -(b2 * Ee2 * s2l) / (denL * denL)
G_beta = - LAMBDA * ell.Ey ** 2 * np.sin(2 * beta)
G_lamb = LAMBDA_ * (
ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) + LAMBDA * ell.Ee ** 2 * np.sin(
2 * lamb)
BETA__ = (2.0 * ax2 * Ey4 * (s2b * s2b)) / (denB * denB * denB) + (2.0 * ax2 * Ey2 * c2b) / (
denB * denB
)
LAMBDA__ = (2.0 * b2 * Ee4 * (s2l * s2l)) / (denL * denL * denL) - (2.0 * b2 * Ee2 * s2l) / (
denL * denL
)
# Zweite Ableitungen von E und G
E_beta_beta = BETA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(
lamb) ** 2) - 2 * BETA_ * ell.Ey ** 2 * np.sin(2 * beta) - 2 * BETA * ell.Ey ** 2 * np.cos(2 * beta)
E_beta_lamb = BETA_ * ell.Ee ** 2 * np.sin(2 * lamb)
E_lamb_lamb = 2 * BETA * ell.Ee ** 2 * np.cos(2 * lamb)
Q = Ey2 * cb2 + Ee2 * sl2
G_beta_beta = - 2 * LAMBDA * ell.Ey ** 2 * np.cos(2 * beta)
G_beta_lamb = - LAMBDA_ * ell.Ey ** 2 * np.sin(2 * beta)
G_lamb_lamb = LAMBDA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(
lamb) ** 2) + 2 * LAMBDA_ * ell.Ee ** 2 * np.sin(2 * lamb) + 2 * LAMBDA * ell.Ee ** 2 * np.cos(2 * lamb)
E = BETA * Q
G = LAMBDA * Q
return (BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb)
E_beta = BETA_ * Q - BETA * Ey2 * s2b
E_lamb = BETA * Ee2 * s2l
G_beta = -LAMBDA * Ey2 * s2b
G_lamb = LAMBDA_ * Q + LAMBDA * Ee2 * s2l
E_beta_beta = BETA__ * Q - 2.0 * BETA_ * Ey2 * s2b - 2.0 * BETA * Ey2 * c2b
E_beta_lamb = BETA_ * Ee2 * s2l
E_lamb_lamb = 2.0 * BETA * Ee2 * c2l
G_beta_beta = -2.0 * LAMBDA * Ey2 * c2b
G_beta_lamb = -LAMBDA_ * Ey2 * s2b
G_lamb_lamb = LAMBDA__ * Q + 2.0 * LAMBDA_ * Ee2 * s2l + 2.0 * LAMBDA * Ee2 * c2l
return (
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
)
# Berechnung der ODE Koeffizienten für Fall 1 (lambda_0 != lambda_1)
def p_coef(beta, lamb):
(
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
) = BETA_LAMBDA(beta, lamb)
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
p_3 = - 0.5 * (E_lamb / G)
p_3 = -0.5 * (E_lamb / G)
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
p_0 = 0.5 * (G_beta / E)
p_33 = - 0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G ** 2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G ** 2)) - 0.5 * ((E * E_beta_beta - E_beta * E_beta) / (E ** 2))
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2)) - ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2))
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E ** 2))
p_33 = -0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G**2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G**2)) - 0.5 * (
(E * E_beta_beta - E_beta * E_beta) / (E**2)
)
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G**2)) - (
(E * E_beta_lamb - E_beta * E_lamb) / (E**2)
)
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E**2))
return (BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00)
def buildODElamb():
def ODE(lamb, v):
beta, beta_p, X3, X4 = v
(BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
return np.array([dbeta, dbeta_p, dX3, dX4])
return ODE
return BETA, LAMBDA, E, G, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00
# Berechnung der ODE Koeffizienten für Fall 2 (lambda_0 == lambda_1)
def q_coef(beta, lamb):
(
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
) = BETA_LAMBDA(beta, lamb)
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
q_3 = - 0.5 * (G_beta / E)
q_3 = -0.5 * (G_beta / E)
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
q_0 = 0.5 * (E_lamb / G)
q_33 = - 0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E ** 2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E ** 2)) - 0.5 * ((G * G_lamb_lamb - G_lamb * G_lamb) / (G ** 2))
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2)) - ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2))
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G ** 2))
q_33 = -0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E**2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E**2)) - 0.5 * (
(G * G_lamb_lamb - G_lamb * G_lamb) / (G**2)
)
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E**2)) - (
(G * G_beta_lamb - G_beta * G_lamb) / (G**2)
)
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G**2))
return (BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00)
return BETA, LAMBDA, E, G, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00
def buildODEbeta():
def ODE(beta, v):
lamb, lamb_p, Y3, Y4 = v
def integrand_lambda(lamb, y):
beta = y[0]
beta_p = y[1]
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
return np.sqrt(E * beta_p**2 + G)
(BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
dlamb = lamb_p
dlamb_p = q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4])
return ODE
if lamb_1 != lamb_2:
N = n
dlamb = lamb_2 - lamb_1
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
def integrand_beta(beta, y):
lamb = y[0]
lamb_p = y[1]
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
return np.sqrt(E + G * lamb_p**2)
def solve_lambda_branch(beta0, lamb0, beta1, lamb1_target, N_run, N_newt, it_max):
dlamb = float(lamb1_target - lamb0)
if abs(dlamb) < 1e-15:
beta_0 = 0.0
else:
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
return None
ode_lamb = buildODElamb()
sgn = 1.0 if dlamb >= 0.0 else -1.0
def ode_lamb(lamb, v):
beta, beta_p, X3, X4 = v
(_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
) * X4
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
alpha0_sph = sph_azimuth(beta0, lamb0, beta1, lamb1_target)
(_, _, E0, G0, *_) = BETA_LAMBDA(beta0, lamb0)
beta_p0_sph = np.sqrt(G0 / E0) * cot(alpha0_sph)
def solve_newton(beta_p0_init: float):
beta_p0 = float(beta_p0_init)
for _ in range(it_max):
v0 = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
_, y_end = rk4_end(ode_lamb, lamb0, v0, dlamb, N_newt)
for _ in range(iter_max):
startwerte = np.array([beta_1, beta_p0, 0.0, 1.0], dtype=float)
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
beta_end, beta_p_end, X3_end, X4_end = states[-1]
delta = beta_end - beta_2
beta_end, _, X3_end, _ = y_end
delta = beta_end - beta1
if abs(delta) < epsilon:
return True, beta_p0, lamb_list, states
return True, beta_p0
d_beta_end_d_beta0 = X3_end
if abs(d_beta_end_d_beta0) < 1e-20:
return False, None, None, None
if abs(X3_end) < 1e-20:
return False, None
step = delta / d_beta_end_d_beta0
max_step = 0.5
if abs(step) > max_step:
step = np.sign(step) * max_step
step = delta / X3_end
step = float(np.clip(step, -0.5, 0.5))
beta_p0 -= step
beta_p0 = beta_p0 - step
return False, None, None, None
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
guesses = [
beta_p0_sph,
0.5 * beta_p0_sph,
2.0 * beta_p0_sph,
-beta_p0_sph,
-0.5 * beta_p0_sph,
]
return False, None
seeds = [beta_p0_sph, -beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
best = None
for g in guesses:
ok, beta_p0_sol, lamb_list_cand, states_cand = solve_newton(g)
for seed in seeds:
ok, sol = solve_newton(seed)
if not ok:
continue
beta_arr_c = np.array([st[0] for st in states_cand], dtype=float)
beta_p_arr_c = np.array([st[1] for st in states_cand], dtype=float)
lamb_arr_c = np.array(lamb_list_cand, dtype=float)
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr_c[i], lamb_arr_c[i])
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi)
h = abs(dlamb) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s_cand = h / 3.0 * S
else:
s_cand = np.trapz(integrand, dx=h)
if (best is None) or (s_cand < best[0]):
best = (s_cand, beta_p0_sol, lamb_list_cand, states_cand)
v0_sol = np.array([beta0, sol, 0.0, 1.0], dtype=float)
_, _, s_val = rk4_integral(ode_lamb, lamb0, v0_sol, dlamb, N_run, integrand_lambda)
if (best is None) or (s_val < best[0]):
best = (float(s_val), float(sol))
if best is None:
raise RuntimeError("Keine Multi-Start-Variante konvergiert.")
return None
s_best, beta_0, lamb_list, werte = best
return best[0], best[1], sgn, dlamb, ode_lamb
beta_arr = np.zeros(N + 1)
# lamb_arr = np.zeros(N + 1)
lamb_arr = np.array(lamb_list)
beta_p_arr = np.zeros(N + 1)
def solve_beta_branch(beta0, lamb0, beta1, lamb1, N_run, N_newt, it_max):
dbeta = float(beta1 - beta0)
if abs(dbeta) < 1e-15:
return None
for i, state in enumerate(werte):
# lamb_arr[i] = state[0]
# beta_arr[i] = state[1]
# beta_p_arr[i] = state[2]
beta_arr[i] = state[0]
beta_p_arr[i] = state[1]
sgn = 1.0 if dbeta >= 0.0 else -1.0
(_, _, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
def ode_beta(beta, v):
lamb, lamb_p, Y3, Y4 = v
(_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
dlamb = lamb_p
dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
def solve_newton(lamb_p0_init: float):
lamb_p0 = float(lamb_p0_init)
for _ in range(it_max):
v0 = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
_, y_end = rk4_end(ode_beta, beta0, v0, dbeta, N_newt)
h = abs(dlamb) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
lamb_end, _, Y3_end, _ = y_end
delta = lamb_end - lamb1
if abs(delta) < epsilon:
return True, lamb_p0
if abs(Y3_end) < 1e-20:
return False, None
step = delta / Y3_end
step = float(np.clip(step, -1.0, 1.0))
lamb_p0 -= step
return False, None
seeds = [0.0, 0.25, -0.25, 1.0, -1.0]
best = None
for seed in seeds:
ok, sol = solve_newton(seed)
if not ok:
continue
v0_sol = np.array([lamb0, sol, 0.0, 1.0], dtype=float)
_, _, s_val = rk4_integral(ode_beta, beta0, v0_sol, dbeta, N_run, integrand_beta)
if (best is None) or (s_val < best[0]):
best = (float(s_val), float(sol))
if best is None:
return None
return best[0], best[1], sgn, dbeta, ode_beta
lamb0 = float(wrap_mpi_pi(lamb_0))
lamb1 = float(wrap_mpi_pi(lamb_1))
beta0 = float(beta_0)
beta1 = float(beta_1)
N_full = int(n)
if N_full < 2:
N_full = 2
if all_points:
N_fast = min(2000, max(400, N_full // 10))
else:
N_fast = min(1500, max(300, N_full // 12))
k0 = int(np.round((lamb0 - lamb1) / two_pi))
lamb_targets = []
for dk in (-1, 0, 1):
lt = lamb1 + two_pi * float(k0 + dk)
dl = lt - lamb0
if abs(dl) <= np.pi + 1e-12:
lamb_targets.append(float(lt))
if not lamb_targets:
lamb_targets = [float(lamb1 + two_pi * float(k0))]
best_fast = None
for lt in lamb_targets:
if abs(lt - lamb0) >= 1e-15:
res = solve_lambda_branch(beta0, lamb0, beta1, lt, N_fast, min(N_fast, 800), min(iter_max, 12))
if res is None:
continue
s_fast, beta_p0_fast, sgn_fast, dlamb_fast, _ = res
cand = ("lambda", s_fast, lt, beta_p0_fast, sgn_fast, dlamb_fast)
else:
s = np.trapz(integrand, dx=h)
res = solve_beta_branch(beta0, lamb0, beta1, lamb1, N_fast, min(N_fast, 800), min(iter_max, 12))
if res is None:
continue
s_fast, lamb_p0_fast, sgn_fast, dbeta_fast, _ = res
cand = ("beta", s_fast, lt, lamb_p0_fast, sgn_fast, dbeta_fast)
beta0 = beta_arr[0]
lamb0 = lamb_arr[0]
c = np.sqrt(
(np.cos(beta0) ** 2 + (ell.Ee**2 / ell.Ex**2) * np.sin(beta0) ** 2) * np.sin(alpha_1) ** 2
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
)
if (best_fast is None) or (cand[1] < best_fast[1]):
best_fast = cand
if best_fast is None:
if abs(lamb1 - lamb0) >= 1e-15:
best_fast = ("lambda", 0.0, lamb1, None, 1.0, float(lamb1 - lamb0))
else:
best_fast = ("beta", 0.0, lamb1, None, 1.0, float(beta1 - beta0))
if best_fast[0] == "lambda":
lt = float(best_fast[2])
dlamb = float(lt - lamb0)
sgn = 1.0 if dlamb >= 0.0 else -1.0
def ode_lamb(lamb, v):
beta, beta_p, X3, X4 = v
(_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
) * X4
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
alpha0_sph = sph_azimuth(beta0, lamb0, beta1, lt)
(_, _, E0, G0, *_) = BETA_LAMBDA(beta0, lamb0)
beta_p0_sph = np.sqrt(G0 / E0) * cot(alpha0_sph)
beta_p0_init = best_fast[3]
if beta_p0_init is None:
beta_p0_init = beta_p0_sph
beta_p0_init = float(beta_p0_init)
N_newton = min(N_full, 4000)
def solve_newton_refine(beta_p0_init: float):
beta_p0 = float(beta_p0_init)
for _ in range(iter_max):
v0 = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
_, y_end = rk4_end(ode_lamb, lamb0, v0, dlamb, N_newton)
beta_end, _, X3_end, _ = y_end
delta = beta_end - beta1
if abs(delta) < epsilon:
return True, beta_p0
if abs(X3_end) < 1e-20:
return False, None
step = delta / X3_end
step = float(np.clip(step, -0.5, 0.5))
beta_p0 -= step
return False, None
ok, beta_p0_sol = solve_newton_refine(beta_p0_init)
if not ok:
seeds = [beta_p0_sph, -beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
best = None
for seed in seeds:
ok_s, sol_s = solve_newton_refine(seed)
if not ok_s:
continue
v0_s = np.array([beta0, sol_s, 0.0, 1.0], dtype=float)
_, _, s_s = rk4_integral(ode_lamb, lamb0, v0_s, dlamb, min(N_full, 2000), integrand_lambda)
if (best is None) or (s_s < best[0]):
best = (float(s_s), float(sol_s))
if best is None:
raise RuntimeError("GHA2_num: Keine Startwert-Variante konvergiert (lambda-Fall)")
beta_p0_sol = best[1]
beta_p0 = float(beta_p0_sol)
v0_final = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
if all_points:
return alpha_1, alpha_2, s, beta_arr, lamb_arr
else:
return alpha_1, alpha_2, s
lamb_list, states = rk4(ode_lamb, lamb0, v0_final, dlamb, N_full, False)
lamb_arr = np.array(lamb_list, dtype=float)
beta_arr = np.array([st[0] for st in states], dtype=float)
beta_p_arr = np.array([st[1] for st in states], dtype=float)
else: # lamb_1 == lamb_2
N = n
dbeta = beta_2 - beta_1
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
if abs(dbeta) < 1e-15:
if all_points:
return 0, 0, 0, np.array([]), np.array([])
alpha_0 = azimut(E_start, G_start, dbeta_du=beta_p_arr[0] * sgn, dlamb_du=1.0 * sgn)
alpha_1 = azimut(E_end, G_end, dbeta_du=beta_p_arr[-1] * sgn, dlamb_du=1.0 * sgn)
integrand = np.zeros(N_full + 1, dtype=float)
for i in range(N_full + 1):
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
h = abs(dlamb) / N_full
if N_full % 2 == 0:
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(
integrand[2:-1:2]
)
s = h / 3.0 * S
else:
return 0, 0, 0
s = np.trapz(integrand, dx=h)
lamb_0 = 0
return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s), beta_arr, lamb_arr
ode_beta = buildODEbeta()
_, y_end, s = rk4_integral(ode_lamb, lamb0, v0_final, dlamb, N_full, integrand_lambda)
beta_end, beta_p_end, _, _ = y_end
for i in range(iter_max):
startwerte = [lamb_1, lamb_0, 0.0, 1.0]
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0)
alpha_0 = azimut(E_start, G_start, dbeta_du=beta_p0 * sgn, dlamb_du=1.0 * sgn)
beta_list, werte = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False)
(_, _, E_end, G_end, *_) = BETA_LAMBDA(float(beta_end), float(lamb0 + dlamb))
alpha_1 = azimut(E_end, G_end, dbeta_du=float(beta_p_end) * sgn, dlamb_du=1.0 * sgn)
beta_end = beta_list[-1]
lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s)
d_lamb_end_d_lambda0 = Y3_end
delta = lamb_end - lamb_2
# Fall 2 (lambda_0 == lambda_1)
N = int(n)
dbeta = float(beta_1 - beta_0)
if abs(delta) < epsilon:
break
if abs(dbeta) < 1e-15:
if all_points:
return 0.0, 0.0, 0.0, np.array([]), np.array([])
return 0.0, 0.0, 0.0
if abs(d_lamb_end_d_lambda0) < 1e-20:
raise RuntimeError("Abbruch (Ableitung ~ 0).")
sgn = 1.0 if dbeta >= 0.0 else -1.0
max_step = 1.0
step = delta / d_lamb_end_d_lambda0
if abs(step) > max_step:
step = np.sign(step) * max_step
def ode_beta(beta, v):
lamb, lamb_p, Y3, Y4 = v
(_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
lamb_0 = lamb_0 - step
dlamb = lamb_p
dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
beta_list, werte = rk.rk4(ode_beta, beta_1, np.array([lamb_1, lamb_0, 0.0, 1.0]), dbeta, N, False)
lamb_p0 = float(best_fast[3]) if (best_fast[0] == "beta" and best_fast[3] is not None) else 0.0
# beta_arr = np.zeros(N + 1)
beta_arr = np.array(beta_list)
lamb_arr = np.zeros(N + 1)
lambda_p_arr = np.zeros(N + 1)
for _ in range(iter_max):
v0 = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
_, y_end = rk4_end(ode_beta, beta0, v0, dbeta, N)
for i, state in enumerate(werte):
# beta_arr[i] = state[0]
# lamb_arr[i] = state[1]
# lambda_p_arr[i] = state[2]
lamb_arr[i] = state[0]
lambda_p_arr[i] = state[1]
lamb_end, _, Y3_end, _ = y_end
delta = lamb_end - lamb1
# Azimute
(BETA1, LAMBDA1, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(BETA2, LAMBDA2, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
if abs(delta) < epsilon:
break
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0])
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1])
if abs(Y3_end) < 1e-20:
raise RuntimeError("GHA2_num: Ableitung ~ 0 im beta-Fall")
integrand = np.zeros(N + 1)
step = delta / Y3_end
step = float(np.clip(step, -1.0, 1.0))
lamb_p0 -= step
v0_final = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
if all_points:
beta_list, states = rk4(ode_beta, beta0, v0_final, dbeta, N, False)
beta_arr = np.array(beta_list, dtype=float)
lamb_arr = np.array([st[0] for st in states], dtype=float)
lamb_p_arr = np.array([st[1] for st in states], dtype=float)
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_0 = azimut(E_start, G_start, dbeta_du=1.0 * sgn, dlamb_du=lamb_p_arr[0] * sgn)
alpha_1 = azimut(E_end, G_end, dbeta_du=1.0 * sgn, dlamb_du=lamb_p_arr[-1] * sgn)
integrand = np.zeros(N + 1, dtype=float)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei + Gi * lamb_p_arr[i] ** 2)
h = abs(dbeta) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(
integrand[2:-1:2]
)
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
if all_points:
return alpha_1, alpha_2, s, beta_arr, lamb_arr
else:
return alpha_1, alpha_2, s
return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s), beta_arr, lamb_arr
_, y_end, s = rk4_integral(ode_beta, beta0, v0_final, dbeta, N, integrand_beta)
lamb_end, lamb_p_end, _, _ = y_end
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0)
alpha_0 = azimut(E_start, G_start, dbeta_du=1.0 * sgn, dlamb_du=lamb_p0 * sgn)
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta1, float(lamb_end))
alpha_1 = azimut(E_end, G_end, dbeta_du=1.0 * sgn, dlamb_du=float(lamb_p_end) * sgn)
return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s)
if __name__ == "__main__":
# ell = EllipsoidTriaxial.init_name("Fiction")
# # beta1 = np.deg2rad(75)
# # lamb1 = np.deg2rad(-90)
# # beta2 = np.deg2rad(75)
# # lamb2 = np.deg2rad(66)
# # a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2)
# # print(aus.gms("a1", a1, 4))
# # print(aus.gms("a2", a2, 4))
# # print(s)
# cart1 = ell.para2cart(0, 0)
# cart2 = ell.para2cart(0.4, 1.4)
# beta1, lamb1 = ell.cart2ell(cart1)
# beta2, lamb2 = ell.cart2ell(cart2)
#
# a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
beta1 = np.deg2rad(75)
lamb1 = np.deg2rad(-90)
beta2 = np.deg2rad(75)
lamb2 = np.deg2rad(66)
a0, a1, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=100)
print(aus.gms("a0", a0, 4))
print(aus.gms("a1", a1, 4))
print("s: ", s)
# print(aus.gms("a2", a2, 4))
# print(s)
cart1 = ell.para2cart(0, 0)
cart2 = ell.para2cart(0.4, 1.4)
beta1, lamb1 = ell.cart2ell(cart1)
beta2, lamb2 = ell.cart2ell(cart2)
# ell = EllipsoidTriaxial.init_name("BursaSima1980round")
# diffs_panou = []
# examples_panou = ne_panou.get_random_examples(4)
# for example in examples_panou:
# beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
# P0 = ell.ell2cart(beta0, lamb0)
# try:
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
# diffs_panou.append(
# (wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
# except:
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
# diffs_panou = np.array(diffs_panou)
# print(diffs_panou)
#
# ell = EllipsoidTriaxial.init_name("KarneyTest2024")
# diffs_karney = []
# # examples_karney = ne_karney.get_examples((30500, 40500))
# examples_karney = ne_karney.get_random_examples(2)
# for example in examples_karney:
# beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
#
# try:
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
# diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
# except:
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
# diffs_karney = np.array(diffs_karney)
# print(diffs_karney)
a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
print(s)
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
diffs_panou = []
examples_panou = ne_panou.get_random_examples(4)
for example in examples_panou:
beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
P0 = ell.ell2cart(beta0, lamb0)
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
diffs_panou.append(
(wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
except:
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
diffs_panou = np.array(diffs_panou)
print(diffs_panou)
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
diffs_karney = []
# examples_karney = ne_karney.get_examples((30500, 40500))
examples_karney = ne_karney.get_random_examples(2)
for example in examples_karney:
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
except:
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
diffs_karney = np.array(diffs_karney)
print(diffs_karney)
pass

View File

@@ -1,6 +1,12 @@
import random
from typing import List
import winkelumrechnungen as wu
from typing import List, Tuple
from GHA_triaxial.utils import jacobi_konstante
from ellipsoid_triaxial import EllipsoidTriaxial
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
file_path = r"Karney_2024_Testset.txt"
def line2example(line: str) -> List:
"""
@@ -26,7 +32,7 @@ def get_random_examples(num: int, seed: int = None) -> List:
"""
if seed is not None:
random.seed(seed)
with open(r"C:\Users\moell\OneDrive\Desktop\Vorlesungen\Master-Projekt\Python_Masterprojekt\GHA_triaxial\Karney_2024_Testset.txt") as datei:
with open(file_path) as datei:
lines = datei.readlines()
examples = []
for i in range(num):
@@ -41,7 +47,7 @@ def get_examples(l_i: List) -> List:
:param l_i: Liste von Indizes
:return: Liste mit Beispielen
"""
with open("Karney_2024_Testset.txt") as datei:
with open(file_path) as datei:
lines = datei.readlines()
examples = []
for i in l_i:
@@ -50,5 +56,63 @@ def get_examples(l_i: List) -> List:
return examples
def get_random_examples_gamma(group: str, num: int, seed: int = None, length: str = None) -> List:
"""
Zufällige Beispiele aus Karney in Gruppen nach Einteilung anhand der Jacobi-Konstanten
:param group: Gruppe
:param num: Anzahl
:param seed: Random-Seed
:param length: long oder short, sond egal
:return: Liste mit Beispielen
"""
eps = 1e-20
long_short = 2
if seed is not None:
random.seed(seed)
with open(file_path) as datei:
lines = datei.readlines()
examples = []
i = 0
while len(examples) < num and i < len(lines):
example = line2example(lines[random.randint(0, len(lines) - 1)])
if example in examples:
continue
i += 1
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
gamma = jacobi_konstante(beta0, lamb0, alpha0_ell, ell)
if group not in ["a", "b", "c", "d", "e", "de"]:
break
elif group == "a" and not 1 >= gamma >= 0.01:
continue
elif group == "b" and not 0.01 > gamma > eps:
continue
elif group == "c" and not abs(gamma) <= eps:
continue
elif group == "d" and not -eps > gamma > -1e-17:
continue
elif group == "e" and not -1e-17 >= gamma >= -1:
continue
elif group == "de" and not -eps > gamma > -1:
continue
if length == "short":
if example[6] < long_short:
examples.append(example)
elif length == "long":
if example[6] >= long_short:
examples.append(example)
else:
examples.append(example)
return examples
if __name__ == "__main__":
get_random_examples(10)
examples_a = get_random_examples_gamma("a", 10, 42)
examples_b = get_random_examples_gamma("b", 10, 42)
examples_c = get_random_examples_gamma("c", 10, 42)
examples_d = get_random_examples_gamma("d", 10, 42)
examples_e = get_random_examples_gamma("e", 10, 42)
pass

View File

@@ -1,11 +1,13 @@
from __future__ import annotations
from typing import Tuple
import numpy as np
from numpy import arctan2, sin, cos, sqrt
from numpy._typing import NDArray
from numpy import arctan2, cos, sin, sqrt
from numpy.typing import NDArray
from ellipsoide import EllipsoidTriaxial
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def sigma2alpha(ell: EllipsoidTriaxial, sigma: NDArray, point: NDArray) -> float:
@@ -21,7 +23,7 @@ def sigma2alpha(ell: EllipsoidTriaxial, sigma: NDArray, point: NDArray) -> float
Q = float(q @ sigma)
alpha = arctan2(P, Q)
return alpha
return wrap_0_2pi(alpha)
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> Tuple[float, float, float]:
@@ -43,10 +45,10 @@ def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
raise Exception("Alpha Umrechnung fehlgeschlagen")
if np.linalg.norm(sigma_para - sigma_ell) > 1e-7:
raise Exception("alpha_para2ell: Differenz in den Richtungsableitungen")
return beta, lamb, alpha_ell
return beta, lamb, wrap_0_2pi(alpha_ell)
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> Tuple[float, float, float]:
@@ -68,10 +70,10 @@ def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell:
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-9:
raise Exception("Alpha Umrechnung fehlgeschlagen")
if np.linalg.norm(sigma_para - sigma_ell) > 1e-7:
raise Exception("alpha_ell2para: Differenz in den Richtungsableitungen")
return u, v, alpha_para
return u, v, wrap_0_2pi(alpha_para)
def func_sigma_ell(ell: EllipsoidTriaxial, point: NDArray, alpha_ell: float) -> NDArray:
@@ -124,25 +126,26 @@ def pq_ell(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
:param point: Punkt
:return: p und q
"""
x, y, z = point
n = ell.func_n(point)
beta, lamb = ell.cart2ell(point)
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
if abs(cos(beta)) < 1e-15 and abs(np.sin(lamb)) < 1e-15:
if beta > 0:
p = np.array([0, -1, 0])
else:
p = np.array([0, 1, 0])
else:
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
c1 = x ** 2 + y ** 2 + z ** 2 - (ell.ax ** 2 + ell.ay ** 2 + ell.b ** 2)
c0 = (ell.ax ** 2 * ell.ay ** 2 + ell.ax ** 2 * ell.b ** 2 + ell.ay ** 2 * ell.b ** 2 -
(ell.ay ** 2 + ell.b ** 2) * x ** 2 - (ell.ax ** 2 + ell.b ** 2) * y ** 2 - (
ell.ax ** 2 + ell.ay ** 2) * z ** 2)
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
_, t2 = ell.func_t12(point)
F = ell.Ey ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(lamb) ** 2
p1 = -sqrt(L / (F * t2)) * ell.ax / ell.Ex * sqrt(B) * sin(lamb)
p2 = sqrt(L / (F * t2)) * ell.ay * cos(beta) * cos(lamb)
p3 = 1 / sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * sin(beta) * sin(2 * lamb)
p = np.array([p1, p2, p3])
p = p / np.linalg.norm(p)
F = ell.Ey ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(lamb) ** 2
p1 = -sqrt(L / (F * t2)) * ell.ax / ell.Ex * sqrt(B) * sin(lamb)
p2 = sqrt(L / (F * t2)) * ell.ay * cos(beta) * cos(lamb)
p3 = 1 / sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * sin(beta) * sin(2 * lamb)
p = np.array([p1, p2, p3])
p = p / np.linalg.norm(p)
q = np.array([n[1] * p[2] - n[2] * p[1],
n[2] * p[0] - n[0] * p[2],
n[0] * p[1] - n[1] * p[0]])
@@ -171,13 +174,28 @@ def pq_para(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
q[2] * n[0] - q[0] * n[2],
q[0] * n[1] - q[1] * n[0]])
t1 = np.dot(n, q)
t2 = np.dot(n, p)
t3 = np.dot(p, q)
if not (t1 < 1e-10 or t1 > 1-1e-10) and not (t2 < 1e-10 or t2 > 1-1e-10) and not (t3 < 1e-10 or t3 > 1-1e-10):
raise Exception("Fehler in den normierten Vektoren")
p = p / np.linalg.norm(p)
q = q / np.linalg.norm(q)
return p, q
def jacobi_konstante(beta: float, omega: float, alpha: float, ell: EllipsoidTriaxial) -> float:
"""
Jacobi-Konstante nach Karney (2025), Gl. (14)
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param alpha: Azimut alpha
:param ell: Ellipsoid
:return: Jacobi-Konstante
"""
gamma_jacobi = float((ell.k ** 2) * (np.cos(beta) ** 2) * (np.sin(alpha) ** 2) - (ell.k_ ** 2) * (np.sin(omega) ** 2) * (np.cos(alpha) ** 2))
return gamma_jacobi
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
alpha_para = 0
u, v = ell.ell2para(np.pi/2, 0)
alpha_ell = alpha_para2ell(ell, u, v, alpha_para)
pass

View File

@@ -1,846 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"id": "initial_id",
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2026-02-04T17:56:25.185202Z",
"start_time": "2026-02-04T17:56:22.991833Z"
}
},
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
],
"outputs": [],
"execution_count": 1
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2026-02-04T17:56:35.920624Z",
"start_time": "2026-02-04T17:56:25.201916Z"
}
},
"cell_type": "code",
"source": [
"%reload_ext autoreload\n",
"%autoreload 2\n",
"import time\n",
"from numpy import nan\n",
"import numpy as np\n",
"import math\n",
"import winkelumrechnungen as wu\n",
"import os\n",
"from contextlib import contextmanager, redirect_stdout, redirect_stderr\n",
"import plotly.graph_objects as go\n",
"import warnings\n",
"import pickle\n",
"import random\n",
"\n",
"from ellipsoide import EllipsoidTriaxial\n",
"from GHA_triaxial.utils import alpha_para2ell, alpha_ell2para\n",
"\n",
"from GHA_triaxial.gha1_num import gha1_num\n",
"from GHA_triaxial.gha1_ana import gha1_ana\n",
"from GHA_triaxial.gha1_ES import gha1_ES\n",
"from GHA_triaxial.gha1_approx import gha1_approx\n",
"\n",
"from GHA_triaxial.gha2_num import gha2_num\n",
"from GHA_triaxial.gha2_ES import gha2_ES\n",
"from GHA_triaxial.gha2_approx import gha2_approx\n",
"\n",
"from GHA_triaxial.numeric_examples_panou import get_tables as get_tables_panou\n",
"from GHA_triaxial.numeric_examples_karney import get_random_examples as get_examples_karney"
],
"id": "961cb22764c5bcb9",
"outputs": [],
"execution_count": 2
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2026-02-04T17:56:36.470974Z",
"start_time": "2026-02-04T17:56:35.937646Z"
}
},
"cell_type": "code",
"source": [
"@contextmanager\n",
"def suppress_print():\n",
" with open(os.devnull, 'w') as fnull:\n",
" with redirect_stdout(fnull), redirect_stderr(fnull):\n",
" yield"
],
"id": "e4740625a366ac13",
"outputs": [],
"execution_count": 3
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2026-02-04T18:11:14.405810Z",
"start_time": "2026-02-04T18:11:14.169636Z"
}
},
"cell_type": "code",
"source": [
"# dsPart = [60, 125, 600, 1250, 6000, 60000] entspricht bei der Erde ca. 100km, 50km, 10km, 5km, 1km, 100m\n",
"\n",
"steps_gha1_num = [20, 50, 100, 200, 500, 1000, 5000]\n",
"maxM_gha1_ana = [20, 50]\n",
"parts_gha1_ana = [2, 8]\n",
"dsPart_gha1_ES = [60, 600, 1250]\n",
"dsPart_gha1_approx = [600, 1250, 6000]\n",
"\n",
"steps_gha2_num = [200, 500, 1000]\n",
"dsPart_gha2_ES = [60, 600, 1250]\n",
"dsPart_gha2_approx = [600, 1250, 6000]"
],
"id": "96093cdde03f8d57",
"outputs": [],
"execution_count": 16
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2026-02-04T18:11:15.988345Z",
"start_time": "2026-02-04T18:11:15.774321Z"
}
},
"cell_type": "code",
"source": [
"# test = \"Karney\"\n",
"test = \"Panou\"\n",
"# test = \"Random\"\n",
"if test == \"Karney\":\n",
" ell: EllipsoidTriaxial = EllipsoidTriaxial.init_name(\"KarneyTest2024\")\n",
" examples = get_examples_karney(4, seed=42)\n",
"elif test == \"Panou\":\n",
" ell: EllipsoidTriaxial = EllipsoidTriaxial.init_name(\"BursaSima1980round\")\n",
" tables = get_tables_panou()\n",
" table_indices = []\n",
" examples = []\n",
" for i, table in enumerate(tables):\n",
" for example in table:\n",
" table_indices.append(i+1)\n",
" examples.append(example)\n",
"elif test == \"Random\":\n",
" ell: EllipsoidTriaxial = EllipsoidTriaxial.init_name(\"BursaSima1980round\")\n",
" examples = [] # beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s\n",
" random.seed(42)\n",
" for _ in range(10):\n",
" beta0 = wu.deg2rad(random.randint(-90, 90))\n",
" lamb0 = wu.deg2rad(random.randint(-179, 180))\n",
" alpha0_ell = wu.deg2rad(random.randint(0, 359))\n",
" s = random.randint(10000, int(np.pi*ell.b))\n",
" examples.append([beta0, lamb0, alpha0_ell, s])\n",
" pass"
],
"id": "6e384cc01c2dbe",
"outputs": [],
"execution_count": 17
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": [
"if test != \"Random\":\n",
" results = {}\n",
" for i, example in enumerate(examples):\n",
" print(f\"----- Beispiel {i+1}/{len(examples)}\")\n",
" example_results = {}\n",
"\n",
" beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example\n",
" P0 = ell.ell2cart(beta0, lamb0)\n",
" P1 = ell.ell2cart(beta1, lamb1)\n",
" _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)\n",
"\n",
" for steps in steps_gha1_num:\n",
" start = time.perf_counter()\n",
" try:\n",
" P1_num, alpha1_num_1 = gha1_num(ell, P0, alpha0_ell, s, num=steps)\n",
" print(f\"GHA1_num_{steps}\", P1_num)\n",
" end = time.perf_counter()\n",
" beta1_num, lamb1_num = ell.cart2ell(P1_num)\n",
" d_beta1 = abs(beta1_num - beta1)\n",
" d_lamb1 = abs(lamb1_num - lamb1)\n",
" d_alpha1 = abs(alpha1_num_1 - alpha1_ell)\n",
" d_time = end - start\n",
" example_results[f\"GHA1_num_{steps}\"] = (d_beta1, d_lamb1, d_alpha1, d_time)\n",
" except Exception as e:\n",
" print(e)\n",
" example_results[f\"GHA1_num_{steps}\"] = (nan, nan, nan, nan)\n",
"\n",
" for maxM in maxM_gha1_ana:\n",
" for parts in parts_gha1_ana:\n",
" start = time.perf_counter()\n",
" try:\n",
" P1_ana, alpha1_ana_para = gha1_ana(ell, P0, alpha0_para, s, maxM=maxM, maxPartCircum=parts)\n",
" print(f\"GHA1_ana_{maxM}_{parts}\", P1_ana)\n",
" end = time.perf_counter()\n",
" beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)\n",
" _, _, alpha1_ana_ell = alpha_para2ell(ell, beta1_ana, lamb1_ana, alpha1_ana_para)\n",
" d_beta1 = abs(beta1_ana - beta1)\n",
" d_lamb1 = abs(lamb1_ana - lamb1)\n",
" d_alpha1 = abs(alpha1_ana_ell - alpha1_ell)\n",
" d_time = end - start\n",
" example_results[f\"GHA1_ana_{maxM}_{parts}\"] = (d_beta1, d_lamb1, d_alpha1, d_time)\n",
" except Exception as e:\n",
" print(e)\n",
" example_results[f\"GHA1_ana_{maxM}_{parts}\"] = (nan, nan, nan, nan)\n",
"\n",
" for dsPart in dsPart_gha1_ES:\n",
" start = time.perf_counter()\n",
" try:\n",
" P1_ES, alpha1_ES = gha1_ES(ell, beta0, lamb0, alpha0_ell, s, maxSegLen=dsPart)\n",
" end = time.perf_counter()\n",
" beta1_ES, lamb1_ES = ell.cart2ell(P1_ES)\n",
" d_beta1 = abs(beta1_ES - beta1)\n",
" d_lamb1 = abs(lamb1_ES - lamb1)\n",
" d_alpha1 = abs(alpha1_ES - alpha1_ell)\n",
" d_time = end - start\n",
" example_results[f\"GHA1_ES_{dsPart}\"] = (d_beta1, d_lamb1, d_alpha1, d_time)\n",
" except Exception as e:\n",
" print(e)\n",
" example_results[f\"GHA1_ES_{dsPart}\"] = (nan, nan, nan, nan)\n",
"\n",
" for dsPart in dsPart_gha1_approx:\n",
" ds = ell.ax/dsPart\n",
" start = time.perf_counter()\n",
" try:\n",
" P1_approx, alpha1_approx = gha1_approx(ell, P0, alpha0_ell, s, ds=ds)\n",
" end = time.perf_counter()\n",
" beta1_approx, lamb1_approx = ell.cart2ell(P1_approx)\n",
" d_beta1 = abs(beta1_approx - beta1)\n",
" d_lamb1 = abs(lamb1_approx - lamb1)\n",
" d_alpha1 = abs(alpha1_approx - alpha1_ell)\n",
" d_time = end - start\n",
" example_results[f\"GHA1_approx_{dsPart}\"] = (d_beta1, d_lamb1, d_alpha1, d_time)\n",
" except Exception as e:\n",
" print(e)\n",
" example_results[f\"GHA1_approx_{dsPart}\"] = (nan, nan, nan, nan)\n",
"\n",
" # ----------------------------------------------\n",
"\n",
" for steps in steps_gha2_num:\n",
" start = time.perf_counter()\n",
" try:\n",
" with warnings.catch_warnings():\n",
" warnings.simplefilter(\"ignore\", RuntimeWarning)\n",
" alpha0_num, alpha1_num_2, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=steps)\n",
" print(alpha0_num, alpha1_num_2, s_num)\n",
" end = time.perf_counter()\n",
" d_alpha0 = abs(alpha0_num - alpha0_ell)\n",
" d_alpha1 = abs(alpha1_num_2 - alpha1_ell)\n",
" d_s = abs(s_num - s)\n",
" d_time = end - start\n",
" example_results[f\"GHA2_num_{steps}\"] = (d_alpha0, d_alpha1, d_s, d_time)\n",
" except Exception as e:\n",
" print(e)\n",
" example_results[f\"GHA2_num_{steps}\"] = (nan, nan, nan, nan)\n",
"\n",
" for dsPart in dsPart_gha2_ES:\n",
" ds = ell.ax/dsPart\n",
" start = time.perf_counter()\n",
" try:\n",
" with suppress_print():\n",
" alpha0_ES, alpha1_ES, s_ES = gha2_ES(ell, P0, P1, maxSegLen=ds)\n",
" end = time.perf_counter()\n",
" d_alpha0 = abs(alpha0_ES - alpha0_ell)\n",
" d_alpha1 = abs(alpha1_ES - alpha1_ell)\n",
" d_s = abs(s_ES - s)\n",
" d_time = end - start\n",
" example_results[f\"GHA2_ES_{dsPart}\"] = (d_alpha0, d_alpha1, d_s, d_time)\n",
" except Exception as e:\n",
" print(e)\n",
" example_results[f\"GHA2_ES_{dsPart}\"] = (nan, nan, nan, nan)\n",
"\n",
" for dsPart in dsPart_gha2_approx:\n",
" ds = ell.ax/dsPart\n",
" start = time.perf_counter()\n",
" try:\n",
" alpha0_approx, alpha1_approx, s_approx = gha2_approx(ell, P0, P1, ds=ds)\n",
" end = time.perf_counter()\n",
" d_alpha0 = abs(alpha0_approx - alpha0_ell)\n",
" d_alpha1 = abs(alpha1_approx - alpha1_ell)\n",
" d_s = abs(s_approx - s)\n",
" d_time = end - start\n",
" example_results[f\"GHA2_approx_{dsPart}\"] = (d_alpha0, d_alpha1, d_s, d_time)\n",
" except Exception as e:\n",
" print(e)\n",
" example_results[f\"GHA2_approx_{dsPart}\"] = (nan, nan, nan, nan)\n",
"\n",
" results[f\"beta0: {wu.rad2deg(beta0):.3f}, lamb0: {wu.rad2deg(lamb0):.3f}, alpha0: {wu.rad2deg(alpha0_ell):.3f}, s: {s}\"] = example_results"
],
"id": "2a87e028089a215"
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": [
"if test == \"Random\":\n",
" results = {}\n",
" for i, example in enumerate(examples):\n",
" print(f\"----- Beispiel {i+1}/{len(examples)}\")\n",
" example_results = {}\n",
"\n",
" beta0, lamb0, alpha0_ell, s = example\n",
" P0 = ell.ell2cart(beta0, lamb0)\n",
" _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)\n",
"\n",
" # P1_ana, alpha1_ana_para = gha1_ana(ell, P0, alpha0_para, s, maxM=60, maxPartCircum=4)\n",
" # beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)\n",
" # _, _, alpha1_ana = alpha_para2ell(ell, beta1_ana, lamb1_ana, alpha1_ana_para)\n",
"\n",
" P1, alpha1_ell = gha1_num(ell, P0, alpha0_ell, s, num=10000)\n",
" beta1, lamb1 = ell.cart2ell(P1)\n",
"\n",
" for maxM in maxM_gha1_ana:\n",
" for parts in parts_gha1_ana:\n",
" start = time.perf_counter()\n",
" try:\n",
" P1_ana, alpha1_ana_para = gha1_ana(ell, P0, alpha0_para, s, maxM=maxM, maxPartCircum=parts)\n",
" end = time.perf_counter()\n",
" beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)\n",
" _, _, alpha1_ana_ell = alpha_para2ell(ell, beta1_ana, lamb1_ana, alpha1_ana_para)\n",
" d_beta1 = abs(wu.rad2deg(beta1_ana - beta1)) / 3600\n",
" d_lamb1 = abs(wu.rad2deg(lamb1_ana - lamb1)) / 3600\n",
" d_alpha1 = abs(wu.rad2deg(alpha1_ana_ell - alpha1_ell)) / 3600\n",
" d_time = end - start\n",
" example_results[f\"GHA1_ana_{maxM}_{parts}\"] = (d_beta1, d_lamb1, d_alpha1, d_time)\n",
" except Exception as e:\n",
" print(e)\n",
" example_results[f\"GHA1_ana_{maxM}_{parts}\"] = (nan, nan, nan, nan)\n",
"\n",
" for dsPart in dsPart_gha1_approx:\n",
" ds = ell.ax/dsPart\n",
" start = time.perf_counter()\n",
" try:\n",
" P1_approx, alpha1_approx = gha1_approx(ell, P0, alpha0_ell, s, ds=ds)\n",
" end = time.perf_counter()\n",
" beta1_approx, lamb1_approx = ell.cart2ell(P1_approx)\n",
" d_beta1 = abs(wu.rad2deg(beta1_approx - beta1)) / 3600\n",
" d_lamb1 = abs(wu.rad2deg(lamb1_approx - lamb1)) / 3600\n",
" d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600\n",
" d_time = end - start\n",
" example_results[f\"GHA1_approx_{dsPart}\"] = (d_beta1, d_lamb1, d_alpha1, d_time)\n",
" except Exception as e:\n",
" print(e)\n",
" example_results[f\"GHA1_approx_{dsPart}\"] = (nan, nan, nan, nan)\n",
"\n",
" # for steps in steps_gha2_num:\n",
" # start = time.perf_counter()\n",
" # try:\n",
" # with warnings.catch_warnings():\n",
" # warnings.simplefilter(\"ignore\", RuntimeWarning)\n",
" # alpha0_num, alpha1_num_2, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=steps)\n",
" # end = time.perf_counter()\n",
" # d_alpha0 = abs(wu.rad2deg(alpha0_num - alpha0_ell)) / 3600\n",
" # d_alpha1 = abs(wu.rad2deg(alpha1_num_2 - alpha1_ell)) / 3600\n",
" # d_s = abs(s_num - s) / 1000\n",
" # d_time = end - start\n",
" # example_results[f\"GHA2_num_{steps}\"] = (d_alpha0, d_alpha1, d_s, d_time)\n",
" # except Exception as e:\n",
" # print(e)\n",
" # example_results[f\"GHA2_num_{steps}\"] = (nan, nan, nan, nan)\n",
" #\n",
" # for dsPart in dsPart_gha2_ES:\n",
" # ds = ell.ax/dsPart\n",
" # start = time.perf_counter()\n",
" # try:\n",
" # with suppress_print():\n",
" # alpha0_ES, alpha1_ES, s_ES = gha2_ES(ell, P0, P1, maxSegLen=ds)\n",
" # end = time.perf_counter()\n",
" # d_alpha0 = abs(wu.rad2deg(alpha0_ES - alpha0_ell)) / 3600\n",
" # d_alpha1 = abs(wu.rad2deg(alpha1_ES - alpha1_ell)) / 3600\n",
" # d_s = abs(s_ES - s) / 1000\n",
" # d_time = end - start\n",
" # example_results[f\"GHA2_ES_{dsPart}\"] = (d_alpha0, d_alpha1, d_s, d_time)\n",
" # except Exception as e:\n",
" # print(e)\n",
" # example_results[f\"GHA2_ES_{dsPart}\"] = (nan, nan, nan, nan)\n",
"\n",
" for dsPart in dsPart_gha2_approx:\n",
" ds = ell.ax/dsPart\n",
" start = time.perf_counter()\n",
" try:\n",
" alpha0_approx, alpha1_approx, s_approx = gha2_approx(ell, P0, P1, ds=ds)\n",
" end = time.perf_counter()\n",
" d_alpha0 = abs(wu.rad2deg(alpha0_approx - alpha0_ell)) / 3600\n",
" d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600\n",
" d_s = abs(s_approx - s) / 1000\n",
" d_time = end - start\n",
" example_results[f\"GHA2_approx_{dsPart}\"] = (d_alpha0, d_alpha1, d_s, d_time)\n",
" except Exception as e:\n",
" print(e)\n",
" example_results[f\"GHA2_approx_{dsPart}\"] = (nan, nan, nan, nan)\n",
"\n",
" results[f\"beta0: {wu.rad2deg(beta0):.3f}, lamb0: {wu.rad2deg(lamb0):.3f}, alpha0: {wu.rad2deg(alpha0_ell):.3f}, s: {s}\"] = example_results\n",
"\n",
"\n"
],
"id": "d8868b5f0e6f9b42"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2026-02-04T14:35:09.900827Z",
"start_time": "2026-02-04T14:35:09.690955Z"
}
},
"cell_type": "code",
"source": [
"# with open(f\"gha_results{test}.pkl\", \"wb\") as f:\n",
"# pickle.dump(results, f)"
],
"id": "664105ea35d50a7b",
"outputs": [],
"execution_count": 7
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2026-02-04T14:35:10.113762Z",
"start_time": "2026-02-04T14:35:09.910687Z"
}
},
"cell_type": "code",
"source": [
"# with open(f\"gha_results{test}.pkl\", \"rb\") as f:\n",
"# results = pickle.load(f)"
],
"id": "ad8aa9dcc8af4a05",
"outputs": [],
"execution_count": 8
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": [
"metrics_gha1 = ['dBeta [\"]', 'dLambda [\"]', 'dAlpha1 [\"]', 'time [s]']\n",
"metrics_gha2 = ['dAlpha0 [\"]', 'dAlpha1 [\"]', 'dStrecke [m]', 'time [s]']\n",
"listed_results = {}\n",
"for example, example_metrics in results.items():\n",
" for method, method_metrics in example_metrics.items():\n",
" if \"GHA1\" in method:\n",
" if method not in listed_results.keys():\n",
" listed_results[method] = {metric: [] for metric in metrics_gha1}\n",
" for i, metric in enumerate(method_metrics):\n",
" if '[\"]' in metrics_gha1[i]:\n",
" listed_results[method][metrics_gha1[i]].append(wu.rad2deg(metric)*3600)\n",
" else:\n",
" listed_results[method][metrics_gha1[i]].append(metric)\n",
" if \"GHA2\" in method:\n",
" if method not in listed_results.keys():\n",
" listed_results[method] = {metric: [] for metric in metrics_gha2}\n",
" for i, metric in enumerate(method_metrics):\n",
" if '[\"]' in metrics_gha2[i]:\n",
" listed_results[method][metrics_gha2[i]].append(wu.rad2deg(metric)*3600)\n",
" else:\n",
" listed_results[method][metrics_gha2[i]].append(metric)\n",
" pass"
],
"id": "8fd6f220440f4494"
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": [
"def format_max(values, is_angle=False):\n",
" arr = np.array(values, dtype=float)\n",
" if arr.size==0:\n",
" return np.nan\n",
" maxi = np.nanmax(np.abs(arr))\n",
" if maxi is None or (isinstance(maxi,float) and (math.isnan(maxi))):\n",
" return \"nan\"\n",
" if is_angle:\n",
" maxi = wu.rad2deg(maxi)*3600\n",
" if f\"{maxi:.3g}\" == 0:\n",
" pass\n",
" return f\"{maxi:.3g}\"\n",
"\n",
"\n",
"def build_max_table(gha_prefix, title, group_value = None):\n",
" if gha_prefix==\"GHA1\":\n",
" metrics = ['dBeta [\"]', 'dLambda [\"]', 'dAlpha1 [\"]', 'time [s]']\n",
" angle_mask = [True, True, True, False]\n",
" else:\n",
" metrics = ['dAlpha0 [\"]', 'dAlpha1 [\"]', 'dStrecke [m]', 'time [s]']\n",
" angle_mask = [True, True, False, False]\n",
"\n",
" if group_value is None:\n",
" example_keys = [example_key for example_key in list(results.keys())]\n",
" else:\n",
" example_keys = [example_key for example_key, group_index in zip(results.keys(), table_indices) if group_index==group_value]\n",
"\n",
" algorithms = sorted({algorithm for example_key in example_keys for algorithm in results[example_key].keys() if algorithm.startswith(gha_prefix)})\n",
"\n",
" header = [\"Algorithmus\", \"Parameter\", \"NaN\"] + list(metrics)\n",
" cells = [[] for i in range(len(metrics) + 3)]\n",
" for algorithm in algorithms:\n",
"\n",
" ghaNr, variant, params = algorithm.split(\"_\", 2)\n",
" cells[0].append(variant)\n",
" cells[1].append(params)\n",
" nan_values = []\n",
" for example_key in example_keys:\n",
" nan_values.append(results[example_key][algorithm][0])\n",
" cells[2].append(np.sum(np.isnan(nan_values)))\n",
" for i, metric in enumerate(metrics):\n",
" values = []\n",
" for example_key in example_keys:\n",
" values.append(results[example_key][algorithm][i])\n",
" cells[i+3].append(format_max(values, is_angle=angle_mask[i]))\n",
"\n",
" header = dict(\n",
" values=header,\n",
" align=\"center\",\n",
" fill_color=\"lightgrey\",\n",
" font=dict(size=13)\n",
" )\n",
" cells = dict(\n",
" values=cells,\n",
" align=\"center\"\n",
" )\n",
"\n",
" fig = go.Figure(data=[go.Table(header=header, cells=cells)])\n",
" fig.update_layout(title=title,\n",
" template=\"simple_white\",\n",
" width=800,\n",
" height=280,\n",
" margin=dict(l=20, r=20, t=60, b=20))\n",
" return fig\n",
"\n",
"figs = []\n",
"if test == \"Panou\":\n",
" for table_index in sorted(set(table_indices)):\n",
" fig1 = build_max_table(\"GHA1\", f\"{test} - Gruppe {table_index} - GHA1\", table_index)\n",
" fig2 = build_max_table(\"GHA2\", f\"{test} - Gruppe {table_index} - GHA2\", table_index)\n",
" figs.append(fig1)\n",
" figs.append(fig2)\n",
"elif test == \"Karney\":\n",
" fig1 = build_max_table(\"GHA1\", f\"{test} - GHA1\")\n",
" fig2 = build_max_table(\"GHA2\", f\"{test} - GHA2\")\n",
" figs.append(fig1)\n",
" figs.append(fig2)\n",
"\n",
"for fig in figs:\n",
" fig.show()"
],
"id": "f1fb73407f5b1c8a"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2026-02-04T18:08:09.603687Z",
"start_time": "2026-02-04T18:08:09.269698Z"
}
},
"cell_type": "code",
"source": [
"from collections import defaultdict\n",
"\n",
"def to_latex_sci(x, sig=3):\n",
" \"\"\"\n",
" Formatiert eine Zahl als LaTeX, z.B. 8.02e-08 -> $8.02\\\\cdot10^{-8}$.\n",
" Für normale Zahlen -> $0.216$.\n",
" Für nan -> nan (ohne $...$).\n",
" \"\"\"\n",
" if x is None:\n",
" return \"nan\"\n",
" try:\n",
" xf = float(x)\n",
" except Exception:\n",
" return str(x)\n",
"\n",
" if math.isnan(xf):\n",
" return \"nan\"\n",
"\n",
" # nahe 0 -> 0\n",
" if xf == 0.0:\n",
" return \"$0$\"\n",
"\n",
" s = f\"{xf:.{sig}g}\" # z.B. '8.02e-08' oder '0.216'\n",
" if \"e\" in s or \"E\" in s:\n",
" mant, exp = s.lower().split(\"e\")\n",
" exp = int(exp)\n",
" return f\"${mant}\\\\cdot10^{{{exp}}}$\"\n",
" else:\n",
" return f\"${s}$\"\n",
"\n",
"\n",
"def nan_count_for_algorithm(results, example_keys, algorithm):\n",
" vals = []\n",
" for k in example_keys:\n",
" vals.extend(results[k][algorithm])\n",
" return int(np.sum(np.isnan(np.array(vals, dtype=float))))\n",
"\n",
"\n",
"def max_abs_metric(results, example_keys, algorithm, metric_index, is_angle=False, wu=None):\n",
" \"\"\"\n",
" Echter Max(|...|) über alle example_keys.\n",
" Wenn is_angle=True: Werte werden als rad angenommen und in Bogensekunden umgerechnet.\n",
" \"\"\"\n",
" arr = []\n",
" for k in example_keys:\n",
" arr.append(results[k][algorithm][metric_index])\n",
" arr = np.array(arr, dtype=float)\n",
"\n",
" if arr.size == 0:\n",
" return np.nan\n",
" m = np.nanmax(np.abs(arr))\n",
" if is_angle:\n",
" if wu is None:\n",
" raise ValueError(\"wu wird benötigt für rad2deg, wenn is_angle=True\")\n",
" m = wu.rad2deg(m) * 3600.0\n",
" return m\n",
"\n",
"\n",
"def parse_variant_params(algorithm_key):\n",
" \"\"\"\n",
" Erwartet: GHA1_ana_20_4 -> variant='ana', params='20_4'\n",
" Gibt zusätzlich eine hübsche Parameterdarstellung zurück.\n",
" \"\"\"\n",
" ghaNr, variant, params = algorithm_key.split(\"_\", 2)\n",
"\n",
" # Standard: params 그대로\n",
" pretty = params\n",
"\n",
" # Für deine Tabellen: ana hat z.B. '20_4' -> '4, 20' (Segmentgröße, Ordnung)\n",
" if variant == \"ana\":\n",
" # bei dir: params = '20_4' oder '50_8' -> Ordnung_Segment\n",
" # du willst aber: Segment, Ordnung -> '4, 20'\n",
" a, b = params.split(\"_\")\n",
" order = a\n",
" seg = b\n",
" pretty = f\"{seg}, {order}\"\n",
" else:\n",
" # num: '2000' bleibt '2000'\n",
" # approx/ES: oft eine Zahl mit Punkt/Unterstrich? -> 그대로\n",
" pretty = params.replace(\"_\", \", \")\n",
"\n",
" return variant, params, pretty\n",
"\n",
"\n",
"def build_latex_table_from_results(\n",
" results,\n",
" gha_prefix=\"GHA1\",\n",
" example_keys=None,\n",
" caption=\"\",\n",
" label=\"tab:results_algorithms\",\n",
" include_nan_col=False,\n",
" wu=None\n",
"):\n",
" \"\"\"\n",
" Erzeugt LaTeX Tabular (inkl. table-Umgebung) im gewünschten Stil.\n",
" \"\"\"\n",
"\n",
" if example_keys is None:\n",
" example_keys = list(results.keys())\n",
"\n",
" # Metriken & Winkel-Maske wie bei dir\n",
" if gha_prefix == \"GHA1\":\n",
" metric_headers = [\n",
" r\"$\\max(|\\Delta \\beta|)$ [$''$]\",\n",
" r\"$\\max(|\\Delta \\lambda|)$ [$''$]\",\n",
" r\"$\\max(|\\Delta \\alpha_1|)$ [$''$]\",\n",
" r\"time [s]\"\n",
" ]\n",
" angle_mask = [True, True, True, False]\n",
" else:\n",
" metric_headers = [\n",
" r\"$\\max(|\\Delta \\alpha_0|)$ [$''$]\",\n",
" r\"$\\max(|\\Delta \\alpha_1|)$ [$''$]\",\n",
" r\"$\\max(|\\Delta s|)$ [m]\",\n",
" r\"time [s]\"\n",
" ]\n",
" angle_mask = [True, True, False, False]\n",
"\n",
" # Alle Algorithmen sammeln\n",
" algorithms = sorted({\n",
" alg for k in example_keys\n",
" for alg in results[k].keys()\n",
" if alg.startswith(gha_prefix)\n",
" })\n",
"\n",
" # Gruppieren nach variant (ana, num, approx, ES, ...)\n",
" grouped = defaultdict(list)\n",
" for alg in algorithms:\n",
" variant, raw_params, pretty = parse_variant_params(alg)\n",
" grouped[variant].append((alg, pretty))\n",
"\n",
" # gewünschte Reihenfolge (falls vorhanden)\n",
" variant_order = [\"ana\", \"num\", \"approx\", \"ES\"]\n",
" ordered_variants = [v for v in variant_order if v in grouped] + [v for v in grouped.keys() if v not in variant_order]\n",
"\n",
" # LaTeX Header\n",
" cols = 2 + (1 if include_nan_col else 0) + len(metric_headers)\n",
" colspec = \"|\" + \"|\".join([\"c\"] * cols) + \"|\"\n",
"\n",
" header_cells = [\"Methode\", \"Parameterwerte\"]\n",
" if include_nan_col:\n",
" header_cells.append(\"NaN\")\n",
" header_cells += metric_headers\n",
"\n",
" lines = []\n",
" lines.append(r\"\\begin{table}[H]\")\n",
" lines.append(r\"\\centering\")\n",
" if caption:\n",
" lines.append(rf\"\\caption{{{caption}}}\")\n",
" lines.append(rf\"\\label{{{label}}}\")\n",
" lines.append(\"\")\n",
" lines.append(rf\"\\begin{{tabular}}{{{colspec}}}\")\n",
" lines.append(r\"\\hline\")\n",
" lines.append(\" & \".join(header_cells) + r\" \\\\\")\n",
" lines.append(r\"\\Xhline{1.5pt}\")\n",
"\n",
" # Zeilen bauen\n",
" for variant in ordered_variants:\n",
" rows = grouped[variant]\n",
" # für stable output: sort by pretty param (numerisch)\n",
" # (du kannst das ändern, wenn du eine andere Reihenfolge willst)\n",
" def sort_key(t):\n",
" _, pretty = t\n",
" # versuche numerisch zu sortieren\n",
" try:\n",
" parts = [float(p.strip()) for p in pretty.split(\",\")]\n",
" return parts\n",
" except Exception:\n",
" return [pretty]\n",
" rows = sorted(rows, key=sort_key)\n",
"\n",
" multi_n = len(rows)\n",
" method_name = {\n",
" \"ana\": \"analytisch\",\n",
" \"num\": \"numerisch\",\n",
" \"approx\": \"approximiert\"\n",
" }.get(variant, variant)\n",
"\n",
" for idx, (alg, pretty_param) in enumerate(rows):\n",
" row_cells = []\n",
"\n",
" if multi_n > 1:\n",
" if idx == 0:\n",
" row_cells.append(rf\"\\multirow{{{multi_n}}}{{*}}{{{method_name}}}\")\n",
" else:\n",
" row_cells.append(\"\") # Multirow fortsetzen\n",
" else:\n",
" row_cells.append(method_name)\n",
"\n",
" row_cells.append(pretty_param)\n",
"\n",
" if include_nan_col:\n",
" nans = nan_count_for_algorithm(results, example_keys, alg)\n",
" row_cells.append(str(nans))\n",
"\n",
" # Metriken\n",
" for mi in range(len(metric_headers)):\n",
" m = max_abs_metric(results, example_keys, alg, mi, is_angle=angle_mask[mi], wu=wu)\n",
" row_cells.append(to_latex_sci(m, sig=3))\n",
"\n",
" # Zeile + Linienlogik wie in deinem Beispiel\n",
" latex_row = \" & \".join(row_cells) + r\" \\\\\"\n",
"\n",
" # nach letzter Zeile einer Methode eine \\hline (wie bei dir)\n",
" if idx == multi_n - 1:\n",
" latex_row += r\"\\hline\"\n",
" lines.append(latex_row)\n",
"\n",
" lines.append(r\"\\end{tabular}\")\n",
" lines.append(\"\")\n",
" lines.append(r\"\\end{table}\")\n",
"\n",
" return \"\\n\".join(lines)\n",
"\n",
"\n",
"# --- Beispielaufruf ---\n",
"example_keys = list(key for i, key in enumerate(results.keys()) if table_indices[i] == 3) # oder gefiltert auf Panou Gruppe etc.\n",
"latex = build_latex_table_from_results(\n",
" results,\n",
" gha_prefix=\"GHA1\",\n",
" example_keys=example_keys,\n",
" caption=r\"Ergebnisse der Lösungsmethoden der 1. \\gls{GHA} auf einem erdähnlichen Ellipsoid (Gruppe 3)\",\n",
" label=\"tab:results_gha1_g1\",\n",
" include_nan_col=False, # True, wenn du NaN-Spalte willst\n",
" wu=wu # wichtig, falls Winkelwerte rad sind\n",
")\n",
"print(latex)"
],
"id": "98de5e2a4f419483",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\\begin{table}[H]\n",
"\\centering\n",
"\\caption{Ergebnisse der Lösungsmethoden der 1. \\gls{GHA} auf einem erdähnlichen Ellipsoid}\n",
"\\label{tab:results_algorithms}\n",
"\n",
"\\begin{tabular}{|c|c|c|c|c|c|}\n",
"\\hline\n",
"Methode & Parameterwerte & $\\max(|\\Delta \\alpha_0|)$ [$''$] & $\\max(|\\Delta \\alpha_1|)$ [$''$] & $\\max(|\\Delta s|)$ [m] & time [s] \\\\\n",
"\\Xhline{1.5pt}\n",
"numerisch & 2000 & nan & nan & nan & nan \\\\\\hline\n",
"approximiert & 600 & $9.95\\cdot10^{3}$ & $2.77\\cdot10^{3}$ & $0.000888$ & $0.108$ \\\\\\hline\n",
"ES & 20 & $1.07\\cdot10^{4}$ & $4.35\\cdot10^{3}$ & $0.000886$ & $1.47$ \\\\\\hline\n",
"\\end{tabular}\n",
"\n",
"\\end{table}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\moell\\AppData\\Local\\Temp\\ipykernel_25588\\1918125892.py:53: RuntimeWarning:\n",
"\n",
"All-NaN slice encountered\n",
"\n"
]
}
],
"execution_count": 15
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": "",
"id": "a431f99070cdee3c"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,34 +0,0 @@
import numpy as np
from ellipsoide import EllipsoidBiaxial
from GHA_biaxial.bessel import gha1 as gha1_bessel
from GHA_biaxial.gauss import gha1 as gha1_gauss
from GHA_biaxial.rk import gha1 as gha1_rk
from GHA_biaxial.gauss import gha2 as gha2_gauss
re = EllipsoidBiaxial.init_name("Bessel")
# phi0 = 0.6
# lamb0 = 1.2
# alpha0 = 0.45
# s = 123456
#
# values_bessel = gha1_bessel(re, phi0, lamb0, alpha0, s)
# alpha1_bessel = values_bessel[-1]
# p1_bessel = re.bi_ell2cart(values_bessel[0], values_bessel[1], 0)
#
# values_gauss1 = gha1_gauss(re, phi0, lamb0, alpha0, s)
# alpha1_gauss1 = values_gauss1[-1]
# p1_gauss = re.bi_ell2cart(values_gauss1[0], values_gauss1[1], 0)
#
# values_rk = gha1_rk(re, phi0, lamb0 , alpha0, s, 10000)
# alpha1_rk = values_rk[-1]
# p1_rk = re.bi_ell2cart(values_rk[0], values_rk[1], 0)
#
# alpha0_gauss, alpha1_gauss2, s_gauss = gha2_gauss(re, phi0, lamb0, values_gauss1[0], values_gauss1[1])
phi0 = 0.6
lamb0 = 1.2
cart = re.bi_ell2cart(phi0, lamb0, 0)
ell = re.bi_cart2ell(cart)
pass

View File

@@ -10,7 +10,7 @@ def xyz(x: float, y: float, z: float, stellen: int) -> str:
:param stellen: Anzahl Nachkommastellen
:return: String zur Ausgabe der Koordinaten
"""
return f"""x = {(round(x,stellen))} m y = {(round(y,stellen))} m z = {(round(z,stellen))} m"""
return f"""x = {(round(x, stellen))} m y = {(round(y, stellen))} m z = {(round(z, stellen))} m"""
def gms(name: str, rad: float, stellen: int) -> str:
@@ -21,5 +21,5 @@ def gms(name: str, rad: float, stellen: int) -> str:
:param stellen: Anzahl Nachkommastellen
:return: String zur Ausgabe des Winkels
"""
gms = wu.rad2gms(rad)
return f"{name} = {int(gms[0])}° {int(gms[1])}' {round(gms[2],stellen):.{stellen}f}''"
values = wu.rad2gms(rad)
return f"{name} = {int(values[0])}° {int(values[1])}' {round(values[2], stellen):.{stellen}f}''"

File diff suppressed because it is too large Load Diff

View File

@@ -1,116 +1,20 @@
import numpy as np
from numpy import sin, cos, arctan, arctan2, sqrt, pi, arccos
import winkelumrechnungen as wu
import jacobian_Ligas
import matplotlib.pyplot as plt
from typing import Tuple
from numpy.typing import NDArray
import math
from typing import Tuple
import numpy as np
from numpy import arccos, arctan, arctan2, cos, pi, sin, sqrt
from numpy.typing import NDArray
class EllipsoidBiaxial:
def __init__(self, a: float, b: float):
self.a = a
self.b = b
self.c = a ** 2 / b
self.e = sqrt(a ** 2 - b ** 2) / a
self.e_ = sqrt(a ** 2 - b ** 2) / b
import jacobian_Ligas
from utils_angle import wrap_mhalfpi_halfpi, wrap_mpi_pi
@classmethod
def init_name(cls, name: str):
if name == "Bessel":
a = 6377397.15508
b = 6356078.96290
return cls(a, b)
elif name == "Hayford":
a = 6378388
f = 1/297
b = a - a * f
return cls(a, b)
elif name == "Krassowski":
a = 6378245
f = 298.3
b = a - a * f
return cls(a, b)
elif name == "WGS84":
a = 6378137
f = 298.257223563
b = a - a * f
return cls(a, b)
@classmethod
def init_af(cls, a: float, f: float):
b = a - a * f
return cls(a, b)
V = lambda self, phi: sqrt(1 + self.e_ ** 2 * cos(phi) ** 2)
M = lambda self, phi: self.c / self.V(phi) ** 3
N = lambda self, phi: self.c / self.V(phi)
beta2psi = lambda self, beta: np.arctan2(self.a * np.sin(beta), self.b * np.cos(beta))
beta2phi = lambda self, beta: np.arctan2(self.a ** 2 * np.sin(beta), self.b ** 2 * np.cos(beta))
psi2beta = lambda self, psi: np.arctan2(self.b * np.sin(psi), self.a * np.cos(psi))
psi2phi = lambda self, psi: np.arctan2(self.a * np.sin(psi), self.b * np.cos(psi))
phi2beta = lambda self, phi: np.arctan2(self.b**2 * np.sin(phi), self.a**2 * np.cos(phi))
phi2psi = lambda self, phi: np.arctan2(self.b * np.sin(phi), self.a * np.cos(phi))
phi2p = lambda self, phi: self.N(phi) * cos(phi)
def bi_cart2ell(self, point: NDArrayself, Eh: float = 0.001, Ephi: float = wu.gms2rad([0, 0, 0.001])) -> Tuple[float, float, float]:
"""
Umrechnung von kartesischen in ellipsoidische Koordinaten auf einem Rotationsellipsoid
# TODO: Quelle
:param point: Punkt in kartesischen Koordinaten
:param Eh: Grenzwert für die Höhe
:param Ephi: Grenzwert für die Breite
:return: ellipsoidische Breite, Länge, geodätische Höhe
"""
x, y, z = point
lamb = arctan2(y, x)
p = sqrt(x**2+y**2)
phi_null = arctan2(z, p*(1 - self.e**2))
hi = [0]
phii = [phi_null]
i = 0
while True:
N = self.a / sqrt(1 - self.e**2 * sin(phii[i])**2)
h = p / cos(phii[i]) - N
phi = arctan2(z, p * (1-(self.e**2*N) / (N+h)))
hi.append(h)
phii.append(phi)
dh = abs(hi[i]-h)
dphi = abs(phii[i]-phi)
i = i+1
if dh < Eh:
if dphi < Ephi:
break
return phi, lamb, h
def bi_ell2cart(self, phi: float, lamb: float, h: float) -> NDArray:
"""
Umrechnung von ellipsoidischen in kartesische Koordinaten auf einem Rotationsellipsoid
# TODO: Quelle
:param phi: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:param h: geodätische Höhe
:return: Punkt in kartesischen Koordinaten
"""
W = sqrt(1 - self.e**2 * sin(phi)**2)
N = self.a / W
x = (N+h) * cos(phi) * cos(lamb)
y = (N+h) * cos(phi) * sin(lamb)
z = (N * (1-self.e**2) + h) * sin(phi)
return np.array([x, y, z])
class EllipsoidTriaxial:
"""
Klasse für dreiachsige Ellipsoide
Parameter: Formparameter
Funktionen: Koordinatenumrechnungen
"""
def __init__(self, ax: float, ay: float, b: float):
self.ax = ax
self.ay = ay
@@ -124,14 +28,19 @@ class EllipsoidTriaxial:
self.Ex = sqrt(self.ax**2 - self.b**2)
self.Ey = sqrt(self.ay**2 - self.b**2)
self.Ee = sqrt(self.ax**2 - self.ay**2)
nenner = sqrt(max(self.ax * self.ax - self.b * self.b, 0.0))
self.k = sqrt(max(self.ay * self.ay - self.b * self.b, 0.0)) / nenner
self.k_ = sqrt(max(self.ax * self.ax - self.ay * self.ay, 0.0)) / nenner
self.e = sqrt(max(self.ax * self.ax - self.b * self.b, 0.0)) / self.ay
@classmethod
def init_name(cls, name: str):
def init_name(cls, name: str) -> EllipsoidTriaxial:
"""
Mögliche Ellipsoide: BursaFialova1993, BursaSima1980, BursaSima1980round, Eitschberger1978, Bursa1972,
Bursa1970, BesselBiaxial, Fiction, KarneyTest2024
Mögliche Ellipsoide: BursaSima1980round, KarneyTest2024, Fiction, BursaFialova1993, BursaSima1980, Eitschberger1978, Bursa1972,
Bursa1970
Panou et al (2020)
:param name: Name des dreiachsigen Ellipsoids
:return: dreiachsiger Ellipsoid
"""
if name == "BursaFialova1993":
ax = 6378171.36
@@ -164,11 +73,6 @@ class EllipsoidTriaxial:
ay = 6378105
b = 6356754
return cls(ax, ay, b)
elif name == "BesselBiaxial":
ax = 6377397.15509
ay = 6377397.15508
b = 6356078.96290
return cls(ax, ay, b)
elif name == "Fiction":
ax = 6000000
ay = 4000000
@@ -179,6 +83,8 @@ class EllipsoidTriaxial:
ay = 1
b = 1 / sqrt(2)
return cls(ax, ay, b)
else:
raise Exception(f"EllipsoidTriaxial.init_name: Name {name} unbekannt")
def func_H(self, point: NDArray) -> float:
"""
@@ -218,8 +124,10 @@ class EllipsoidTriaxial:
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
self.ax ** 2 + self.ay ** 2) * z ** 2)
if c1 ** 2 - 4 * c0 < 0:
t2 = np.nan
if c1 ** 2 - 4 * c0 < -1e-9:
raise Exception("t1, t2: Negativer Wurzelterm")
elif c1 ** 2 - 4 * c0 < 0:
t2 = 0
else:
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
if t2 == 0:
@@ -261,7 +169,6 @@ class EllipsoidTriaxial:
s1 = 2 * sqrt(p) * cos(omega/3) - c2/3
s2 = 2 * sqrt(p) * cos(omega/3 - 2*pi/3) - c2/3
s3 = 2 * sqrt(p) * cos(omega/3 - 4*pi/3) - c2/3
# print(s1, s2, s3)
beta = arctan(sqrt((-self.b**2 - s2) / (self.ay**2 + s2)))
if abs((-self.ay**2 - s3) / (self.ax**2 + s3)) > 1e-7:
@@ -284,6 +191,11 @@ class EllipsoidTriaxial:
beta, lamb = np.broadcast_arrays(beta, lamb)
beta = np.where(
np.isclose(np.abs(beta), pi / 2, atol=1e-15),
beta * 8999999999999999 / 9000000000000000,
beta
)
B = self.Ex ** 2 * cos(beta) ** 2 + self.Ee ** 2 * sin(beta) ** 2
L = self.Ex ** 2 - self.Ee ** 2 * cos(lamb) ** 2
@@ -412,14 +324,14 @@ class EllipsoidTriaxial:
i += 1
if i == maxI:
raise Exception("Umrechnung ist nicht konvergiert")
raise Exception("Umrechnung cart2ell: nicht konvergiert")
point_n = self.ell2cart(beta, lamb)
delta_r = np.linalg.norm(point - point_n, axis=-1)
if delta_r > 1e-6:
raise Exception("Fehler in der Umrechnung cart2ell")
raise Exception("Umrechnung cart2ell: Punktdifferenz")
return beta, lamb
return wrap_mhalfpi_halfpi(beta), wrap_mpi_pi(lamb)
except Exception as e:
# Wenn die Berechnung fehlschlägt auf Grund von sehr kleinem y, solange anpassen, bis Umrechnung ohne Fehler
@@ -511,7 +423,7 @@ class EllipsoidTriaxial:
i += 1
if i == maxI:
raise Exception("Umrechung ist nicht konvergiert")
raise Exception("Umrechnung cart2ell: nicht konvergiert")
return phi, lamb
@@ -577,6 +489,8 @@ class EllipsoidTriaxial:
invJ, fxE = jacobian_Ligas.case2(E, F, G, np.array([xG, yG, zG]), pE)
elif mode == "ligas3":
invJ, fxE = jacobian_Ligas.case3(E, F, G, np.array([xG, yG, zG]), pE)
else:
raise Exception(f"cart2geod: Modus {mode} nicht bekannt")
pEi = pE.reshape(-1, 1) - invJ @ fxE.reshape(-1, 1)
pEi = pEi.reshape(1, -1).flatten()
loa = sqrt((pEi[0]-pE[0])**2 + (pEi[1]-pE[1])**2 + (pEi[2]-pE[2])**2)
@@ -598,15 +512,15 @@ class EllipsoidTriaxial:
phi, lamb, h = self.cart2geod(point, f"ligas{new_mode}", maxIter, maxLoa)
else:
if xG < 0 and yG < 0:
lamb = -pi + lamb
lamb += -pi
elif xG < 0:
lamb = pi + lamb
lamb += pi
if abs(zG) < eps:
phi = 0
return phi, lamb, h
wrap_mhalfpi_halfpi(phi), wrap_mpi_pi(lamb)
return wrap_mhalfpi_halfpi(phi), wrap_mpi_pi(lamb), h
def para2cart(self, u: float | NDArray, v: float | NDArray) -> NDArray:
"""
@@ -643,8 +557,8 @@ class EllipsoidTriaxial:
v = 2 * arctan2(v_check1, v_check2 + v_factor)
else:
v = pi/2 - 2 * arctan2(v_check2, v_check1 + v_factor)
return u, v
wrap_mhalfpi_halfpi(u), wrap_mpi_pi(v)
return wrap_mhalfpi_halfpi(u), wrap_mpi_pi(v)
def ell2para(self, beta: float, lamb: float) -> Tuple[float, float]:
"""
@@ -749,63 +663,71 @@ class EllipsoidTriaxial:
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980")
diff_list = []
diffs_para = []
diffs_ell = []
diffs_geod = []
points = []
for v_deg in range(-180, 181, 5):
for u_deg in range(-90, 91, 5):
v = wu.deg2rad(v_deg)
u = wu.deg2rad(u_deg)
point = ell.para2cart(u, v)
points.append(point)
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
# cart = ell.ell2cart(pi/2, 0)
# print(cart)
# cart = ell.ell2cart(pi/2*8999999999999999/9000000000000000, 0)
# print(cart)
elli = ell.cart2ell(np.array([0, 0.0, 1/sqrt(2)]))
print(elli)
elli = ell.cart2ell(point)
cart_elli = ell.ell2cart(elli[0], elli[1])
diff_ell = np.linalg.norm(point - cart_elli, axis=-1)
para = ell.cart2para(point)
cart_para = ell.para2cart(para[0], para[1])
diff_para = np.linalg.norm(point - cart_para, axis=-1)
geod = ell.cart2geod(point, "ligas3")
cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
diff_geod3 = np.linalg.norm(point - cart_geod, axis=-1)
diff_list.append([v_deg, u_deg, diff_ell, diff_para, diff_geod3])
diffs_ell.append([diff_ell])
diffs_para.append([diff_para])
diffs_geod.append([diff_geod3])
diff_list = np.array(diff_list)
diffs_ell = np.array(diffs_ell)
diffs_para = np.array(diffs_para)
diffs_geod = np.array(diffs_geod)
pass
points = np.array(points)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
sc = ax.scatter(
points[:, 0],
points[:, 1],
points[:, 2],
c=diffs_ell, # Farbcode = diff
cmap='viridis', # Colormap
s=10 + 20 * diffs_ell, # optional: Größe abhängig vom diff
alpha=0.8
)
# Farbskala
cbar = plt.colorbar(sc)
cbar.set_label("diff")
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
plt.show()
# ell = EllipsoidTriaxial.init_name("BursaSima1980")
# diff_list = []
# diffs_para = []
# diffs_ell = []
# diffs_geod = []
# points = []
# for v_deg in range(-180, 181, 5):
# for u_deg in range(-90, 91, 5):
# v = wu.deg2rad(v_deg)
# u = wu.deg2rad(u_deg)
# point = ell.para2cart(u, v)
# points.append(point)
#
# elli = ell.cart2ell(point)
# cart_elli = ell.ell2cart(elli[0], elli[1])
# diff_ell = np.linalg.norm(point - cart_elli, axis=-1)
#
# para = ell.cart2para(point)
# cart_para = ell.para2cart(para[0], para[1])
# diff_para = np.linalg.norm(point - cart_para, axis=-1)
#
# geod = ell.cart2geod(point, "ligas3")
# cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
# diff_geod3 = np.linalg.norm(point - cart_geod, axis=-1)
#
# diff_list.append([v_deg, u_deg, diff_ell, diff_para, diff_geod3])
# diffs_ell.append([diff_ell])
# diffs_para.append([diff_para])
# diffs_geod.append([diff_geod3])
#
# diff_list = np.array(diff_list)
# diffs_ell = np.array(diffs_ell)
# diffs_para = np.array(diffs_para)
# diffs_geod = np.array(diffs_geod)
#
# pass
#
# points = np.array(points)
# fig = plt.figure()
# ax = fig.add_subplot(projection='3d')
#
# sc = ax.scatter(
# points[:, 0],
# points[:, 1],
# points[:, 2],
# c=diffs_ell, # Farbcode = diff
# cmap='viridis', # Colormap
# s=10 + 20 * diffs_ell, # optional: Größe abhängig vom diff
# alpha=0.8
# )
#
# # Farbskala
# cbar = plt.colorbar(sc)
# cbar.set_label("diff")
#
# ax.set_xlabel("X")
# ax.set_ylabel("Y")
# ax.set_zlabel("Z")
#
# plt.show()

View File

@@ -1,6 +1,8 @@
from typing import Tuple
import numpy as np
from numpy.typing import NDArray
from typing import Tuple
def case1(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]:
"""
@@ -34,7 +36,7 @@ def case1(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArr
return invJ, fxE
def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray) -> Tuple[NDArray, NDArray]:
def case2(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]:
"""
Aufstellen des Gleichungssystem für den zweiten Fall
:param E: Konstante E
@@ -68,7 +70,7 @@ def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray) -> Tuple
return invJ, fxE
def case3(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray) -> Tuple[NDArray, NDArray]:
def case3(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]:
"""
Aufstellen des Gleichungssystem für den dritten Fall
:param E: Konstante E

View File

@@ -1,10 +1,20 @@
from numpy import *
import scipy as sp
from ellipsoide import EllipsoidBiaxial
from typing import Tuple
import scipy as sp
from ellipsoid_biaxial import EllipsoidBiaxial
from numpy import *
def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0:float, s: float) -> Tuple[float, float, float]:
"""
Berechnung der 1.GHA auf einem Rotationsellipsoid nach Bessel
:param re:
:param phi0:
:param lamb0:
:param alpha0:
:param s:
:return:
"""
psi0 = re.phi2psi(phi0)
clairant = arcsin(cos(psi0) * sin(alpha0))
sigma0 = arcsin(sin(psi0) / cos(clairant))

View File

@@ -1,8 +1,8 @@
from numpy import sin, cos, pi, sqrt, tan, arcsin, arccos, arctan
import ausgaben as aus
from ellipsoide import EllipsoidBiaxial
from typing import Tuple
from ellipsoid_biaxial import EllipsoidBiaxial
from numpy import arctan, cos, sin, sqrt, tan
def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0: float, s: float, eps: float = 1e-12) -> Tuple[float, float, float]:
"""

View File

@@ -1,13 +1,26 @@
import runge_kutta as rk
from numpy import sin, cos, tan
import winkelumrechnungen as wu
from ellipsoide import EllipsoidBiaxial
from typing import Tuple
import numpy as np
from ellipsoid_biaxial import EllipsoidBiaxial
from numpy import cos, sin, tan
from numpy.typing import NDArray
import runge_kutta as rk
def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0: float, s: float, num: int) -> Tuple[float, float, float]:
"""
Berechnung der 1. GHA auf einem Rotationsellipsoid mittels RK4
:param re:
:param phi0:
:param lamb0:
:param alpha0:
:param s:
:param num:
:return:
"""
def buildODE():
def ODE(s, v):
def ODE(s: float, v: NDArray):
phi, lam, A = v
V = re.V(phi)
dphi = cos(A) * V ** 3 / re.c

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,56 +1,41 @@
{
"cells": [
{
"metadata": {},
"cell_type": "code",
"id": "initial_id",
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2026-01-20T15:30:31.978159Z",
"start_time": "2026-01-20T15:30:31.835157Z"
}
},
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
],
"id": "a78faf7f4883772f",
"outputs": [],
"execution_count": 1
"execution_count": null
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2026-01-20T15:30:33.910807Z",
"start_time": "2026-01-20T15:30:32.803089Z"
}
},
"metadata": {},
"cell_type": "code",
"source": [
"%reload_ext autoreload\n",
"%autoreload 2\n",
"import numpy as np\n",
"\n",
"import winkelumrechnungen as wu\n",
"from ellipsoide import EllipsoidTriaxial\n",
"from GHA_triaxial.utils import alpha_para2ell, alpha_ell2para\n",
"import numpy as np"
"from GHA_triaxial.utils import alpha_ell2para, alpha_para2ell\n",
"from ellipsoid_triaxial import EllipsoidTriaxial"
],
"id": "9ad815aea55574e3",
"id": "46aa84a937fea491",
"outputs": [],
"execution_count": 2
"execution_count": null
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2026-01-20T15:33:40.785362Z",
"start_time": "2026-01-20T15:33:34.296487Z"
}
},
"metadata": {},
"cell_type": "code",
"source": [
"ell = EllipsoidTriaxial.init_name(\"KarneyTest2024\")\n",
"diffs = []\n",
"for beta_deg in range(-180, 181, 45):\n",
" for lamb_deg in range(-90, 91, 45):\n",
" for alpha_deg in range(0, 360, 45):\n",
"for beta_deg in range(-90, 91, 15):\n",
" for lamb_deg in range(-180, 180, 15):\n",
" for alpha_deg in range(0, 360, 15):\n",
" beta = wu.deg2rad(beta_deg)\n",
" lamb = wu.deg2rad(lamb_deg)\n",
" u, v = ell.ell2para(beta, lamb)\n",
@@ -67,17 +52,12 @@
" diffs.append((beta_deg, lamb_deg, alpha_deg, diff_1, diff_2))\n",
"diffs = np.array(diffs)"
],
"id": "98b9b220118deb3f",
"id": "82fc6cbbe7d5abcb",
"outputs": [],
"execution_count": 6
"execution_count": null
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2026-01-20T15:33:50.497990Z",
"start_time": "2026-01-20T15:33:50.261115Z"
}
},
"metadata": {},
"cell_type": "code",
"source": [
"i_max_ell = np.argmax(diffs[:, 3])\n",
@@ -92,18 +72,9 @@
"print(f'Für parametrisches Alpha = {point_max_para[2]}° und beta = {point_max_para[0]}°, lamb = {point_max_para[1]}°: diff = {max_ell}\"')\n",
"pass"
],
"id": "3c74b65b0e85e3c2",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Für elliptisches Alpha = 315.0° und beta = -90.0°, lamb = -90.0°: diff = 3.426945967752335e-05\"\n",
"Für parametrisches Alpha = 315.0° und beta = -90.0°, lamb = -90.0°: diff = 3.426945967752335e-05\"\n"
]
}
],
"execution_count": 7
"id": "97b5b8c9ca5377ab",
"outputs": [],
"execution_count": null
}
],
"metadata": {

View File

@@ -20,13 +20,14 @@
"source": [
"%reload_ext autoreload\n",
"%autoreload 2\n",
"import pickle\n",
"import numpy as np\n",
"import winkelumrechnungen as wu\n",
"from itertools import product\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"from ellipsoide import EllipsoidTriaxial\n",
"import plotly.graph_objects as go"
"import plotly.graph_objects as go\n",
"\n",
"import winkelumrechnungen as wu\n",
"from ellipsoid_triaxial import EllipsoidTriaxial"
],
"outputs": [],
"execution_count": null

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

View File

@@ -0,0 +1,126 @@
from typing import Tuple
import numpy as np
from numpy import arctan2, cos, sin, sqrt
from numpy.typing import NDArray
import winkelumrechnungen as wu
class EllipsoidBiaxial:
"""
Klasse für Rotationsellipdoide
"""
def __init__(self, a: float, b: float):
self.a = a
self.b = b
self.c = a ** 2 / b
self.e = sqrt(a ** 2 - b ** 2) / a
self.e_ = sqrt(a ** 2 - b ** 2) / b
@classmethod
def init_name(cls, name: str) -> EllipsoidBiaxial:
"""
Erstellen eines Rotationsellipdoids nach Namen
:param name: Name des Rotationsellipsoids
:return: Rotationsellipsoid
"""
if name == "Bessel":
a = 6377397.15508
b = 6356078.96290
return cls(a, b)
elif name == "Hayford":
a = 6378388
f = 1/297
b = a - a * f
return cls(a, b)
elif name == "Krassowski":
a = 6378245
f = 298.3
b = a - a * f
return cls(a, b)
elif name == "WGS84":
a = 6378137
f = 298.257223563
b = a - a * f
return cls(a, b)
else:
raise Exception(f"EllipsoidBiaxial.init_name: Name {name} unbekannt")
@classmethod
def init_af(cls, a: float, f: float) -> EllipsoidBiaxial:
"""
Erstellen eines Rotationsellipdoids aus der großen Halbachse und der Abplattung
:param a: große Halbachse
:param f: großen Halbachse
:return: Rotationsellipsoid
"""
b = a - a * f
return cls(a, b)
V = lambda self, phi: sqrt(1 + self.e_ ** 2 * cos(phi) ** 2)
M = lambda self, phi: self.c / self.V(phi) ** 3
N = lambda self, phi: self.c / self.V(phi)
beta2psi = lambda self, beta: arctan2(self.a * sin(beta), self.b * cos(beta))
beta2phi = lambda self, beta: arctan2(self.a ** 2 * sin(beta), self.b ** 2 * cos(beta))
psi2beta = lambda self, psi: arctan2(self.b * sin(psi), self.a * cos(psi))
psi2phi = lambda self, psi: arctan2(self.a * sin(psi), self.b * cos(psi))
phi2beta = lambda self, phi: arctan2(self.b**2 * sin(phi), self.a**2 * cos(phi))
phi2psi = lambda self, phi: arctan2(self.b * sin(phi), self.a * cos(phi))
phi2p = lambda self, phi: self.N(phi) * cos(phi)
def bi_cart2ell(self, point: NDArray, Eh: float = 0.001, Ephi: float = wu.gms2rad([0, 0, 0.001])) -> Tuple[float, float, float]:
"""
Umrechnung von kartesischen in ellipsoidische Koordinaten auf einem Rotationsellipsoid
# TODO: Quelle
:param point: Punkt in kartesischen Koordinaten
:param Eh: Grenzwert für die Höhe
:param Ephi: Grenzwert für die Breite
:return: ellipsoidische Breite, Länge, geodätische Höhe
"""
x, y, z = point
lamb = arctan2(y, x)
p = sqrt(x**2+y**2)
phi_null = arctan2(z, p*(1 - self.e**2))
hi = [0]
phii = [phi_null]
i = 0
while True:
N = self.a / sqrt(1 - self.e**2 * sin(phii[i])**2)
h = p / cos(phii[i]) - N
phi = arctan2(z, p * (1-(self.e**2*N) / (N+h)))
hi.append(h)
phii.append(phi)
dh = abs(hi[i]-h)
dphi = abs(phii[i]-phi)
i += 1
if dh < Eh:
if dphi < Ephi:
break
return phi, lamb, h
def bi_ell2cart(self, phi: float, lamb: float, h: float) -> NDArray:
"""
Umrechnung von ellipsoidischen in kartesische Koordinaten auf einem Rotationsellipsoid
# TODO: Quelle
:param phi: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:param h: geodätische Höhe
:return: Punkt in kartesischen Koordinaten
"""
W = sqrt(1 - self.e**2 * sin(phi)**2)
N = self.a / W
x = (N+h) * cos(phi) * cos(lamb)
y = (N+h) * cos(phi) * sin(lamb)
z = (N * (1-self.e**2) + h) * sin(phi)
return np.array([x, y, z])

View File

@@ -1,7 +1,9 @@
import numpy as np
from numpy import sqrt, arctan2, sin, cos, arcsin, arccos
from numpy.typing import NDArray
from typing import Tuple
import numpy as np
from numpy import arccos, arcsin, arctan2, cos, pi, sin, sqrt
from numpy.typing import NDArray
import winkelumrechnungen as wu
@@ -77,7 +79,7 @@ def gha2(R: float, phi0: float, lamb0: float, phi1: float, lamb1: float) -> Tupl
alpha1 = arctan2(-cos(phi0) * sin(lamb1 - lamb0),
cos(phi1) * sin(phi0) - sin(phi1) * cos(phi0) * cos(lamb1 - lamb0))
if alpha1 < 0:
alpha1 += 2 * np.pi
alpha1 += 2 * pi
return alpha0, alpha1, s

View File

@@ -9,10 +9,11 @@
},
"cell_type": "code",
"source": [
"import plotly.graph_objects as go\n",
"import numpy as np\n",
"from ellipsoide import EllipsoidTriaxial\n",
"import winkelumrechnungen as wu"
"import plotly.graph_objects as go\n",
"\n",
"import winkelumrechnungen as wu\n",
"from ellipsoid_triaxial import EllipsoidTriaxial"
],
"id": "731173e4745cfe7c",
"outputs": [],

8
nicht abgeben/test.py Normal file
View File

@@ -0,0 +1,8 @@
import numpy as np
import ellipsoid_triaxial
ell = ellipsoid_triaxial.EllipsoidTriaxial.init_name("KarneyTest2024")
cart = ell.para2cart(0, np.pi/2)
print(cart)

7
requirements.txt Normal file
View File

@@ -0,0 +1,7 @@
numpy~=2.3.4
plotly~=6.4.0
pandas~=2.3.3
scipy~=1.16.3
dash-bootstrap-components~=2.0.4
dash~=4.0.0
matplotlib~=3.10.7

View File

@@ -1,7 +1,10 @@
from typing import Callable
import numpy as np
from numpy.typing import NDArray
def rk4(ode, t0: float, v0: np.ndarray, weite: float, schritte: int, fein: bool = False) -> tuple[list, list]:
def rk4(ode: Callable, t0: float, v0: NDArray, weite: float, schritte: int, fein: bool = False) -> tuple[list, list]:
"""
Standard Runge-Kutta Verfahren 4. Ordnung
:param ode: ODE-System als Funktion
@@ -9,7 +12,7 @@ def rk4(ode, t0: float, v0: np.ndarray, weite: float, schritte: int, fein: bool
:param v0: Startwerte
:param weite: Integrationsweite
:param schritte: Schrittzahl
:param fein:
:param fein: Fein-Rechnung?
:return: Variable und Funktionswerte an jedem Stützpunkt
"""
h = weite/schritte
@@ -35,9 +38,118 @@ def rk4(ode, t0: float, v0: np.ndarray, weite: float, schritte: int, fein: bool
return t_list, werte
def rk4_step(ode, t: float, v: np.ndarray, h: float) -> np.ndarray:
def rk4_step(ode: Callable, t: float, v: NDArray, h: float) -> NDArray:
"""
Ein Schritt des Runge-Kutta Verfahrens 4. Ordnung
:param ode: ODE-System als Funktion
:param t: unabhängige Variable
:param v: abhängige Variablen
:param h: Schrittweite
:return: abhängige Variablen nach einem Schritt
"""
k1 = ode(t, v)
k2 = ode(t + 0.5 * h, v + 0.5 * h * k1)
k3 = ode(t + 0.5 * h, v + 0.5 * h * k2)
k4 = ode(t + h, v + h * k3)
return v + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
return v + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
def rk4_end(ode: Callable, t0: float, v0: NDArray, weite: float, schritte: int, fein: bool = False):
"""
Standard Runge-Kutta Verfahren 4. Ordnung, nur Ausgabe der letzten Variablenwerte
:param ode: ODE-System als Funktion
:param t0: Startwert der unabhängigen Variable
:param v0: Startwerte
:param weite: Integrationsweite
:param schritte: Schrittzahl
:param fein: Fein-Rechnung?
:return: Variable und Funktionswerte am letzten Stützpunkt
"""
h = weite / schritte
t = float(t0)
v = np.array(v0, dtype=float, copy=True)
for _ in range(schritte):
if not fein:
v_next = rk4_step(ode, t, v, h)
else:
v_grob = rk4_step(ode, t, v, h)
v_half = rk4_step(ode, t, v, 0.5 * h)
v_fein = rk4_step(ode, t + 0.5 * h, v_half, 0.5 * h)
v_next = v_fein + (v_fein - v_grob) / 15.0
t += h
v = v_next
return t, v
# RK4 mit Simpson bzw. Trapez
def rk4_integral(ode: Callable, t0: float, v0: NDArray, weite: float, schritte: int, integrand_at: Callable, fein: bool = False, simpson: bool = True):
"""
Runge-Kutta Verfahren 4. Ordnung mit Simpson bzw. Trapez
:param ode: ODE-System als Funktion
:param t0: Startwert der unabhängigen Variable
:param v0: Startwerte
:param weite: Integrationsweite
:param integrand_at: Funktion
:param schritte: Schrittzahl
:param fein: Fein-Rechnung?
:param simpson: Simpson? Wenn nein, dann Trapez
:return: Variable und Funktionswerte am letzten Stützpunkt
"""
h = weite / schritte
habs = abs(h)
t = float(t0)
v = np.array(v0, dtype=float, copy=True)
if simpson and (schritte % 2 == 0):
f0 = float(integrand_at(t, v))
odd_sum = 0.0
even_sum = 0.0
fN = None
for i in range(1, schritte + 1):
if not fein:
v_next = rk4_step(ode, t, v, h)
else:
v_grob = rk4_step(ode, t, v, h)
v_half = rk4_step(ode, t, v, 0.5 * h)
v_fein = rk4_step(ode, t + 0.5 * h, v_half, 0.5 * h)
v_next = v_fein + (v_fein - v_grob) / 15.0
t += h
v = v_next
fi = float(integrand_at(t, v))
if i == schritte:
fN = fi
elif i % 2 == 1:
odd_sum += fi
else:
even_sum += fi
S = f0 + fN + 4.0 * odd_sum + 2.0 * even_sum
s = (habs / 3.0) * S
return t, v, s
f_prev = float(integrand_at(t, v))
acc = 0.0
for _ in range(schritte):
if not fein:
v_next = rk4_step(ode, t, v, h)
else:
v_grob = rk4_step(ode, t, v, h)
v_half = rk4_step(ode, t, v, 0.5 * h)
v_fein = rk4_step(ode, t + 0.5 * h, v_half, 0.5 * h)
v_next = v_fein + (v_fein - v_grob) / 15.0
t += h
v = v_next
f_cur = float(integrand_at(t, v))
acc += 0.5 * (f_prev + f_cur)
f_prev = f_cur
s = habs * acc
return t, v, s

View File

@@ -1,7 +0,0 @@
import numpy as np
import ellipsoide
ell = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
cart = ell.para2cart(0, np.pi/2)
print(cart)

View File

@@ -1,13 +1,54 @@
import numpy as np
import winkelumrechnungen as wu
def arccot(x):
def arccot(x: float) -> float:
"""
Berechnung von arccot eines Winkels
:param x: Winkel
:return: arccot(Winkel)
"""
return np.arctan2(1.0, x)
def cot(a):
return np.cos(a) / np.sin(a)
def cot(x: float) -> float:
"""
Berechnung von cot eines Winkels
:param x: Winkel
:return: cot(Winkel)
"""
return np.cos(x) / np.sin(x)
def wrap_to_pi(x):
def wrap_mpi_pi(x: float) -> float:
"""
Wrap eines Winkels in den Wertebereich [-π, π)
:param x: Winkel
:return: Winkel in [-π, π)
"""
return (x + np.pi) % (2 * np.pi) - np.pi
def wrap_mhalfpi_halfpi(x: float) -> float:
"""
Wrap eines Winkels in den Wertebereich [-π/2, π/2)
:param x: Winkel
:return: Winkel in [-π/2, π/2)
"""
return (x + np.pi / 2) % np.pi - np.pi / 2
def wrap_0_2pi(x: float) -> float:
"""
Wrap eines Winkels in den Wertebereich [0, 2π)
:param x: Winkel
:return: Winkel in [0, 2π)
"""
return x % (2 * np.pi)
if __name__ == "__main__":
print(wu.rad2deg(wrap_mhalfpi_halfpi(wu.deg2rad(181))))
print(wu.rad2deg(wrap_0_2pi(wu.deg2rad(181))))
print(wu.rad2deg(wrap_mpi_pi(wu.deg2rad(181))))