64 lines
1.7 KiB
Python
64 lines
1.7 KiB
Python
import numpy as np
|
|
from numpy import sqrt, arctan2, sin, cos, arcsin, arccos
|
|
from numpy.typing import NDArray
|
|
from typing import Tuple
|
|
import winkelumrechnungen as wu
|
|
|
|
|
|
def cart2sph(point: NDArray) -> Tuple[float, float, float]:
|
|
x, y, z = point
|
|
r = sqrt(x**2 + y**2 + z**2)
|
|
phi = arctan2(z, sqrt(x**2 + y**2))
|
|
lamb = arctan2(y, x)
|
|
|
|
return r, phi, lamb
|
|
|
|
|
|
def sph2cart(r: float, phi: float, lamb: float) -> NDArray:
|
|
x = r * cos(phi) * cos(lamb)
|
|
y = r * cos(phi) * sin(lamb)
|
|
z = r * sin(phi)
|
|
|
|
return np.array([x, y, z])
|
|
|
|
|
|
def gha1(R, phi0, lamb0, s, alpha0):
|
|
s_ = s / R
|
|
|
|
lamb1 = lamb0 + arctan2(sin(s_) * sin(alpha0),
|
|
cos(phi0) * cos(s_) - sin(phi0) * sin(s_) * cos(alpha0))
|
|
|
|
phi1 = arcsin(sin(phi0) * cos(s_) + cos(phi0) * sin(s_) * cos(alpha0))
|
|
|
|
return phi1, lamb1
|
|
|
|
|
|
def gha2(R, phi0, lamb0, phi1, lamb1):
|
|
s_ = arccos(sin(phi0) * sin(phi1) + cos(phi0) * cos(phi1) * cos(lamb1 - lamb0))
|
|
s = R * s_
|
|
|
|
alpha0 = arctan2(cos(phi1) * sin(lamb1 - lamb0),
|
|
cos(phi0) * sin(phi1) - sin(phi0) * cos(phi1) * cos(lamb1 - lamb0))
|
|
|
|
alpha1 = arctan2(-cos(phi0) * sin(lamb1 - lamb0),
|
|
cos(phi1) * sin(phi0) - sin(phi1) * cos(phi0) * cos(lamb1 - lamb0))
|
|
if alpha1 < 0:
|
|
alpha1 += 2 * np.pi
|
|
|
|
return alpha0, alpha1, s
|
|
|
|
|
|
if __name__ == "__main__":
|
|
R = 6378815.904 # Bern
|
|
phi0 = wu.deg2rad(10)
|
|
lamb0 = wu.deg2rad(40)
|
|
alpha0 = wu.deg2rad(100)
|
|
s = 10000
|
|
phi1, lamb1 = gha1(R, phi0, lamb0, s, alpha0)
|
|
alpha0_g, alpha1, s_g = gha2(R, phi0, lamb0, phi1, lamb1)
|
|
phi1 = wu.rad2deg(phi1)
|
|
lamb1 = wu.rad2deg(lamb1)
|
|
alpha0_g = wu.rad2deg(alpha0_g)
|
|
alpha1 = wu.rad2deg(alpha1)
|
|
|
|
pass |