import numpy as np from ellipsoide import EllipsoidTriaxial from runge_kutta import rk4, rk4_step, rk4_end, rk4_integral import GHA_triaxial.numeric_examples_karney as ne_karney import GHA_triaxial.numeric_examples_panou as ne_panou import winkelumrechnungen as wu from typing import Tuple from numpy.typing import NDArray import ausgaben as aus from utils_angle import cot, arccot, wrap_to_pi def norm_a(a): if a < 0.0: a += np.pi return a def sph_azimuth(beta1, lam1, beta2, lam2): dlam = wrap_to_pi(lam2 - lam1) y = np.sin(dlam) * np.cos(beta2) x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam) a = np.arctan2(y, x) if a < 0: a += 2 * np.pi return a # Panou 2013 def gha2_num( ell: EllipsoidTriaxial, beta_0: float, lamb_0: float, beta_1: float, lamb_1: float, n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False, ) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]: """ :param ell: Ellipsoid :param beta_0: Beta Punkt 0 :param lamb_0: Lambda Punkt 0 :param beta_1: Beta Punkt 1 :param lamb_1: Lambda Punkt 1 :param n: Anzahl Schritte :param epsilon: Genauigkeit :param iter_max: Maximale Iterationen :param all_points: Ausgabe aller Punkte :return: Azimut Startpunkt, Azumit Zielpunkt, Strecke """ # Berechnung Koeffizienten, Gaußschen Fundamentalgrößen 1. Ordnung sowie deren Ableitungen def BETA_LAMBDA(beta, lamb): BETA = (ell.ay ** 2 * np.sin(beta) ** 2 + ell.b ** 2 * np.cos(beta) ** 2) / ( ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2 ) LAMBDA = (ell.ax ** 2 * np.sin(lamb) ** 2 + ell.ay ** 2 * np.cos(lamb) ** 2) / ( ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2 ) BETA_ = (ell.ax ** 2 * ell.Ey ** 2 * np.sin(2 * beta)) / ( ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2 ) ** 2 LAMBDA_ = -(ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / ( ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2 ) ** 2 BETA__ = ( (2 * ell.ax ** 2 * ell.Ey ** 4 * np.sin(2 * beta) ** 2) / (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 3 + (2 * ell.ax ** 2 * ell.Ey ** 2 * np.cos(2 * beta)) / (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2 ) LAMBDA__ = ( (2 * ell.b ** 2 * ell.Ee ** 4 * np.sin(2 * lamb) ** 2) / (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 3 - (2 * ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2 ) E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) E_beta = ( BETA_ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) - BETA * ell.Ey ** 2 * np.sin(2 * beta) ) E_lamb = BETA * ell.Ee ** 2 * np.sin(2 * lamb) G_beta = -LAMBDA * ell.Ey ** 2 * np.sin(2 * beta) G_lamb = ( LAMBDA_ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) + LAMBDA * ell.Ee ** 2 * np.sin(2 * lamb) ) E_beta_beta = ( BETA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) - 2 * BETA_ * ell.Ey ** 2 * np.sin(2 * beta) - 2 * BETA * ell.Ey ** 2 * np.cos(2 * beta) ) E_beta_lamb = BETA_ * ell.Ee ** 2 * np.sin(2 * lamb) E_lamb_lamb = 2 * BETA * ell.Ee ** 2 * np.cos(2 * lamb) G_beta_beta = -2 * LAMBDA * ell.Ey ** 2 * np.cos(2 * beta) G_beta_lamb = -LAMBDA_ * ell.Ey ** 2 * np.sin(2 * beta) G_lamb_lamb = ( LAMBDA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) + 2 * LAMBDA_ * ell.Ee ** 2 * np.sin(2 * lamb) + 2 * LAMBDA * ell.Ee ** 2 * np.cos(2 * lamb) ) return ( BETA, LAMBDA, E, G, BETA_, LAMBDA_, BETA__, LAMBDA__, E_beta, E_lamb, G_beta, G_lamb, E_beta_beta, E_beta_lamb, E_lamb_lamb, G_beta_beta, G_beta_lamb, G_lamb_lamb, ) # Berechnung der ODE Koeffizienten für Fall 1 (lambda_0 != lambda_1) def p_coef(beta, lamb): ( BETA, LAMBDA, E, G, BETA_, LAMBDA_, BETA__, LAMBDA__, E_beta, E_lamb, G_beta, G_lamb, E_beta_beta, E_beta_lamb, E_lamb_lamb, G_beta_beta, G_beta_lamb, G_lamb_lamb, ) = BETA_LAMBDA(beta, lamb) p_3 = -0.5 * (E_lamb / G) p_2 = (G_beta / G) - 0.5 * (E_beta / E) p_1 = 0.5 * (G_lamb / G) - (E_lamb / E) p_0 = 0.5 * (G_beta / E) p_33 = -0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G**2)) p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G**2)) - 0.5 * ( (E * E_beta_beta - E_beta * E_beta) / (E**2) ) p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G**2)) - ( (E * E_beta_lamb - E_beta * E_lamb) / (E**2) ) p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E**2)) return (BETA, LAMBDA, E, G, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) # Berechnung der ODE Koeffizienten für Fall 2 (lambda_0 == lambda_1) def q_coef(beta, lamb): ( BETA, LAMBDA, E, G, BETA_, LAMBDA_, BETA__, LAMBDA__, E_beta, E_lamb, G_beta, G_lamb, E_beta_beta, E_beta_lamb, E_lamb_lamb, G_beta_beta, G_beta_lamb, G_lamb_lamb, ) = BETA_LAMBDA(beta, lamb) q_3 = -0.5 * (G_beta / E) q_2 = (E_lamb / E) - 0.5 * (G_lamb / G) q_1 = 0.5 * (E_beta / E) - (G_beta / G) q_0 = 0.5 * (E_lamb / G) q_33 = -0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E**2)) q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E**2)) - 0.5 * ( (G * G_lamb_lamb - G_lamb * G_lamb) / (G**2) ) q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E**2)) - ( (G * G_beta_lamb - G_beta * G_lamb) / (G**2) ) q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G**2)) return BETA, LAMBDA, E, G, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00 def integrand_lambda(lamb, y): beta = y[0] beta_p = y[1] (_, _, E, G, *_) = BETA_LAMBDA(beta, lamb) return np.sqrt(E * beta_p**2 + G) def integrand_beta(beta, y): lamb = y[0] lamb_p = y[1] (_, _, E, G, *_) = BETA_LAMBDA(beta, lamb) return np.sqrt(E + G * lamb_p**2) # Fall 1 (lambda_0 != lambda_1) if abs(lamb_1 - lamb_0) >= 1e-15: N = int(n) dlamb = float(lamb_1 - lamb_0) beta0 = float(beta_0) lamb0 = float(lamb_0) beta1 = float(beta_1) lamb1 = float(lamb_1) def ode_lamb(lamb, v): beta, beta_p, X3, X4 = v (_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb) dbeta = beta_p dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0 dX3 = X4 dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (3*p_3*beta_p**2 + 2*p_2*beta_p + p_1) * X4 return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float) alpha0_sph = sph_azimuth(beta0, lamb0, beta1, lamb1) (_, _, E0, G0, *_) = BETA_LAMBDA(beta0, lamb0) beta_p0_sph = np.sqrt(G0 / E0) * cot(alpha0_sph) N_newton = min(N, 4000) def solve_newton(beta_p0_init: float): beta_p0 = float(beta_p0_init) for _ in range(iter_max): v0 = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float) _, y_end = rk4_end(ode_lamb, lamb0, v0, dlamb, N_newton) beta_end, _, X3_end, _ = y_end delta = beta_end - beta1 if abs(delta) < epsilon: return True, beta_p0 if abs(X3_end) < 1e-20: return False, None step = delta / X3_end step = np.clip(step, -0.5, 0.5) beta_p0 -= step return False, None ok, beta_p0_sol = solve_newton(beta_p0_sph) if not ok: candidates = [-beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph] N_quick = min(N, 2000) best = None for g in candidates: ok_g, sol = solve_newton(g) if not ok_g: continue v0_g = np.array([beta0, sol, 0.0, 1.0], dtype=float) _, _, s_quick = rk4_integral(ode_lamb, lamb0, v0_g, dlamb, N_quick, integrand_lambda) if (best is None) or (s_quick < best[0]): best = (s_quick, sol) if best is None: raise RuntimeError("GHA2_num: Keine Startwert-Variante konvergiert (lambda-Fall)") beta_p0_sol = best[1] beta_p0 = float(beta_p0_sol) v0_final = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float) if all_points: lamb_list, states = rk4(ode_lamb, lamb0, v0_final, dlamb, N, False) lamb_arr = np.array(lamb_list, dtype=float) beta_arr = np.array([st[0] for st in states], dtype=float) beta_p_arr = np.array([st[1] for st in states], dtype=float) (_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0]) (_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1]) alpha_1 = norm_a(arccot(np.sqrt(E_start / G_start) * beta_p_arr[0])) alpha_2 = norm_a(arccot(np.sqrt(E_end / G_end) * beta_p_arr[-1])) # Distanz aus Arrays integrand = np.zeros(N + 1, dtype=float) for i in range(N + 1): (_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i]) integrand[i] = np.sqrt(Ei * beta_p_arr[i]**2 + Gi) h = abs(dlamb) / N if N % 2 == 0: S = integrand[0] + integrand[-1] + 4.0*np.sum(integrand[1:-1:2]) + 2.0*np.sum(integrand[2:-1:2]) s = h/3.0 * S else: s = np.trapz(integrand, dx=h) return float(alpha_1), float(alpha_2), float(s), beta_arr, lamb_arr _, y_end, s = rk4_integral(ode_lamb, lamb0, v0_final, dlamb, N, integrand_lambda) beta_end, beta_p_end, _, _ = y_end (_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0) (_, _, E_end, G_end, *_) = BETA_LAMBDA(beta1, lamb1) alpha_1 = norm_a(arccot(np.sqrt(E_start / G_start) * beta_p0)) alpha_2 = norm_a(arccot(np.sqrt(E_end / G_end) * beta_p_end)) return float(alpha_1), float(alpha_2), float(s) # Fall 2 (lambda_0 == lambda_1) N = int(n) dbeta = float(beta_1 - beta_0) if abs(dbeta) < 1e-15: if all_points: return 0.0, 0.0, 0.0, np.array([]), np.array([]) return 0.0, 0.0, 0.0 beta0 = float(beta_0) lamb0 = float(lamb_0) beta1 = float(beta_1) lamb1 = float(lamb_1) def ode_beta(beta, v): lamb, lamb_p, Y3, Y4 = v (_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb) dlamb = lamb_p dlamb_p = q_3*lamb_p**3 + q_2*lamb_p**2 + q_1*lamb_p + q_0 dY3 = Y4 dY4 = (q_33*lamb_p**3 + q_22*lamb_p**2 + q_11*lamb_p + q_00)*Y3 + (3*q_3*lamb_p**2 + 2*q_2*lamb_p + q_1)*Y4 return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float) lamb_p0 = 0.0 for _ in range(iter_max): v0 = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float) _, y_end = rk4_end(ode_beta, beta0, v0, dbeta, N) lamb_end, _, Y3_end, _ = y_end delta = lamb_end - lamb1 if abs(delta) < epsilon: break if abs(Y3_end) < 1e-20: raise RuntimeError("GHA2_num: Ableitung ~ 0 im beta-Fall") step = delta / Y3_end step = np.clip(step, -1.0, 1.0) lamb_p0 -= step v0_final = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float) if all_points: beta_list, states = rk4(ode_beta, beta0, v0_final, dbeta, N, False) beta_arr = np.array(beta_list, dtype=float) lamb_arr = np.array([st[0] for st in states], dtype=float) lamb_p_arr = np.array([st[1] for st in states], dtype=float) (BETA_s, LAMBDA_s, _, _, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0]) (BETA_e, LAMBDA_e, _, _, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1]) alpha_1 = norm_a((np.pi/2.0) - arccot(np.sqrt(LAMBDA_s / BETA_s) * lamb_p_arr[0])) alpha_2 = norm_a((np.pi/2.0) - arccot(np.sqrt(LAMBDA_e / BETA_e) * lamb_p_arr[-1])) integrand = np.zeros(N + 1, dtype=float) for i in range(N + 1): (_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i]) integrand[i] = np.sqrt(Ei + Gi * lamb_p_arr[i]**2) h = abs(dbeta) / N if N % 2 == 0: S = integrand[0] + integrand[-1] + 4.0*np.sum(integrand[1:-1:2]) + 2.0*np.sum(integrand[2:-1:2]) s = h/3.0 * S else: s = np.trapz(integrand, dx=h) return float(alpha_1), float(alpha_2), float(s), beta_arr, lamb_arr _, y_end, s = rk4_integral(ode_beta, beta0, v0_final, dbeta, N, integrand_beta) lamb_end, lamb_p_end, _, _ = y_end (BETA_s, LAMBDA_s, _, _, *_) = BETA_LAMBDA(beta0, lamb0) (BETA_e, LAMBDA_e, _, _, *_) = BETA_LAMBDA(beta1, lamb1) alpha_1 = norm_a((np.pi/2.0) - arccot(np.sqrt(LAMBDA_s / BETA_s) * lamb_p0)) alpha_2 = norm_a((np.pi/2.0) - arccot(np.sqrt(LAMBDA_e / BETA_e) * lamb_p_end)) return float(alpha_1), float(alpha_2), float(s) if __name__ == "__main__": # ell = EllipsoidTriaxial.init_name("BursaSima1980round") # beta1 = np.deg2rad(75) # lamb1 = np.deg2rad(-90) # beta2 = np.deg2rad(75) # lamb2 = np.deg2rad(66) # a0, a1, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000) # print(aus.gms("a0", a0, 4)) # print(aus.gms("a1", a1, 4)) # print("s: ", s) # # print(aus.gms("a2", a2, 4)) # # print(s) # cart1 = ell.para2cart(0, 0) # cart2 = ell.para2cart(0.4, 1.4) # beta1, lamb1 = ell.cart2ell(cart1) # beta2, lamb2 = ell.cart2ell(cart2) # # a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000) # print(s) # ell = EllipsoidTriaxial.init_name("BursaSima1980round") # diffs_panou = [] # examples_panou = ne_panou.get_random_examples(4) # for example in examples_panou: # beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example # P0 = ell.ell2cart(beta0, lamb0) # try: # alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10) # diffs_panou.append( # (wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num))) # except: # print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}") # diffs_panou = np.array(diffs_panou) # print(diffs_panou) # # ell = EllipsoidTriaxial.init_name("KarneyTest2024") # diffs_karney = [] # # examples_karney = ne_karney.get_examples((30500, 40500)) # examples_karney = ne_karney.get_random_examples(2) # for example in examples_karney: # beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example # # try: # alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10) # diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num))) # except: # print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}") # diffs_karney = np.array(diffs_karney) # print(diffs_karney) pass