Files
Masterprojekt/GHA_triaxial/approx_louville.py

109 lines
4.3 KiB
Python

import numpy as np
from numpy import sin, cos, arcsin, arccos, arctan2
from ellipsoide import EllipsoidTriaxial
import matplotlib.pyplot as plt
dbeta_dc = lambda ell, beta, lamb, alpha: -2 * ell.Ey**2 * sin(alpha)**2 * cos(beta) * sin(beta)
dlamb_dc = lambda ell, beta, lamb, alpha: -2 * ell.Ee**2 * cos(alpha)**2 * sin(lamb) * cos(lamb)
dalpha_dc = lambda ell, beta, lamb, alpha: (2 * sin(alpha) * cos(alpha) *
(ell.Ey**2 * cos(beta)**2 + ell.Ee**2 * sin(lamb)**2))
lamb2_sphere = lambda r, phi1, lamb1, a12, s: lamb1 + arctan2(sin(s/r) * sin(a12),
cos(phi1) * cos(s/r) - sin(s/r) * cos(a12))
phi2_sphere = lambda r, phi1, lamb1, a12, s: arcsin(sin(phi1) * cos(s/r) + cos(phi1) * sin(s/r) * cos(a12))
a12_sphere = lambda phi1, lamb1, phi2, lamb2: arctan2(cos(phi2) * sin(lamb2 - lamb1),
cos(phi1) * cos(phi2) -
sin(phi1) * cos(phi2) * cos(lamb2 - lamb1))
s_sphere = lambda r, phi1, lamb1, phi2, lamb2: r * arccos(sin(phi1) * sin(phi2) +
cos(phi1) * cos(phi2) * cos(lamb2 - lamb1))
louville = lambda beta, lamb, alpha: (ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 -
ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2)
def points_approx_gha2(r: float, phi1: np.ndarray, lamb1: np.ndarray, phi2: np.ndarray, lamb2: np.ndarray, num: int = None, step_size: float = 10000):
s_approx = s_sphere(r, phi1, lamb1, phi2, lamb2)
if num is not None:
step_size = s_approx / (num+1)
a_approx = a12_sphere(phi1, lamb1, phi2, lamb2)
points = [np.array([phi1, lamb1, a_approx])]
current_s = step_size
while current_s < s_approx:
phi_n = phi2_sphere(r, phi1, lamb1, a_approx, current_s)
lamb_n = lamb2_sphere(r, phi1, lamb1, a_approx, current_s)
points.append(np.array([phi_n, lamb_n, a_approx]))
current_s += step_size
points.append(np.array([phi2, lamb2, a_approx]))
return points
def num_update(ell: EllipsoidTriaxial, points, diffs):
for i, (beta, lamb, alpha) in enumerate(points):
dalpha = dalpha_dc(ell, beta, lamb, alpha)
if i == 0 or i == len(points) - 1:
grad = np.array([0, 0, dalpha])
else:
dbeta = dbeta_dc(ell, beta, lamb, alpha)
dlamb = dlamb_dc(ell, beta, lamb, alpha)
grad = np.array([dbeta, dlamb, dalpha])
delta = -diffs[i] * grad / np.dot(grad, grad)
points[i] += delta
return points
def gha2(ell: EllipsoidTriaxial, p1: np.ndarray, p2: np.ndarray, maxI: int):
beta1, lamb1 = ell.cart2ell2(p1)
beta2, lamb2 = ell.cart2ell2(p2)
points = points_approx_gha2(ell.ax, beta1, lamb1, beta2, lamb2, 5)
for j in range(maxI):
constants = [louville(point[0], point[1], point[2]) for point in points]
mean_constant = np.mean(constants)
diffs = constants - mean_constant
if np.mean(np.abs(diffs)) > 10:
points = num_update(ell, points, diffs)
else:
break
for k in range(maxI):
last_diff_alpha = points[-2][-1] - points[-3][-1]
alpha_extrap = points[-2][-1] + last_diff_alpha
if abs(alpha_extrap - points[-1][-1]) > 0.0005:
pass
else:
break
pass
pass
return points
def show_points(ell: EllipsoidTriaxial, points):
points_cart = []
for point in points:
points_cart.append(ell.ell2cart2(point[0], point[1]))
points_cart = np.array(points_cart)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(points_cart[:, 0], points_cart[:, 1], points_cart[:, 2])
ax.scatter(points_cart[:, 0], points_cart[:, 1], points_cart[:, 2])
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("Eitschberger1978")
p1 = np.array([4189000, 812000, 4735000])
p2 = np.array([4090000, 868000, 4808000])
p1, phi1, lamb1, h1 = ell.cartonell(p1)
p2, phi2, lamb2, h2 = ell.cartonell(p2)
points = gha2(ell, p1, p2, 10)
show_points(ell, points)