from typing import Tuple import numpy as np import plotly.graph_objects as go from numpy import cos, sin from numpy.typing import NDArray import winkelumrechnungen as wu from GHA_triaxial.utils import louville_constant, pq_ell from ellipsoid_triaxial import EllipsoidTriaxial from utils_angle import wrap_0_2pi def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) \ -> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray, NDArray]: """ Berechung einer Näherungslösung der ersten Hauptaufgabe :param ell: Ellipsoid :param p0: Anfangspunkt :param alpha0: Azimut im Anfangspunkt :param s: Strecke bis zum Endpunkt :param ds: Länge einzelner Streckenelemente :param all_points: Ausgabe aller Punkte als Array? :return: Endpunkt, Azimut im Endpunkt, optional alle Punkte """ l0 = louville_constant(ell, p0, alpha0) points = [p0] alphas = [alpha0] s_curr = 0.0 last_sigma = None last_p = None while s_curr < s: ds_step = min(ds, s - s_curr) if ds_step < 1e-8: break p1 = points[-1] alpha1 = alphas[-1] p, q = pq_ell(ell, p1) if last_p is not None and np.dot(p, last_p) < 0: p = -p q = -q last_p = p sigma = p * sin(alpha1) + q * cos(alpha1) if last_sigma is not None and np.dot(sigma, last_sigma) < 0: sigma = -sigma alpha1 += np.pi alpha1 = wrap_0_2pi(alpha1) p2 = p1 + ds_step * sigma p2 = ell.point_onto_ellipsoid(p2) dalpha = 1e-9 l2 = louville_constant(ell, p2, alpha1) dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha if abs(dl_dalpha) < 1e-20: alpha2 = alpha1 + 0 else: alpha2 = alpha1 + (l0 - l2) / dl_dalpha points.append(p2) alphas.append(wrap_0_2pi(alpha2)) ds_step = np.linalg.norm(p2 - p1) s_curr += ds_step last_sigma = sigma pass if all_points: return points[-1], alphas[-1], np.array(points), np.array(alphas) else: return points[-1], alphas[-1] def show_points(points: NDArray, p0: NDArray, p1: NDArray): """ Anzeigen der Punkte :param points: Array aller approximierten Punkte :param p0: Startpunkt :param p1: wahrer Endpunkt """ fig = go.Figure() fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2], mode='lines', line=dict(color="red", width=3), name="Approx") fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]], mode='markers', marker=dict(color="green"), name="P0") fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]], mode='markers', marker=dict(color="green"), name="P1") fig.update_layout( scene=dict(xaxis_title='X [km]', yaxis_title='Y [km]', zaxis_title='Z [km]', aspectmode='data'), title="CHAMP") fig.show() if __name__ == '__main__': ell = EllipsoidTriaxial.init_name("KarneyTest2024") P0 = ell.ell2cart(wu.deg2rad(15), wu.deg2rad(15)) alpha0 = wu.deg2rad(270) s = 1 P1_app, alpha1_app, points, alphas = gha1_approx(ell, P0, alpha0, s, ds=0.1, all_points=True) # P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=40, maxPartCircum=32) # print(np.linalg.norm(P1_app - P1_ana)) # show_points(points, P0, P0)