import numpy as np from numpy import sin, cos, arcsin, arccos, arctan2 from ellipsoide import EllipsoidTriaxial import matplotlib.pyplot as plt from panou import louville_constant, func_sigma_ell, gha1_ana import plotly.graph_objects as go import winkelumrechnungen as wu def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: int): l0 = louville_constant(ell, p0, alpha0) points = [p0] alphas = [alpha0] s_curr = 0.0 while s_curr < s: ds_step = min(ds, s - s_curr) if ds_step < 1e-8: break p1 = points[-1] alpha1 = alphas[-1] x1, y1, z1 = p1 sigma = func_sigma_ell(ell, x1, y1, z1, alpha1) p2 = p1 + ds_step * sigma p2, _, _, _ = ell.cartonell(p2) ds_step = np.linalg.norm(p2 - p1) points.append(p2) dalpha = 1e-6 l2 = louville_constant(ell, p2, alpha1) dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha alpha2 = alpha1 + (l0 - l2) / dl_dalpha alphas.append(alpha2) s_curr += ds_step return points[-1], alphas[-1], np.array(points) def show_points(points, p0, p1): fig = go.Figure() fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2], mode='lines', line=dict(color="red", width=3), name="Approx") fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]], mode='markers', marker=dict(color="green"), name="P0") fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]], mode='markers', marker=dict(color="green"), name="P1") fig.update_layout( scene=dict(xaxis_title='X [km]', yaxis_title='Y [km]', zaxis_title='Z [km]', aspectmode='data'), title="CHAMP") fig.show() if __name__ == '__main__': ell = EllipsoidTriaxial.init_name("BursaSima1980round") P0 = ell.para2cart(0, 0) alpha0 = wu.deg2rad(90) s = 1000000 P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 60, maxPartCircum=32) P1_app, alpha1_app, points = gha1(ell, P0, alpha0, s, 5000) show_points(points, P0, P1_ana) print(np.linalg.norm(P1_app - P1_ana))