import numpy as np import ellipsoide import Numerische_Integration.num_int_runge_kutta as rk import winkelumrechnungen as wu import ausgaben as aus import GHA.rk as ghark from scipy.special import factorial as fact from math import comb # Panou, Korakitits 2019 def gha1_num(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, num): phi, lamb, h = ell.cart2geod("ligas3", point) x, y, z = ell.geod2cart(phi, lamb, 0) values = ell.p_q(x, y, z) H = values["H"] p = values["p"] q = values["q"] dxds0 = p[0] * np.sin(alpha0) + q[0] * np.cos(alpha0) dyds0 = p[1] * np.sin(alpha0) + q[1] * np.cos(alpha0) dzds0 = p[2] * np.sin(alpha0) + q[2] * np.cos(alpha0) h = lambda dxds, dyds, dzds: dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2 f1 = lambda s, x, dxds, y, dyds, z, dzds: dxds f2 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * x f3 = lambda s, x, dxds, y, dyds, z, dzds: dyds f4 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * y/(1-ell.ee**2) f5 = lambda s, x, dxds, y, dyds, z, dzds: dzds f6 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * z/(1-ell.ex**2) funktionswerte = rk.verfahren([f1, f2, f3, f4, f5, f6], [0, x, dxds0, y, dyds0, z, dzds0], s, num) return funktionswerte def checkLiouville(ell: ellipsoide.EllipsoidTriaxial, points): constantValues = [] for point in points: x = point[1] dxds = point[2] y = point[3] dyds = point[4] z = point[5] dzds = point[6] values = ell.p_q(x, y, z) p = values["p"] q = values["q"] t1 = values["t1"] t2 = values["t2"] P = p[0]*dxds + p[1]*dyds + p[2]*dzds Q = q[0]*dxds + q[1]*dyds + q[2]*dzds alpha = np.arctan(P/Q) c = ell.ay**2 - (t1 * np.sin(alpha)**2 + t2 * np.cos(alpha)**2) constantValues.append(c) pass def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM): """ Panou, Korakitits 2020, 5ff. :param ell: :param x: :param y: :param z: :param alpha0: :param s: :param maxM: :return: """ x, y, z = point x_m = [x] y_m = [y] z_m = [z] # erste Ableitungen (7-8) sqrtH = np.sqrt(ell.p_q(x, y, z)["H"]) n = np.array([x / sqrtH, y / ((1-ell.ee**2) * sqrtH), z / ((1-ell.ex**2) * sqrtH)]) u, v = ell.cart2para(np.array([x, y, z])) G = np.sqrt(1 - ell.ex**2 * np.cos(u)**2 - ell.ee**2 * np.sin(u)**2 * np.sin(v)**2) q = np.array([-1/G * np.sin(u) * np.cos(v), -1/G * np.sqrt(1-ell.ee**2) * np.sin(u) * np.sin(v), 1/G * np.sqrt(1-ell.ex**2) * np.cos(u)]) p = np.array([q[1]*n[2] - q[2]*n[1], q[2]*n[0] - q[0]*n[2], q[0]*n[1] - q[1]*n[0]]) x_m.append(p[0] * np.sin(alpha0) + q[0] * np.cos(alpha0)) y_m.append(p[1] * np.sin(alpha0) + q[1] * np.cos(alpha0)) z_m.append(p[2] * np.sin(alpha0) + q[2] * np.cos(alpha0)) # H Ableitungen (7) H_ = lambda p: np.sum([comb(p, i) * (x_m[p - i] * x_m[i] + 1 / (1-ell.ee**2) ** 2 * y_m[p-i] * y_m[i] + 1 / (1-ell.ex**2) ** 2 * z_m[p-i] * z_m[i]) for i in range(0, p+1)]) # h Ableitungen (7) h_ = lambda q: np.sum([comb(q, j) * (x_m[q-j+1] * x_m[j+1] + 1 / (1 - ell.ee ** 2) * y_m[q-j+1] * y_m[j+1] + 1 / (1 - ell.ex ** 2) * z_m[q-j+1] * z_m[j+1]) for j in range(0, q+1)]) # h/H Ableitungen (6) hH_ = lambda t: 1/H_(0) * (h_(t) - fact(t) * np.sum([H_(t+1-l) / (fact(t+1-l) * fact(l-1)) * hH_t[l-1] for l in range(1, t+1)])) # xm, ym, zm Ableitungen (6) x_ = lambda m: -np.sum([comb(m-2, k) * hH_t[m-2-k] * x_m[k] for k in range(0, m-2+1)]) y_ = lambda m: -1 / (1-ell.ee**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * y_m[k] for k in range(0, m-2+1)]) z_ = lambda m: -1 / (1-ell.ex**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * z_m[k] for k in range(0, m-2+1)]) hH_t = [] a_m = [] b_m = [] c_m = [] for m in range(0, maxM+1): if m >= 2: hH_t.append(hH_(m-2)) x_m.append(x_(m)) y_m.append(y_(m)) z_m.append(z_(m)) a_m.append(x_m[m] / fact(m)) b_m.append(y_m[m] / fact(m)) c_m.append(z_m[m] / fact(m)) # am, bm, cm (6) x_s = 0 for a in reversed(a_m): x_s = x_s * s + a y_s = 0 for b in reversed(b_m): y_s = y_s * s + b z_s = 0 for c in reversed(c_m): z_s = z_s * s + c return x_s, y_s, z_s pass if __name__ == "__main__": # ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978") ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980") ellbi = ellipsoide.EllipsoidTriaxial.init_name("Bessel-biaxial") re = ellipsoide.EllipsoidBiaxial.init_name("Bessel") # Panou 2013, 7, Table 1, beta0=60° beta1 = wu.deg2rad(60) lamb1 = wu.deg2rad(0) beta2 = wu.deg2rad(60) lamb2 = wu.deg2rad(175) P1 = ell.ell2cart2(wu.deg2rad(60), wu.deg2rad(0)) P2 = ell.ell2cart2(wu.deg2rad(60), wu.deg2rad(175)) para1 = ell.cart2para(P1) para2 = ell.cart2para(P2) cart1 = ell.para2cart(para1[0], para1[1]) cart2 = ell.para2cart(para2[0], para2[1]) ell11 = ell.cart2ell2(P1) ell21 = ell.cart2ell2(P2) ell1 = ell.cart2ell2(cart1) ell2 = ell.cart2ell2(cart2) c = 0.06207487624 alpha0 = wu.gms2rad([2, 52, 26.2393]) alpha1 = wu.gms2rad([177, 4, 13.6373]) s = 6705715.1610 pass P2_num = gha1_num(ell, P1, alpha0, s, 1000) P2_ana = gha1_ana(ell, P1, alpha0, s, 70) pass