Umrechnung geod cart
This commit is contained in:
@@ -10,9 +10,7 @@ def xyz(x: float, y: float, z: float, stellen: int) -> str:
|
||||
:param stellen: Anzahl Nachkommastellen
|
||||
:return: String zur Ausgabe der Koordinaten
|
||||
"""
|
||||
return f"""x = {(round(x,stellen))} m
|
||||
y = {(round(y,stellen))} m
|
||||
z = {(round(z,stellen))} m"""
|
||||
return f"""x = {(round(x,stellen))} m y = {(round(y,stellen))} m z = {(round(z,stellen))} m"""
|
||||
|
||||
|
||||
def gms(name: str, rad: float, stellen: int) -> str:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import numpy as np
|
||||
import winkelumrechnungen as wu
|
||||
import ausgaben as aus
|
||||
import jacobian_Ligas
|
||||
|
||||
|
||||
class EllipsoidBiaxial:
|
||||
@@ -87,9 +88,12 @@ class EllipsoidTriaxial:
|
||||
self.ax = ax
|
||||
self.ay = ay
|
||||
self.b = b
|
||||
self.ex = np.sqrt(self.ax**2 - self.b**2)
|
||||
self.ey = np.sqrt(self.ay**2 - self.b**2)
|
||||
self.ee = np.sqrt(self.ax**2 - self.ay**2)
|
||||
self.ex = np.sqrt((self.ax**2 - self.b**2) / self.ax**2)
|
||||
self.ey = np.sqrt((self.ay**2 - self.b**2) / self.ay**2)
|
||||
self.ee = np.sqrt((self.ax**2 - self.ay**2) / self.ax**2)
|
||||
self.ex_ = np.sqrt((self.ax**2 - self.b**2) / self.b**2)
|
||||
self.ey_ = np.sqrt((self.ay**2 - self.b**2) / self.b**2)
|
||||
self.ee_ = np.sqrt((self.ax**2 - self.ay**2) / self.ay**2)
|
||||
|
||||
@classmethod
|
||||
def init_name(cls, name: str):
|
||||
@@ -170,6 +174,53 @@ class EllipsoidTriaxial:
|
||||
|
||||
return beta, lamb, u
|
||||
|
||||
def cart2geod(self, mode: str, xG, yG, zG, maxIter=30, maxLoa=0.005):
|
||||
"""
|
||||
Ligas 2012
|
||||
:param mode:
|
||||
:param xG:
|
||||
:param yG:
|
||||
:param zG:
|
||||
:param maxIter:
|
||||
:param maxLoa:
|
||||
:return:
|
||||
"""
|
||||
rG = np.sqrt(xG**2 + yG**2 + zG**2)
|
||||
pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64)
|
||||
|
||||
E = 1 / self.ax**2
|
||||
F = 1 / self.ay**2
|
||||
G = 1 / self.b**2
|
||||
|
||||
i = 0
|
||||
loa = np.inf
|
||||
|
||||
while i < maxIter and loa > maxLoa:
|
||||
if mode == "ligas1":
|
||||
invJ, fxE = jacobian_Ligas.case1(E, F, G, np.array([xG, yG, zG]), pE)
|
||||
elif mode == "ligas2":
|
||||
invJ, fxE = jacobian_Ligas.case2(E, F, G, np.array([xG, yG, zG]), pE)
|
||||
elif mode == "ligas3":
|
||||
invJ, fxE = jacobian_Ligas.case3(E, F, G, np.array([xG, yG, zG]), pE)
|
||||
pEi = pE.reshape(-1, 1) - invJ @ fxE.reshape(-1, 1)
|
||||
pEi = pEi.reshape(1, -1).flatten()
|
||||
loa = np.sqrt((pEi[0]-pE[0])**2 + (pEi[1]-pE[1])**2 + (pEi[2]-pE[2])**2)
|
||||
pE = pEi
|
||||
i += 1
|
||||
|
||||
phi = np.arctan((1-self.ee**2) / (1-self.ex**2) * pE[2] / np.sqrt((1-self.ee**2)**2 * pE[0]**2 + pE[1]**2))
|
||||
lamb = np.arctan(1/(1-self.ee**2) * pE[1]/pE[0])
|
||||
h = np.sign(zG-pE[2]) * np.sign(pE[2]) * np.sqrt((pE[0]-xG)**2 + (pE[1]-yG)**2 + (pE[2]-zG)**2)
|
||||
|
||||
return phi, lamb, h
|
||||
|
||||
def geod2cart(self, phi, lamb, h):
|
||||
v = self.ax / np.sqrt(1 - self.ex**2*np.sin(phi)**2-self.ee**2*np.cos(phi)**2*np.sin(lamb)**2)
|
||||
xG = (v + h) * np.cos(phi) * np.cos(lamb)
|
||||
yG = (v * (1-self.ee**2) + h) * np.cos(phi) * np.sin(lamb)
|
||||
zG = (v * (1-self.ex**2) + h) * np.sin(phi)
|
||||
return xG, yG, zG
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ellips = EllipsoidTriaxial.init_name("Eitschberger1978")
|
||||
@@ -177,6 +228,19 @@ if __name__ == "__main__":
|
||||
# carts = ellips.ell2cart(10, 30, 6378172)
|
||||
# ells = ellips.cart2ell(carts[0], carts[1], carts[2])
|
||||
|
||||
carts = ellips.ell2cart(90, 0, 6356754.4)
|
||||
# carts = ellips.ell2cart(10, 25, 6378293.435)
|
||||
# print(aus.gms("beta", ells[0], 3), aus.gms("lambda", ells[1], 3), "u =", ells[2])
|
||||
stellen = 20
|
||||
geod1 = ellips.cart2geod("ligas1", 5712200, 2663400, 1106000)
|
||||
print(aus.gms("phi", geod1[0], stellen), aus.gms("lambda", geod1[1], stellen), "h =", geod1[2])
|
||||
geod2 = ellips.cart2geod("ligas2", 5712216.95426783, 2663487.024865021, 1106098.8415910944)
|
||||
print(aus.gms("phi", geod2[0], stellen), aus.gms("lambda", geod2[1], stellen), "h =", geod2[2])
|
||||
geod3 = ellips.cart2geod("ligas3", 5712216.95426783, 2663487.024865021, 1106098.8415910944)
|
||||
print(aus.gms("phi", geod3[0], stellen), aus.gms("lambda", geod3[1], stellen), "h =", geod3[2])
|
||||
cart1 = ellips.geod2cart(geod1[0], geod1[1], geod1[2])
|
||||
print(aus.xyz(cart1[0], cart1[1], cart1[2], 10))
|
||||
cart2 = ellips.geod2cart(geod2[0], geod2[1], geod2[2])
|
||||
print(aus.xyz(cart2[0], cart2[1], cart2[2], 10))
|
||||
cart3 = ellips.geod2cart(geod3[0], geod3[1], geod3[2])
|
||||
print(aus.xyz(cart3[0], cart3[1], cart3[2], 10))
|
||||
pass
|
||||
|
||||
69
jacobian_Ligas.py
Normal file
69
jacobian_Ligas.py
Normal file
@@ -0,0 +1,69 @@
|
||||
import numpy as np
|
||||
|
||||
def case1(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
|
||||
j11 = 2 * E * pE[0]
|
||||
j12 = 2 * F * pE[1]
|
||||
j13 = 2 * G * pE[2]
|
||||
j21 = F * pE[1] - (pE[1] - pG[1]) * E
|
||||
j22 = (pE[0] - pG[0]) * F - E * pE[0]
|
||||
j23 = 0
|
||||
j31 = G * pE[2] - (pE[2] - pG[2]) * E
|
||||
j32 = 0
|
||||
j33 = (pE[0] - pG[0]) * G - E * pE[0]
|
||||
|
||||
detJ = j11 * j22 * j33 - j21 * j12 * j33 - j31 * j13 * j22
|
||||
|
||||
invJ = 1/detJ * np.array([[j22*j33, -j12*j33, -j13*j22],
|
||||
[-j21*j33, j11*j33-j13*j31, j13*j21],
|
||||
[-j22*j31, j12*j31, j11*j22-j12*j21]])
|
||||
|
||||
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
|
||||
(pE[0]-pG[0]) * F*pE[1] - (pE[1]-pG[1]) * E*pE[0],
|
||||
(pE[0]-pG[0]) * G*pE[2] - (pE[2]-pG[2]) * E*pE[0]])
|
||||
|
||||
return invJ, fxE
|
||||
|
||||
def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
|
||||
j11 = 2 * E * pE[0]
|
||||
j12 = 2 * F * pE[1]
|
||||
j13 = 2 * G * pE[2]
|
||||
j21 = F * pE[1] - (pE[1] - pG[1]) * E
|
||||
j22 = (pE[0] - pG[0]) * F - E * pE[0]
|
||||
j23 = 0
|
||||
j31 = 0
|
||||
j32 = G * pE[2] - (pE[2] - pG[2]) * F
|
||||
j33 = (pE[1] - pG[1]) * G - F * pE[1]
|
||||
|
||||
detJ = j11 * j22 * j33 - j21 * j12 * j33 + j21 * j13 * j32
|
||||
invJ = 1/detJ * np.array([[j22*j33, -(j12*j33-j13*j32), -j13*j22],
|
||||
[-j21*j33, j11*j33, j13*j21],
|
||||
[j21*j32, -j11*j32, j11*j22-j12*j21]])
|
||||
|
||||
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
|
||||
(pE[0]-pG[0]) * F*pE[1] - (pE[1]-pG[1]) * E*pE[0],
|
||||
(pE[1]-pG[1]) * G*pE[2] - (pE[2]-pG[2]) * F*pE[1]])
|
||||
|
||||
return invJ, fxE
|
||||
|
||||
def case3(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
|
||||
j11 = 2 * E * pE[0]
|
||||
j12 = 2 * F * pE[1]
|
||||
j13 = 2 * G * pE[2]
|
||||
j21 = G * pE[2] - (pE[2] - pG[2]) * E
|
||||
j22 = 0
|
||||
j23 = (pE[0] - pG[0]) * G - E * pE[0]
|
||||
j31 = 0
|
||||
j32 = G * pE[2] - (pE[2] - pG[2]) * F
|
||||
j33 = (pE[1] - pG[1]) * G - F * pE[1]
|
||||
|
||||
detJ = -j11 * j23 * j32 - j21 * j12 * j33 + j21 * j13 * j32
|
||||
|
||||
invJ = 1/detJ * np.array([[-j23*j32, -(j12*j33-j13*j32), j12*j23],
|
||||
[-j21*j33, j11*j33, -(j11*j23-j13*j21)],
|
||||
[j21*j32, -j11*j32, -j12*j21]])
|
||||
|
||||
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
|
||||
(pE[0]-pG[0]) * G*pE[2] - (pE[2]-pG[2]) * E*pE[0],
|
||||
(pE[1]-pG[1]) * G*pE[2] - (pE[2]-pG[2]) * F*pE[1]])
|
||||
|
||||
return invJ, fxE
|
||||
24
test.py
Normal file
24
test.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import numpy as np
|
||||
|
||||
J = np.array([
|
||||
[2, 3, 0],
|
||||
[0, 3, 0],
|
||||
[6, 0, 4]
|
||||
])
|
||||
|
||||
xi = np.array([1, 2, 3])
|
||||
xi_col = xi.reshape(-1, 1)
|
||||
print(xi_col)
|
||||
xi_row = xi_col.reshape(1, -1).flatten()
|
||||
print(xi_row)
|
||||
|
||||
# Spaltenvektor-Variante
|
||||
res_col = xi[:, None] - J @ xi[:, None]
|
||||
|
||||
# Zeilenvektor-Variante
|
||||
res_row = xi[None, :] - xi[None, :] @ J
|
||||
|
||||
print("Spaltenvektor:")
|
||||
print(res_col[0,0])
|
||||
print("Zeilenvektor:")
|
||||
print(res_row)
|
||||
Reference in New Issue
Block a user