Files
Masterprojekt_V3/Netzqualität_Genauigkeit.py

195 lines
6.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import numpy as np
import plotly.graph_objects as go
from scipy.stats import f as f_dist
import pandas as pd
class Genauigkeitsmaße:
@staticmethod
def berechne_s0apost(v: np.ndarray, P: np.ndarray, r: int) -> float:
vTPv_matrix = v.T @ P @ v
vTPv = float(vTPv_matrix.item())
s0apost = np.sqrt(vTPv / r)
return float(s0apost)
def helmert_punktfehler(Qxx, s0_apost, unbekannten_liste, dim=3):
diagQ = np.diag(Qxx)
daten = []
n_punkte = len(unbekannten_liste) // 3
for i in range(n_punkte):
sym_x = str(unbekannten_liste[3 * i]) # z.B. "X10009"
punkt = sym_x[1:] # -> "10009"
qx = diagQ[3 * i]
qy = diagQ[3 * i + 1]
qz = diagQ[3 * i + 2]
sx = s0_apost * np.sqrt(qx)
sy = s0_apost * np.sqrt(qy)
sz = s0_apost * np.sqrt(qz)
if dim == 2:
sP = s0_apost * np.sqrt(qx + qy)
else:
sP = s0_apost * np.sqrt(qx + qy + qz)
daten.append([
punkt,
float(sx),
float(sy),
float(sz),
float(sP)
])
helmert_punktfehler = pd.DataFrame(daten, columns=["Punkt", "σx", "σy", "σz", f"σP_{dim}D"])
return helmert_punktfehler
def standardellipse(Qxx, s0_apost, unbekannten_liste, dim_labels=3):
Qxx = np.asarray(Qxx, float)
data = []
n_punkte = len(unbekannten_liste) // dim_labels
for i in range(n_punkte):
sym_x = str(unbekannten_liste[dim_labels * i]) # z.B. "X10009"
punkt = sym_x[1:] # -> "10009"
ix = dim_labels * i
iy = dim_labels * i + 1
# 2x2-Kofaktorblock
Qxx_ = Qxx[ix, ix]
Qyy_ = Qxx[iy, iy]
Qyx_ = Qxx[iy, ix]
# Standardabweichungen der Koordinatenkomponenten
sx = s0_apost * np.sqrt(Qxx_)
sy = s0_apost * np.sqrt(Qyy_)
sxy = (s0_apost ** 2) * Qyx_
# k und Eigenwerte (Q_dmax, Q_dmin)
k = np.sqrt((Qxx_ - Qyy_) ** 2 + 4 * (Qyx_ ** 2))
Q_dmax = 0.5 * (Qxx_ + Qyy_ + k)
Q_dmin = 0.5 * (Qxx_ + Qyy_ - k)
# Halbachsen (Standardabweichungen entlang Hauptachsen)
s_max = s0_apost * np.sqrt(Q_dmax)
s_min = s0_apost * np.sqrt(Q_dmin)
# Richtungswinkel theta (Hauptachse) in rad:
theta_rad = 0.5 * np.arctan2(2 * Qyx_, (Qxx_ - Qyy_))
# in gon
theta_gon = theta_rad * (200 / np.pi)
if theta_gon < 0:
theta_gon += 200.0
data.append([
punkt,
float(sx), float(sy), float(sxy),
float(s_max), float(s_min),
float(theta_gon)
])
standardellipse = pd.DataFrame(data, columns=["Punkt", "σx", "σy", "σxy", "s_max", "s_min", "θ [gon]"])
return standardellipse
def konfidenzellipse(Qxx, s0_apost, unbekannten_liste, R, alpha=0.05):
Qxx = np.asarray(Qxx, float)
data = []
n_punkte = len(unbekannten_liste) // 3 # X,Y,Z je Punkt angenommen
k = float(np.sqrt(2.0 * f_dist.ppf(1.0 - alpha, 2, R)))
for i in range(n_punkte):
punkt = str(unbekannten_liste[3 * i])[1:] # "X10009" -> "10009"
ix = 3 * i
iy = 3 * i + 1
Qxx_ = Qxx[ix, ix]
Qyy_ = Qxx[iy, iy]
Qxy_ = Qxx[iy, ix] # = Qyx
# k für Eigenwerte
kk = np.sqrt((Qxx_ - Qyy_) ** 2 + 4 * (Qxy_ ** 2))
Q_dmax = 0.5 * (Qxx_ + Qyy_ + kk)
Q_dmin = 0.5 * (Qxx_ + Qyy_ - kk)
# Standard-Halbachsen (1-sigma)
s_max = s0_apost * np.sqrt(Q_dmax)
s_min = s0_apost * np.sqrt(Q_dmin)
# Orientierung (Hauptachse) in gon
theta_rad = 0.5 * np.arctan2(2 * Qxy_, (Qxx_ - Qyy_))
theta_gon = theta_rad * (200 / np.pi)
if theta_gon < 0:
theta_gon += 200.0
# Konfidenz-Halbachsen
a_K = k * s_max
b_K = k * s_min
data.append([punkt, float(a_K), float(b_K), float(theta_gon)])
konfidenzellipsen = pd.DataFrame(data, columns=["Punkt", "a_K", "b_K", "θ [gon]"])
return konfidenzellipsen
@staticmethod
def plot_ellipsen(punkt_coords: dict, ellipsen_parameter: list, scale: float = 1000):
fig = go.Figure()
# Titel dynamisch anpassen
prob = ellipsen_parameter[0].get('prob', 0)
titel = "Standard-Fehlerellipsen" if prob < 0.4 else f"{prob * 100:.0f}% Konfidenzellipsen"
for p in ellipsen_parameter:
name = p['name']
x0, y0 = punkt_coords[name][0], punkt_coords[name][1]
a, b, theta = p['a'], p['b'], p['theta']
t = np.linspace(0, 2 * np.pi, 100)
xs, ys = a * scale * np.cos(t), b * scale * np.sin(t)
x_plot = x0 + xs * np.cos(theta) - ys * np.sin(theta)
y_plot = y0 + xs * np.sin(theta) + ys * np.cos(theta)
# Punkt
fig.add_trace(go.Scatter(
x=[x0], y=[y0], mode='markers+text',
name=f"Punkt {name}", text=[name], textposition="top right",
marker=dict(size=8, color='black')
))
# Ellipse
fig.add_trace(go.Scatter(
x=x_plot, y=y_plot, mode='lines',
name=f"Ellipse {name}",
line=dict(color='blue' if prob > 0.4 else 'red', width=2,
dash='dash' if prob > 0.4 else 'solid'),
fill='toself',
fillcolor='rgba(0, 0, 255, 0.1)' if prob > 0.4 else 'rgba(255, 0, 0, 0.1)',
hoverinfo='text',
text=(f"Punkt: {name}<br>a: {a * 1000:.2f} mm<br>"
f"b: {b * 1000:.2f} mm<br>Theta: {np.degrees(theta):.2f}°")
))
fig.update_layout(
title=titel,
xaxis_title="Rechtswert (E) [m]", yaxis_title="Hochwert (N) [m]",
yaxis=dict(scaleanchor="x", scaleratio=1),
template="plotly_white", showlegend=True
)
return fig