Pythonfiles
This commit is contained in:
2
.idea/Masterprojekt-Campusnetz.iml
generated
2
.idea/Masterprojekt-Campusnetz.iml
generated
@@ -4,7 +4,7 @@
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/.venv" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.14 (Masterprojekt)" jdkType="Python SDK" />
|
||||
<orderEntry type="jdk" jdkName="Python 3.14" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
||||
2
.idea/misc.xml
generated
2
.idea/misc.xml
generated
@@ -3,5 +3,5 @@
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="Python 3.14" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.14 (Masterprojekt)" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.14" project-jdk-type="Python SDK" />
|
||||
</project>
|
||||
@@ -1,77 +1,29 @@
|
||||
from typing import Dict, Any
|
||||
import sympy as sp
|
||||
from Stochastisches_Modell import StochastischesModell
|
||||
|
||||
def iterative_ausgleichung(
|
||||
A: sp.Matrix,
|
||||
l: sp.Matrix,
|
||||
modell: StochastischesModell,
|
||||
max_iter: int = 100,
|
||||
tol: float = 1e-3,
|
||||
) -> Dict[str, Any]:
|
||||
|
||||
ergebnisse_iter = [] #Liste für Zwischenergebnisse
|
||||
|
||||
for it in range(max_iter):
|
||||
Q_ll, P = modell.berechne_Qll_P() #Stochastisches Modell: Qll und P berechnen
|
||||
def ausgleichung(A, dl, stoch_modell: StochastischesModell, P):
|
||||
|
||||
Q_ll, P = stoch_modell.berechne_Qll_P() #Kofaktormatrix und P-Matrix
|
||||
N = A.T * P * A #Normalgleichungsmatrix N
|
||||
Q_xx = N.inv() #Kofaktormatrix der Unbekannten Qxx
|
||||
n = A.T * P * l #Absolutgliedvektor n
|
||||
n = A.T * P * dl #Absolutgliedvektor n
|
||||
|
||||
dx = N.LUsolve(n) #Zuschlagsvektor dx
|
||||
|
||||
v = l - A * dx #Residuenvektor v
|
||||
v = dl - A * dx #Residuenvektor v
|
||||
|
||||
Q_vv = modell.berechne_Qvv(A, P, Q_xx) #Kofaktormatrix der Verbesserungen Qvv
|
||||
R = modell.berechne_R(Q_vv, P) #Redundanzmatrix R
|
||||
r = modell.berechne_r(R) #Redundanzanteile als Vektor r
|
||||
|
||||
sigma_hat = modell.berechne_vks(v, P, r) #Varianzkomponentenschätzung durchführen
|
||||
|
||||
ergebnisse_iter.append({ #Zwischenergebnisse speichern in Liste
|
||||
"iter": it + 1,
|
||||
"Q_ll": Q_ll,
|
||||
"P": P,
|
||||
"N": N,
|
||||
"Q_xx": Q_xx,
|
||||
"dx": dx,
|
||||
"v": v,
|
||||
"Q_vv": Q_vv,
|
||||
"R": R,
|
||||
"r": r,
|
||||
"sigma_hat": sigma_hat,
|
||||
"sigma0_groups": dict(modell.sigma0_groups),
|
||||
})
|
||||
|
||||
# --- Abbruchkriterium ---
|
||||
if sigma_hat:
|
||||
max_rel_change = 0.0
|
||||
for g, new_val in sigma_hat.items():
|
||||
old_val = modell.sigma0_groups.get(g, 1.0)
|
||||
if old_val != 0:
|
||||
rel = abs(new_val - old_val) / abs(old_val)
|
||||
max_rel_change = max(max_rel_change, rel)
|
||||
|
||||
if max_rel_change < tol:
|
||||
print(f"Konvergenz nach {it + 1} Iterationen erreicht (max. rel. Änderung = {max_rel_change:.2e}).")
|
||||
modell.update_sigma0_von_vks(sigma_hat)
|
||||
break
|
||||
|
||||
# Varianzfaktoren für nächste Iteration übernehmen
|
||||
modell.update_sigma0_von_vks(sigma_hat)
|
||||
Q_ll_dach = A * Q_xx * A.T
|
||||
Q_vv = stoch_modell.berechne_Qvv(A, P, Q_xx) #Kofaktormatrix der Verbesserungen Qvv
|
||||
R = stoch_modell.berechne_R(Q_vv, P) #Redundanzmatrix R
|
||||
r = stoch_modell.berechne_r(R) #Redundanzanteile als Vektor r
|
||||
|
||||
return {
|
||||
"dx": dx,
|
||||
"v": v,
|
||||
"Q_ll": Q_ll,
|
||||
"P": P,
|
||||
"N": N,
|
||||
"Q_xx": Q_xx,
|
||||
"Q_ll_dach": Q_ll_dach,
|
||||
"Q_vv": Q_vv,
|
||||
"R": R,
|
||||
"r": r,
|
||||
"sigma_hat": sigma_hat,
|
||||
"sigma0_groups": dict(modell.sigma0_groups),
|
||||
"history": ergebnisse_iter,
|
||||
}
|
||||
@@ -4,22 +4,22 @@ from typing import Dict, Tuple, Iterable
|
||||
|
||||
@dataclass
|
||||
class StochastischesModell:
|
||||
sigma_beob: Iterable[float] #σ der einzelnen Beobachtung
|
||||
group_beob: Iterable[int] #Gruppenzugehörigkeit jeder Beobachtung (Distanz, Richtung, GNSS, Nivellement,...,)
|
||||
sigma0_groups: Dict[int, float] = field(default_factory=dict) #σ0² für jede Gruppe
|
||||
sigma_beob: Iterable[float] #σ a priori der einzelnen Beobachtung
|
||||
gruppe_beob: Iterable[int] #Gruppenzugehörigkeit jeder Beobachtung (Distanz, Richtung, GNSS, Nivellement,...,)
|
||||
sigma0_gruppe: Dict[int, float] = field(default_factory=dict) #σ0² für jede Gruppe
|
||||
|
||||
|
||||
def __post_init__(self):
|
||||
self.sigma_beob = sp.Matrix(list(self.sigma_beob)) #Spaltenvektor
|
||||
self.group_beob = sp.Matrix(list(self.group_beob)) #Spaltenvektor
|
||||
self.gruppe_beob = sp.Matrix(list(self.gruppe_beob)) #Spaltenvektor
|
||||
|
||||
if self.sigma_beob.rows != self.group_beob.rows:
|
||||
if self.sigma_beob.rows != self.gruppe_beob.rows:
|
||||
raise ValueError("sigma_obs und group_ids müssen gleich viele Einträge haben.")
|
||||
|
||||
unique_groups = sorted({int(g) for g in self.group_beob}) #jede Beobachtungsgruppe wird genau einmal berücksichtigt
|
||||
unique_groups = sorted({int(g) for g in self.gruppe_beob}) #jede Beobachtungsgruppe wird genau einmal berücksichtigt
|
||||
for g in unique_groups:
|
||||
if g not in self.sigma0_groups: #Fehlende Gruppen mit σ_0j^2 = 1.0
|
||||
self.sigma0_groups[g] = 1.0
|
||||
if g not in self.sigma0_gruppe: #Fehlende Gruppen mit σ_0j^2 = 1.0
|
||||
self.sigma0_gruppe[g] = 1.0
|
||||
|
||||
|
||||
@property
|
||||
@@ -31,11 +31,10 @@ class StochastischesModell:
|
||||
n = self.n_beob
|
||||
Q_ll = sp.zeros(n, n)
|
||||
P = sp.zeros(n, n)
|
||||
|
||||
for i in range(self.n_beob):
|
||||
sigma_i = self.sigma_beob[i, 0] #σ-Wert der i-ten Beobachtung holen
|
||||
g = int(self.group_beob[i, 0]) #Gruppenzugehörigkeit der Beobachtung bestimmen
|
||||
sigma0_sq = self.sigma0_groups[g] #Den Varianzfaktor der Gruppe holen
|
||||
g = int(self.gruppe_beob[i, 0]) #Gruppenzugehörigkeit der Beobachtung bestimmen
|
||||
sigma0_sq = self.sigma0_gruppe[g] #Den Varianzfaktor der Gruppe holen
|
||||
q_ii = sigma_i**2 #σ² berechnen
|
||||
Q_ll[i, i] = q_ii #Diagonale
|
||||
P[i, i] = 1 / (sigma0_sq * q_ii) #durch VKS nicht mehr P=Qll^-1
|
||||
@@ -58,29 +57,3 @@ class StochastischesModell:
|
||||
for i in range(n):
|
||||
r[i, 0] = R[i, i]
|
||||
return r #Redundanzanteile
|
||||
|
||||
|
||||
def berechne_vks(self,v: sp.Matrix, P: sp.Matrix, r: sp.Matrix) -> Dict[int, float]:
|
||||
if v.rows != self.n_beob:
|
||||
raise ValueError("v passt nicht zur Anzahl der Beobachtungen.")
|
||||
gruppen = sorted({int(g) for g in self.group_beob})
|
||||
sigma_gruppen: Dict[int, float] = {}
|
||||
for g in gruppen:
|
||||
idx = [i for i in range(self.n_beob)
|
||||
if int(self.group_beob[i, 0]) == g]
|
||||
if not idx:
|
||||
continue
|
||||
|
||||
v_g = sp.Matrix([v[i, 0] for i in idx])
|
||||
P_g = sp.zeros(len(idx), len(idx))
|
||||
for k, i_beob in enumerate(idx):
|
||||
P_g[k, k] = P[i_beob, i_beob]
|
||||
r_g = sum(r[i_beob, 0] for i_beob in idx)
|
||||
sigma_gruppe_g = (v_g.T * P_g * v_g)[0, 0] / r_g
|
||||
sigma_gruppen[g] = float(sigma_gruppe_g)
|
||||
return sigma_gruppen
|
||||
|
||||
|
||||
def update_sigma0_von_vks(self, sigma_hat: Dict[int, float]) -> None:
|
||||
for g, val in sigma_hat.items():
|
||||
self.sigma0_groups[int(g)] = float(val)
|
||||
56
Tests_Michelle/Parameterschaetzung_müll.py
Normal file
56
Tests_Michelle/Parameterschaetzung_müll.py
Normal file
@@ -0,0 +1,56 @@
|
||||
from typing import Dict, Any
|
||||
import sympy as sp
|
||||
from Stochastisches_Modell import StochastischesModell
|
||||
|
||||
def iterative_ausgleichung(
|
||||
A: sp.Matrix,
|
||||
dl: sp.Matrix,
|
||||
modell: StochastischesModell,
|
||||
) -> Dict[str, Any]:
|
||||
|
||||
ergebnisse_iter = [] #Liste für Zwischenergebnisse
|
||||
|
||||
for it in range(max_iter):
|
||||
Q_ll, P = modell.berechne_Qll_P() #Stochastisches Modell: Qll und P berechnen
|
||||
|
||||
N = A.T * P * A #Normalgleichungsmatrix N
|
||||
Q_xx = N.inv() #Kofaktormatrix der Unbekannten Qxx
|
||||
n = A.T * P * dl #Absolutgliedvektor n
|
||||
|
||||
dx = N.LUsolve(n) #Zuschlagsvektor dx
|
||||
|
||||
v = dl - A * dx #Residuenvektor v
|
||||
|
||||
Q_vv = modell.berechne_Qvv(A, P, Q_xx) #Kofaktormatrix der Verbesserungen Qvv
|
||||
R = modell.berechne_R(Q_vv, P) #Redundanzmatrix R
|
||||
r = modell.berechne_r(R) #Redundanzanteile als Vektor r
|
||||
|
||||
ergebnisse_iter.append({ #Zwischenergebnisse speichern in Liste
|
||||
"iter": it + 1,
|
||||
"Q_ll": Q_ll,
|
||||
"P": P,
|
||||
"N": N,
|
||||
"Q_xx": Q_xx,
|
||||
"dx": dx,
|
||||
"v": v,
|
||||
"Q_vv": Q_vv,
|
||||
"R": R,
|
||||
"r": r,
|
||||
"sigma_hat": sigma_hat,
|
||||
"sigma0_groups": dict(modell.sigma0_groups),
|
||||
})
|
||||
|
||||
return {
|
||||
"dx": dx,
|
||||
"v": v,
|
||||
"Q_ll": Q_ll,
|
||||
"P": P,
|
||||
"N": N,
|
||||
"Q_xx": Q_xx,
|
||||
"Q_vv": Q_vv,
|
||||
"R": R,
|
||||
"r": r,
|
||||
"sigma_hat": sigma_hat,
|
||||
"sigma0_groups": dict(modell.sigma0_groups),
|
||||
"history": ergebnisse_iter,
|
||||
}
|
||||
Reference in New Issue
Block a user