Files
Masterprojekt/GHA_triaxial/panou_2013_2GHA_num.py

427 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import numpy as np
from ellipsoide import EllipsoidTriaxial
import runge_kutta as rk
import GHA_triaxial.numeric_examples_karney as ne_karney
import GHA_triaxial.numeric_examples_panou as ne_panou
import winkelumrechnungen as wu
# Panou 2013
def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, epsilon=10**-12, iter_max=30):
"""
:param ell: triaxiales Ellipsoid
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
:param lamb_1: elllipsoidische Länge Punkt 1
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
:param lamb_2: elllipsoidische Länge Punkt 2
:param n: Anzahl Schritte
:param epsilon:
:param iter_max: Maximale Anzhal Iterationen
:return:
"""
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
def arccot(x):
return np.arctan2(1.0, x)
def BETA_LAMBDA(beta, lamb):
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
LAMBDA = (ell.ax**2 * np.sin(lamb)**2 + ell.ay**2 * np.cos(lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)
# Erste Ableitungen von ΒETA und LAMBDA
BETA_ = (ell.ax**2 * ell.Ey**2 * np.sin(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2
LAMBDA_ = - (ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2
# Zweite Ableitungen von ΒETA und LAMBDA
BETA__ = ((2 * ell.ax**2 * ell.Ey**4 * np.sin(2*beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**3) + ((2 * ell.ax**2 * ell.Ey**2 * np.cos(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2)
LAMBDA__ = (((2 * ell.b**2 * ell.Ee**4 * np.sin(2*lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**3) -
((2 * ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2))
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
F = 0
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
# Erste Ableitungen von E und G
E_beta = BETA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - BETA * ell.Ey**2 * np.sin(2*beta)
E_lamb = BETA * ell.Ee**2 * np.sin(2*lamb)
G_beta = - LAMBDA * ell.Ey**2 * np.sin(2*beta)
G_lamb = LAMBDA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + LAMBDA * ell.Ee**2 * np.sin(2*lamb)
# Zweite Ableitungen von E und G
E_beta_beta = BETA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - 2 * BETA_ * ell.Ey**2 * np.sin(2*beta) - 2 * BETA * ell.Ey**2 * np.cos(2*beta)
E_beta_lamb = BETA_ * ell.Ee**2 * np.sin(2*lamb)
E_lamb_lamb = 2 * BETA * ell.Ee**2 * np.cos(2*lamb)
G_beta_beta = - 2 * LAMBDA * ell.Ey**2 * np.cos(2*beta)
G_beta_lamb = - LAMBDA_ * ell.Ey**2 * np.sin(2*beta)
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
return (BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb)
def p_coef(beta, lamb):
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
p_3 = - 0.5 * (E_lamb / G)
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
p_0 = 0.5 * (G_beta / E)
p_33 = - 0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G ** 2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G ** 2)) - 0.5 * ((E * E_beta_beta - E_beta * E_beta) / (E ** 2))
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2)) - ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2))
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E ** 2))
return (BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00)
def q_coef(beta, lamb):
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
q_3 = - 0.5 * (G_beta / E)
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
q_0 = 0.5 * (E_lamb / G)
q_33 = - 0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E ** 2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E ** 2)) - 0.5 * ((G * G_lamb_lamb - G_lamb * G_lamb) / (G ** 2))
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2)) - ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2))
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G ** 2))
return (BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00)
if lamb_1 != lamb_2:
# def functions():
# def f_beta(lamb, beta, beta_p, X3, X4):
# return beta_p
#
# def f_beta_p(lamb, beta, beta_p, X3, X4):
# (BETA, LAMBDA, E, G,
# p_3, p_2, p_1, p_0,
# p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
# return p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
#
# def f_X3(lamb, beta, beta_p, X3, X4):
# return X4
#
# def f_X4(lamb, beta, beta_p, X3, X4):
# (BETA, LAMBDA, E, G,
# p_3, p_2, p_1, p_0,
# p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
# return (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
# (3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
#
# return [f_beta, f_beta_p, f_X3, f_X4]
def buildODElamb():
def ODE(lamb, v):
beta, beta_p, X3, X4 = v
(BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
return np.array([dbeta, dbeta_p, dX3, dX4])
return ODE
N = n
dlamb = lamb_2 - lamb_1
if abs(dlamb) < 1e-15:
beta_0 = 0.0
else:
beta_0 = (beta_2 - beta_1) / (lamb_2 - lamb_1)
converged = False
iterations = 0
# funcs = functions()
ode_lamb = buildODElamb()
for i in range(iter_max):
iterations = i + 1
# startwerte = [lamb_1, beta_1, beta_0, 0.0, 1.0]
startwerte = np.array([beta_1, beta_0, 0.0, 1.0])
# werte = rk.verfahren(funcs, startwerte, dlamb, N)
lamb_list, werte = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
# lamb_end, beta_end, beta_p_end, X3_end, X4_end = werte[-1]
lamb_end = lamb_list[-1]
beta_end, beta_p_end, X3_end, X4_end = werte[-1]
d_beta_end_d_beta0 = X3_end
delta = beta_end - beta_2
if abs(delta) < epsilon:
converged = True
break
if abs(d_beta_end_d_beta0) < 1e-20:
raise RuntimeError("Abbruch.")
max_step = 0.5
step = delta / d_beta_end_d_beta0
if abs(step) > max_step:
step = np.sign(step) * max_step
beta_0 = beta_0 - step
if not converged:
raise RuntimeError("konvergiert nicht.")
# Z
# werte = rk.verfahren(funcs, [lamb_1, beta_1, beta_0, 0.0, 1.0], dlamb, N, False)
lamb_list, werte = rk.rk4(ode_lamb, lamb_1, np.array([beta_1, beta_0, 0.0, 1.0]), dlamb, N, False)
beta_arr = np.zeros(N + 1)
# lamb_arr = np.zeros(N + 1)
lamb_arr = np.array(lamb_list)
beta_p_arr = np.zeros(N + 1)
for i, state in enumerate(werte):
# lamb_arr[i] = state[0]
# beta_arr[i] = state[1]
# beta_p_arr[i] = state[2]
beta_arr[i] = state[0]
beta_p_arr[i] = state[1]
(_, _, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
h = abs(dlamb) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
beta0 = beta_arr[0]
lamb0 = lamb_arr[0]
c = np.sqrt(
(np.cos(beta0) ** 2 + (ell.Ee**2 / ell.Ex**2) * np.sin(beta0) ** 2) * np.sin(alpha_1) ** 2
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
)
return alpha_1, alpha_2, s
if lamb_1 == lamb_2:
N = n
dbeta = beta_2 - beta_1
if abs(dbeta) < 10**-15:
return 0, 0, 0
lamb_0 = 0
converged = False
iterations = 0
# def functions_beta():
# def g_lamb(beta, lamb, lamb_p, Y3, Y4):
# return lamb_p
#
# def g_lamb_p(beta, lamb, lamb_p, Y3, Y4):
# (BETA, LAMBDA, E, G,
# q_3, q_2, q_1, q_0,
# q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
# return q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
#
# def g_Y3(beta, lamb, lamb_p, Y3, Y4):
# return Y4
#
# def g_Y4(beta, lamb, lamb_p, Y3, Y4):
# (BETA, LAMBDA, E, G,
# q_3, q_2, q_1, q_0,
# q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
# return (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
# (3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
#
# return [g_lamb, g_lamb_p, g_Y3, g_Y4]
def buildODEbeta():
def ODE(beta, v):
lamb, lamb_p, Y3, Y4 = v
(BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
dlamb = lamb_p
dlamb_p = q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4])
return ODE
# funcs_beta = functions_beta()
ode_beta = buildODEbeta()
for i in range(iter_max):
iterations = i + 1
startwerte = [lamb_1, lamb_0, 0.0, 1.0]
# werte = rk.verfahren(funcs_beta, startwerte, dbeta, N, False)
beta_list, werte = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False)
beta_end = beta_list[-1]
# beta_end, lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
d_lamb_end_d_lambda0 = Y3_end
delta = lamb_end - lamb_2
if abs(delta) < epsilon:
converged = True
break
if abs(d_lamb_end_d_lambda0) < 1e-20:
raise RuntimeError("Abbruch (Ableitung ~ 0).")
max_step = 1.0
step = delta / d_lamb_end_d_lambda0
if abs(step) > max_step:
step = np.sign(step) * max_step
lamb_0 = lamb_0 - step
# werte = rk.verfahren(funcs_beta, [beta_1, lamb_1, lamb_0, 0.0, 1.0], dbeta, N, False)
beta_list, werte = rk.rk4(ode_beta, beta_1, np.array([lamb_1, lamb_0, 0.0, 1.0]), dbeta, N, False)
# beta_arr = np.zeros(N + 1)
beta_arr = np.array(beta_list)
lamb_arr = np.zeros(N + 1)
lambda_p_arr = np.zeros(N + 1)
for i, state in enumerate(werte):
# beta_arr[i] = state[0]
# lamb_arr[i] = state[1]
# lambda_p_arr[i] = state[2]
lamb_arr[i] = state[0]
lambda_p_arr[i] = state[1]
# Azimute
(BETA1, LAMBDA1, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(BETA2, LAMBDA2, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0])
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1])
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
h = abs(dbeta) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
return alpha_1, alpha_2, s
if __name__ == "__main__":
# ell = EllipsoidTriaxial.init_name("Fiction")
# # beta1 = np.deg2rad(75)
# # lamb1 = np.deg2rad(-90)
# # beta2 = np.deg2rad(75)
# # lamb2 = np.deg2rad(66)
# # a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2)
# # print(aus.gms("a1", a1, 4))
# # print(aus.gms("a2", a2, 4))
# # print(s)
# cart1 = ell.para2cart(0, 0)
# cart2 = ell.para2cart(0.4, 1.4)
# beta1, lamb1 = ell.cart2ell(cart1)
# beta2, lamb2 = ell.cart2ell(cart2)
#
# a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
# print(s)
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
diffs_panou = []
examples_panou = ne_panou.get_random_examples(4)
for example in examples_panou:
beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
P0 = ell.ell2cart(beta0, lamb0)
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
diffs_panou.append(
(wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
except:
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
diffs_panou = np.array(diffs_panou)
print(diffs_panou)
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
diffs_karney = []
# examples_karney = ne_karney.get_examples((30500, 40500))
examples_karney = ne_karney.get_random_examples(2)
for example in examples_karney:
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
except:
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
diffs_karney = np.array(diffs_karney)
print(diffs_karney)
pass