Qll Numerisch für Distanzen fertig

This commit is contained in:
2025-12-19 14:32:44 +01:00
parent cfc5d60bb9
commit a31d101576
5 changed files with 2597 additions and 58 deletions

View File

@@ -69,7 +69,7 @@ class StochastischesModell:
stabw_apriori_streckenprop = sp.Symbol(f"stabw_apriori_streckenprop_{instrumenteID_i}")
tachymeter_distanz = sp.Symbol(f"SD_{beobachtungenID_i}")
sigma = sp.sqrt(stabw_apriori_konstant ** 2 + (stabw_apriori_streckenprop * tachymeter_distanz / 1000) ** 2)
sigma = sp.sqrt(stabw_apriori_konstant ** 2 + (stabw_apriori_streckenprop * tachymeter_distanz / 1000000) ** 2)
liste_standardabweichungen_symbole.append(sigma)
Qll[i, i] = sigma ** 2
@@ -85,8 +85,57 @@ class StochastischesModell:
Export.matrix_to_csv(r"Zwischenergebnisse\Qll_Symbolisch.csv", liste_beobachtungen_symbolisch, liste_beobachtungen_symbolisch, Qll, "Qll")
return Qll
def Qll_numerisch(self, pfad_datenbank, Qll_Matrix_Symbolisch, liste_beobachtungen_symbolisch):
db_zugriff = Datenbankzugriff(pfad_datenbank)
dict_genauigkeiten = db_zugriff.get_genauigkeiten_dict()
dict_beobachtungenID_instrumenteID = db_zugriff.get_instrumenteID_beobachtungenID_dict()
liste_beobachtungen = db_zugriff.get_beobachtungen_from_beobachtungenid()
dict_beobachtungenID_distanz = {}
for standpunkt, zielpunkt, beobachtungenID, beobachtungsgruppeID, tachymeter_richtung, tachymeter_zenitwinkel, tachymeter_distanz in liste_beobachtungen:
dict_beobachtungenID_distanz[int(beobachtungenID)] = tachymeter_distanz
dict_genauigkeiten_neu = {}
for genauigkeitenID, eintrag in dict_genauigkeiten.items():
instrumenteID = int(eintrag[0])
beobachtungsart = str(eintrag[1])
stabw_apriori_konstant = eintrag[2]
stabw_apriori_streckenprop = eintrag[3]
dict_genauigkeiten_neu[(instrumenteID, beobachtungsart)] = (stabw_apriori_konstant,
stabw_apriori_streckenprop)
substitutionen = {}
for (instrumenteID, beobachtungsart), (stabw_apriori_konstant,
stabw_apriori_streckenprop) in dict_genauigkeiten_neu.items():
if stabw_apriori_konstant is not None:
substitutionen[sp.Symbol(f"stabw_apriori_konstant_{instrumenteID}")] = float(stabw_apriori_konstant)
if stabw_apriori_streckenprop is not None:
substitutionen[sp.Symbol(f"stabw_apriori_streckenprop_{instrumenteID}")] = float(
stabw_apriori_streckenprop)
liste_beobachtungen_symbolisch = [str(b) for b in liste_beobachtungen_symbolisch]
for beobachtung_symbolisch in liste_beobachtungen_symbolisch:
aufgeteilt = beobachtung_symbolisch.split("_")
beobachtungenID = int(aufgeteilt[0])
beobachtungsart = str(aufgeteilt[1])
if beobachtungsart == "SD":
distanz = dict_beobachtungenID_distanz.get(beobachtungenID, None)
if distanz is not None:
substitutionen[sp.Symbol(f"SD_{beobachtungenID}")] = float(distanz)
Qll_numerisch = Qll_Matrix_Symbolisch.xreplace(substitutionen)
Export.matrix_to_csv(
r"Zwischenergebnisse\Qll_Numerisch.csv",
liste_beobachtungen_symbolisch,
liste_beobachtungen_symbolisch,
Qll_numerisch,
"Qll"
)
return Qll_numerisch
def berechne_P(Q_ll):
P = Q_ll.inv()