Compare commits

...

124 Commits

Author SHA1 Message Date
d90ff5df69 Ellipsoid-Auswahl angepasst 2026-02-11 13:44:53 +01:00
59ad560f36 Abgabe fertig 2026-02-11 12:08:46 +01:00
5a293a823a revert 4f7b9aaef0
revert Delete Tests/gha_resultsKarney.pkl
2026-02-11 11:00:48 +00:00
36b62059fc revert 798cace25d
revert Delete Tests/gha_resultsPanou.pkl
2026-02-11 11:00:33 +00:00
57a086f6cb revert b8d07307aa
revert Delete Tests/gha_resultsRandom.pkl
2026-02-11 11:00:23 +00:00
b8d07307aa Delete Tests/gha_resultsRandom.pkl 2026-02-11 10:58:53 +00:00
798cace25d Delete Tests/gha_resultsPanou.pkl 2026-02-11 10:58:47 +00:00
4f7b9aaef0 Delete Tests/gha_resultsKarney.pkl 2026-02-11 10:58:42 +00:00
1fbfb555a4 wraps 2026-02-10 21:10:11 +01:00
Tammo.Weber
db05f7b6db Merge remote-tracking branch 'origin/main' 2026-02-10 12:36:04 +01:00
Tammo.Weber
73e3694a2a Ausgabe von alpha GHA1 2026-02-10 12:35:35 +01:00
ffc8d3fbce Fehlermeldung dashboard 2026-02-10 11:36:15 +01:00
Tammo.Weber
fd02694ae4 Platzsparen 2026-02-09 21:36:46 +01:00
e1ac0415e7 Merge remote-tracking branch 'origin/main' 2026-02-09 16:28:55 +01:00
e7641ba64f , 2026-02-09 16:28:15 +01:00
Tammo.Weber
fc9bc5defb Optimierung 2026-02-09 15:30:24 +01:00
Tammo.Weber
2864ce50ff s kleiner 0 2026-02-09 11:50:07 +01:00
Tammo.Weber
b44c25928e Merge remote-tracking branch 'origin/main' 2026-02-09 11:45:29 +01:00
Tammo.Weber
67248f9ca9 Anpassungen im Plot 2026-02-09 11:44:52 +01:00
Tammo.Weber
71c13c568a Fehlerkorrektur 2026-02-09 11:43:50 +01:00
19887e4ac5 Merge remote-tracking branch 'origin/main' 2026-02-09 11:29:38 +01:00
737e4730aa dashboard streckenelemente kleiner 0 zulässig 2026-02-09 11:29:15 +01:00
Tammo.Weber
020d282420 Merge remote-tracking branch 'origin/main' 2026-02-09 10:17:11 +01:00
Tammo.Weber
cefa98e3b7 Zweiter Parameter bei GHA1 ana 2026-02-09 10:16:57 +01:00
e8624159e2 karney gruppen 2026-02-08 19:31:52 +01:00
Tammo.Weber
cfab70ac55 Meldung wenn Berechung fehlschlägt 2026-02-08 17:51:55 +01:00
ee85e8b0e6 . 2026-02-08 16:28:59 +01:00
02ce0c0b4a nochmal 2026-02-07 22:03:07 +01:00
3fd967e843 Exceptions einheitlich 2026-02-07 19:35:15 +01:00
322ac94299 Exceptions einheitlich 2026-02-07 19:34:54 +01:00
49d03786dc GHA1 ana richtig aufgerufen im Dashboard und im Test 2026-02-07 18:07:25 +01:00
ef99294502 all points 2026-02-06 16:28:34 +01:00
b3a73270c2 Merge remote-tracking branch 'origin/main' 2026-02-06 16:25:40 +01:00
7a425eae77 Lets go 2026-02-06 16:25:27 +01:00
Tammo.Weber
bd411a8cd7 Merge remote-tracking branch 'origin/main' 2026-02-06 16:01:25 +01:00
Tammo.Weber
d6f9bc4302 Kleinere Anpassungen und Fehler abfangen 2026-02-06 16:01:15 +01:00
50326ba246 Nice 2026-02-06 15:49:36 +01:00
Tammo.Weber
0eeb35f173 GHA1 ES mit Linie, Legende 2026-02-06 15:06:48 +01:00
2954c0ee3a Punktliste 2 2026-02-06 14:43:43 +01:00
476b51071b Merge remote-tracking branch 'origin/main' 2026-02-06 14:30:26 +01:00
a836d2d534 Punktliste 2026-02-06 14:30:11 +01:00
Tammo.Weber
7a2a843285 kleinere Optimierungen 2026-02-06 14:10:48 +01:00
Tammo.Weber
9591045ee2 GHA1 ES implementiert 2026-02-06 13:06:32 +01:00
Tammo.Weber
81ca8a4770 GHA1 analytisch Ordnung variabel 2026-02-06 12:35:55 +01:00
6e63b3c965 Geile Änderungen 2026-02-06 11:32:48 +01:00
af8ac02e5b Merge remote-tracking branch 'origin/main' 2026-02-06 11:24:33 +01:00
e14869691b turbomäßige Anpassungen 2026-02-06 11:24:13 +01:00
Tammo.Weber
f68d11c031 Einmal ein Rechtschreibfehler und einmal in rad ausgegeben. 2026-02-06 11:15:42 +01:00
Tammo.Weber
5d4ed35f17 Anpassungen bei Zwischespeicherung etc. 2026-02-05 22:48:58 +01:00
Tammo.Weber
2ba4dad30d Merge remote-tracking branch 'origin/main'
# Conflicts:
#	GHA_triaxial/gha2_num.py
2026-02-05 21:44:28 +01:00
Tammo.Weber
dd5cf2d6a8 merge 2026-02-05 21:43:26 +01:00
Tammo.Weber
9f0554039c merge 2026-02-05 21:40:39 +01:00
a864cd9279 ES1 in Tests 2026-02-05 21:35:48 +01:00
e894c7089a final 2026-02-05 21:29:20 +01:00
f75672ec36 henreick 2026-02-05 21:03:59 +01:00
e11edd2a43 henreick 2026-02-05 21:01:06 +01:00
82444208d7 gha1_ES 2026-02-05 19:20:09 +01:00
36e243d6d4 Anpassungen 2026-02-05 16:54:28 +01:00
ac1436a7f7 stopfitness=1e-14 2026-02-05 15:58:11 +01:00
09ae06e9b2 ell2 2026-02-05 15:56:09 +01:00
39641b5293 ell 2026-02-05 15:52:22 +01:00
Tammo.Weber
19c1625a11 Merge remote-tracking branch 'origin/main' 2026-02-05 13:04:56 +01:00
Tammo.Weber
c240da85c1 Eingabe Berechnungsparameter 2026-02-05 13:04:31 +01:00
fb4faf9aa4 Fehler in der Umrechnung korrigiert 2026-02-05 11:36:44 +01:00
c15de91154 Merge remote-tracking branch 'origin/main' 2026-02-05 11:14:05 +01:00
77c7a6f9ab Umstrukturierung 2026-02-05 11:12:17 +01:00
Tammo.Weber
4689a77f37 Ausgabe der alphas 2026-02-05 11:07:08 +01:00
Tammo.Weber
8113d743c0 Merge remote-tracking branch 'origin/main' 2026-02-05 10:59:45 +01:00
Tammo.Weber
a3ec069c1a Änderungen mergen 2026-02-05 10:59:17 +01:00
4e2491d967 Umbenennung, Umstrukturierung, Doc-Strings 2026-02-04 22:59:07 +01:00
96e489a116 Darstellung aller Parameterlinien konstant 2026-02-04 11:41:43 +01:00
3930b3207a ES GHA1 aus dashboard entfernt 2026-02-04 11:26:40 +01:00
0aa56f448c Merge remote-tracking branch 'origin/main' 2026-02-04 11:24:01 +01:00
9b4eaaef0b kleine Anpassungen 2026-02-04 11:23:33 +01:00
Tammo.Weber
1532c97111 Koordinatenart für den Plot wählbar 2026-02-03 21:45:24 +01:00
Tammo.Weber
d80492a9e5 Funktioniert jetzt mit allen Panou 2026-02-02 18:38:17 +01:00
ab20352cbf Merge remote-tracking branch 'refs/remotes/origin/main2'
# Conflicts:
#	GHA_triaxial/ES_gha2.py
2026-01-18 22:31:00 +01:00
aa7175c3c4 Umrechnungs-Test, Tabellen 2026-01-18 22:29:29 +01:00
fee5de0041 Konflikte gelöst, gha2_ES aber noch nicht wieder im Dashboard aufgerufen 2026-01-18 22:11:01 +01:00
d7076e3001 Konflikte gelöst, gha2_ES aber noch nicht wieder im Dashboard aufgerufen 2026-01-18 21:53:57 +01:00
07212dcc97 Algorithmen Test 2026-01-17 18:51:47 +01:00
Tammo.Weber
505aee6de7 Kleinere Anpassungen 2026-01-13 20:46:15 +01:00
Tammo.Weber
048b6979d8 Import 2026-01-13 20:00:06 +01:00
39f5dbdd95 Berechnungen Kugel 2026-01-13 16:52:45 +01:00
de35fb786f Merge remote-tracking branch 'origin/main' 2026-01-13 16:15:19 +01:00
9dfb959eb0 Berechnungen Biaxial 2026-01-13 16:15:00 +01:00
Tammo.Weber
7addf7f13e Merge remote-tracking branch 'origin/main' 2026-01-13 15:56:33 +01:00
Tammo.Weber
35c1f413ef Layout und Eingaben 2026-01-13 15:56:22 +01:00
Tammo.Weber
e4b7b08517 Plot repariert 2026-01-13 14:09:36 +01:00
4b348533bb Für Nico 2026-01-13 14:03:40 +01:00
b5f640bda1 import korrigiert 2026-01-13 13:22:14 +01:00
efd1b8c5fb Doc-Strings und Type-Hinting 2026-01-13 11:09:12 +01:00
Tammo.Weber
8507ca1afa Merge remote-tracking branch 'origin/main' 2026-01-12 15:52:24 +01:00
Tammo.Weber
96e09acd79 Kleine Anpassungen 2026-01-12 15:51:52 +01:00
379312b974 Konflikte gelöst, gha2_ES aber noch nicht wieder im Dashboard aufgerufen 2026-01-12 15:34:13 +01:00
08ac2ef1a5 Merge remote-tracking branch 'origin/main'
# Conflicts:
#	Hansen_ES_CMA.py
#	dashboard.py
2026-01-12 15:27:06 +01:00
bded05a231 2. GHA mit CMA-ES 2026-01-12 15:18:39 +01:00
Tammo.Weber
fcadc358bf Parametrisiert 2026-01-12 14:20:11 +01:00
Tammo.Weber
4474e5dd58 Trennung der einzelnen Berechnungsverfahren 2026-01-12 14:12:19 +01:00
Tammo.Weber
98cb55ac5f Merge remote-tracking branch 'origin/main'
# Conflicts:
#	dashboard.py
2026-01-12 14:10:30 +01:00
Tammo.Weber
0889f26d84 Trennung der einzelnen Berechnungsverfahren 2026-01-12 14:09:02 +01:00
6cc7245b0f Näherungslösung GHA 2 2026-01-11 16:05:15 +01:00
4d5b6fcc3e Umrechnung alpha, Näherungslösung GHA 1 2026-01-11 13:14:43 +01:00
797afdfd6f Projekt aufgeräumt, gha1 getestet, Runge-Kutta angepasst (gha2_num sollte jetzt deutlich schneller sein) 2026-01-09 18:00:32 +01:00
Tammo.Weber
cf756e3d9a Ausgabe der Zwischenpunkte GHA1_num 2026-01-06 15:12:21 +01:00
Tammo.Weber
fcae02a0d9 Liniendarstellung GHA1 2026-01-06 15:11:42 +01:00
Tammo.Weber
3c1d56246c Liniendarstellung GHA2 2026-01-06 14:54:02 +01:00
Tammo.Weber
9db63d09fa GHA1 numerisch implementiert 2025-12-17 17:59:05 +01:00
Tammo.Weber
cfeb069e29 Zusammenführung 2025-12-16 16:39:33 +01:00
Tammo.Weber
f19373ed82 Merge remote-tracking branch 'origin/main'
# Conflicts:
#	dashboard.py
2025-12-16 16:33:57 +01:00
Tammo.Weber
0f47be3a9f Berechnungsverfahren und Darstellung 2025-12-16 16:31:24 +01:00
Tammo.Weber
30a610ccf6 Hansen Skript roh 2025-12-16 16:25:00 +01:00
bf1e26c98a Code-Verschönerung Dashboard 2025-12-15 12:33:12 +01:00
4139fbc354 kleine Anpassungen 2025-12-14 16:13:55 +01:00
946d028fae GHA1 num und ana richtig. Tests nach Beispielen aus Panou 2013 2025-12-10 11:45:41 +01:00
Tammo.Weber
936b7c56f9 icon 2025-12-10 10:10:14 +01:00
Tammo.Weber
766f75efc1 1 GHA ES 2025-12-10 10:07:27 +01:00
Tammo.Weber
520f0973f0 Dashboard 2025-12-10 10:05:57 +01:00
d76859d17b Koordinatenumrechnungen funktionieren inkl. Randfälle, GHA2_num funktioniert mit Standard Ellipsoid 2025-11-26 11:05:18 +01:00
9031a12312 diverse Änderungen, Versuch der Lösung der zweiten GHA mit Louville 2025-11-25 14:49:06 +01:00
Tammo.Weber
2ff4cff2be Kugel 2025-11-18 13:17:33 +01:00
Tammo.Weber
e545da5cd7 Zweite GHA numerisch 2025-11-15 14:48:11 +01:00
Tammo.Weber
e464e1cb5c Neue Funktion ell2cart nach Panou 2013 2025-11-15 14:31:51 +01:00
4e85eef5d7 analytisch funktioniert, p_q in ellisoid 2025-11-04 15:47:44 +01:00
53 changed files with 18357 additions and 1003 deletions

157
ES/Hansen_ES_CMA.py Normal file
View File

@@ -0,0 +1,157 @@
import numpy as np
from numpy.typing import NDArray
def felli(x: NDArray) -> float:
N = x.shape[0]
if N < 2:
raise ValueError("dimension must be greater than one")
exponents = np.arange(N) / (N - 1)
return float(np.sum((1e6 ** exponents) * (x ** 2)))
def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-14, stopeval=2000,
func_args=(), func_kwargs=None, seed=0,
bestEver=np.inf, noImproveGen=0, absTolImprove=1e-12, maxNoImproveGen=100, sigmaImprove=1e-12):
if func_kwargs is None:
func_kwargs = {}
if seed is not None:
np.random.seed(seed)
# Initialization (aus Parametern statt hart verdrahtet)
if xmean is None:
xmean = np.random.rand(N)
else:
xmean = np.asarray(xmean, dtype=float)
N = xmean.shape[0]
if stopeval is None:
stopeval = int(1e3 * N ** 2)
# Strategy parameter setting: Selection
lambda_ = 4 + int(np.floor(3 * np.log(N)))
mu = lambda_ / 2.0
# muXone recombination weights
weights = np.log(mu + 0.5) - np.log(np.arange(1, int(mu) + 1))
mu = int(np.floor(mu))
weights = weights / np.sum(weights)
mueff = np.sum(weights) ** 2 / np.sum(weights ** 2)
# Strategy parameter setting: Adaptation
cc = (4 + mueff / N) / (N + 4 + 2 * mueff / N)
cs = (mueff + 2) / (N + mueff + 5)
c1 = 2 / ((N + 1.3) ** 2 + mueff)
cmu = min(1 - c1,
2 * (mueff - 2 + 1 / mueff) / ((N + 2) ** 2 + 2 * mueff))
damps = 1 + 2 * max(0, np.sqrt((mueff - 1) / (N + 1)) - 1) + cs
# Initialize dynamic (internal) strategy parameters and constants
pc = np.zeros(N)
ps = np.zeros(N)
B = np.eye(N)
D = np.eye(N)
C = B @ D @ (B @ D).T
eigeneval = 0
chiN = np.sqrt(N) * (1 - 1 / (4 * N) + 1 / (21 * N ** 2))
# Generation Loop
counteval = 0
arx = np.zeros((N, lambda_))
arz = np.zeros((N, lambda_))
arfitness = np.zeros(lambda_)
gen = 0
# print(f' [CMA-ES] Start: lambda = {lambda_}, sigma ={round(sigma, 6)}, stopeval = {stopeval}')
while counteval < stopeval:
gen += 1
# Generate and evaluate lambda offspring
for k in range(lambda_):
arz[:, k] = np.random.randn(N)
arx[:, k] = xmean + sigma * (B @ D @ arz[:, k])
arfitness[k] = float(func(arx[:, k], *func_args, **func_kwargs)) # <-- allgemein
counteval += 1
# Sort by fitness and compute weighted mean into xmean
idx = np.argsort(arfitness)
arfitness = arfitness[idx]
arindex = idx
xold = xmean.copy()
xmean = arx[:, arindex[:mu]] @ weights
zmean = arz[:, arindex[:mu]] @ weights
# Stagnation check
fbest = arfitness[0]
if bestEver - fbest > absTolImprove:
bestEver = fbest
noImproveGen = 0
else:
noImproveGen += 1
if gen == 1 or gen % 50 == 0:
# print(f' [CMA-ES] Gen {gen}, best = {round(fbest, 6)}, sigma = {sigma:.3g}')
pass
if noImproveGen >= maxNoImproveGen:
# print(f' [CMA-ES] Abbruch: keine Verbesserung > {round(absTolImprove, 3)} in {maxNoImproveGen} Generationen.')
break
if sigma < sigmaImprove:
# print(f' [CMA-ES] Abbruch: sigma zu klein {sigma:.3g}')
break
# Cumulation: Update evolution paths
ps = (1 - cs) * ps + np.sqrt(cs * (2 - cs) * mueff) * (B @ zmean)
norm_ps = np.linalg.norm(ps)
hsig = norm_ps / np.sqrt(1 - (1 - cs) ** (2 * counteval / lambda_)) / chiN < (1.4 + 2 / (N + 1))
hsig = 1.0 if hsig else 0.0
pc = (1 - cc) * pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * (B @ D @ zmean)
# Adapt covariance matrix C
BDz = B @ D @ arz[:, arindex[:mu]]
C = (1 - c1 - cmu) * C \
+ c1 * (np.outer(pc, pc) + (1 - hsig) * cc * (2 - cc) * C) \
+ cmu * BDz @ np.diag(weights) @ BDz.T
# Adapt step-size sigma
sigma = sigma * np.exp((cs / damps) * (norm_ps / chiN - 1))
# Update B and D from C (Eigenzerlegung, O(N^2))
if counteval - eigeneval > lambda_ / ((c1 + cmu) * N * 10):
eigeneval = counteval
# enforce symmetry
C = (C + C.T) / 2.0
eigvals, B = np.linalg.eigh(C)
D = np.diag(np.sqrt(eigvals))
# Break, if fitness is good enough
if arfitness[0] <= stopfitness:
break
# Escape flat fitness, or better terminate?
if arfitness[0] == arfitness[int(np.ceil(0.7 * lambda_)) - 1]:
sigma = sigma * np.exp(0.2 + cs / damps)
# print(' [CMA-ES] stopfitness erreicht.')
# print("warning: flat fitness, consider reformulating the objective")
break
# print(f"{counteval}: {arfitness[0]}")
# Final Message
# print(f"{counteval}: {arfitness[0]}")
xmin = arx[:, arindex[0]]
bestValue = arfitness[0]
# print(f' [CMA-ES] Ende: Gen = {gen}, best = {round(bestValue, 6)}')
return xmin
if __name__ == "__main__":
xmin = escma(felli, N=10) # <-- Zielfunktion wird übergeben
print("Bestes gefundenes x:", xmin)
print("f(xmin) =", felli(xmin))

247
ES/gha1_ES.py Normal file
View File

@@ -0,0 +1,247 @@
from __future__ import annotations
from typing import List, Tuple
import numpy as np
from numpy.typing import NDArray
import winkelumrechnungen as wu
from ES.Hansen_ES_CMA import escma
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.gha1_approx import gha1_approx
from GHA_triaxial.utils import jacobi_konstante
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_mpi_pi
def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
-> Tuple[NDArray, NDArray, NDArray, float, float, NDArray]:
"""
Analytische ENU-Basis in ellipsoidische Koordinaten (β, ω) nach Karney (2025), S. 2
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param ell: Ellipsoid
:return: E_hat = Einheitsrichtung entlang wachsendem ω (East)
N_hat = Einheitsrichtung entlang wachsendem β (North)
U_hat = Einheitsnormale (Up)
En & Nn = Längen der unnormierten Ableitungen
R (XYZ) = Punkt in XYZ
"""
# Berechnungshilfen
omega = wrap_mpi_pi(omega)
cb = np.cos(beta)
sb = np.sin(beta)
co = np.cos(omega)
so = np.sin(omega)
# D = sqrt(a^2 - c^2)
D = np.sqrt(ell.ax*ell.ax - ell.b*ell.b)
# Sx = sqrt(a^2 - b^2 sin^2β - c^2 cos^2β)
Sx = np.sqrt(ell.ax*ell.ax - ell.ay*ell.ay*(sb*sb) - ell.b*ell.b*(cb*cb))
# Sz = sqrt(a^2 sin^2ω + b^2 cos^2ω - c^2)
Sz = np.sqrt(ell.ax*ell.ax*(so*so) + ell.ay*ell.ay*(co*co) - ell.b*ell.b)
# Karney Gl. (4)
X = ell.ax * co * Sx / D
Y = ell.ay * cb * so
Z = ell.b * sb * Sz / D
R = np.array([X, Y, Z], dtype=float)
# --- Ableitungen - Karney Gl. (5a,b,c)---
# E = ∂R/∂ω
dX_dw = -ell.ax * so * Sx / D
dY_dw = ell.ay * cb * co
dZ_dw = ell.b * sb * (so * co * (ell.ax*ell.ax - ell.ay*ell.ay) / Sz) / D
E = np.array([dX_dw, dY_dw, dZ_dw], dtype=float)
# N = ∂R/∂β
dX_db = ell.ax * co * (sb * cb * (ell.b*ell.b - ell.ay*ell.ay) / Sx) / D
dY_db = -ell.ay * sb * so
dZ_db = ell.b * cb * Sz / D
N = np.array([dX_db, dY_db, dZ_db], dtype=float)
# U = Grad(x^2/a^2 + y^2/b^2 + z^2/c^2 - 1)
U = np.array([X/(ell.ax*ell.ax), Y/(ell.ay*ell.ay), Z/(ell.b*ell.b)], dtype=float)
En = float(np.linalg.norm(E))
Nn = float(np.linalg.norm(N))
Un = float(np.linalg.norm(U))
N_hat = N / Nn
E_hat = E / En
U_hat = U / Un
E_hat -= float(np.dot(E_hat, N_hat)) * N_hat
E_hat = E_hat / max(np.linalg.norm(E_hat), 1e-18)
return E_hat, N_hat, U_hat, En, Nn, R
def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_hat_curr: NDArray, U_hat_curr: NDArray) -> float:
"""
Berechnet das Azimut in der lokalen Tangentialebene am aktuellen Punkt P_curr, gemessen
an der Bewegungsrichtung vom vorherigen Punkt P_prev nach P_curr.
:param P_prev: vorheriger Punkt
:param P_curr: aktueller Punkt
:param E_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param N_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param U_hat_curr: Einheitsnormalenvektor am Punkt P_curr
:return: Azimut in Radiant
"""
v = (P_curr - P_prev).astype(float)
vT = v - float(np.dot(v, U_hat_curr)) * U_hat_curr
vTn = max(np.linalg.norm(vT), 1e-18)
vT_hat = vT / vTn
sE = float(np.dot(vT_hat, E_hat_curr))
sN = float(np.dot(vT_hat, N_hat_curr))
return wrap_mpi_pi(float(np.arctan2(sE, sN)))
def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float, gamma0: float,
ell: EllipsoidTriaxial, maxSegLen: float = 1000.0, sigma0: float = None) -> Tuple[float, float, NDArray, float]:
"""
Berechnung der 1. GHA mithilfe der CMA-ES.
Die CMA-ES optimiert sukzessive einen Punkt, der maxSegLen vom vorherigen Punkt entfernt und zusätzlich auf der
geodätischen Linien liegt. Somit entsteht ein Geodäten ähnlicher Polygonzug auf der Oberfläche des dreiachsigen Ellipsoids.
:param beta_i: Beta Koordinate am Punkt i
:param omega_i: Omega Koordinate am Punkt i
:param alpha_i: Azimut am Punkt i
:param ds: Gesamtlänge
:param gamma0: Jacobi-Konstante am Startpunkt
:param ell: Ellipsoid
:param maxSegLen: maximale Segmentlänge
:param sigma0:
:return:
"""
# Startbasis
E_i, N_i, U_i, En_i, Nn_i, P_i = ENU_beta_omega(beta_i, omega_i, ell)
# Prediktor: dβ ≈ ds cosα / |N|, dω ≈ ds sinα / |E|
En_eff = max(En_i, 1e-9)
Nn_eff = max(Nn_i, 1e-9)
d_beta = ds * np.cos(alpha_i) / Nn_eff
d_omega = ds * np.sin(alpha_i) / En_eff
# optional: harte Schritt-Clamps (verhindert wrap-chaos)
d_beta = float(np.clip(d_beta, -0.2, 0.2)) # rad
d_omega = float(np.clip(d_omega, -0.2, 0.2)) # rad
# d_beta = ds * float(np.cos(alpha_i)) / Nn_i
# d_omega = ds * float(np.sin(alpha_i)) / En_i
beta_pred = beta_i + d_beta
omega_pred = wrap_mpi_pi(omega_i + d_omega)
xmean = np.array([beta_pred, omega_pred], dtype=float)
if sigma0 is None:
R0 = (ell.ax + ell.ay + ell.b) / 3
sigma0 = 1e-5 * (ds / R0)
def fitness(x: NDArray) -> float:
"""
Fitnessfunktion: Fitnesscheck erfolgt anhand der Segmentlänge und der Jacobi-Konstante.
Die Segmentlänge muss möglichst gut zum Sollwert passen. Die Jacobi-Konstante am Punkt x muss zur
Jacobi-Konstanten am Startpunkt passen, damit der Polygonzug auf derselben geodätischen Linie bleibt.
:param x: Koordinate in beta, lambda aus der CMA-ES
:return: Fitnesswert (f)
"""
beta = x[0]
omega = wrap_mpi_pi(x[1])
P = ell.ell2cart_karney(beta, omega) # in kartesischer Koordinaten
d = float(np.linalg.norm(P - P_i)) # Distanz zwischen
# maxSegLen einhalten
J_len = ((d - ds) / ds) ** 2
w_len = 1.0
# Azimut für Jacobi-Konstante
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta, omega, ell)
alpha_end = azimuth_at_ESpoint(P_i, P, E_j, N_j, U_j)
# Jacobi-Konstante
g_end = jacobi_konstante(beta, omega, alpha_end, ell)
J_gamma = (g_end - gamma0) ** 2
w_gamma = 10
f = float(w_len * J_len + w_gamma * J_gamma)
return f
xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0) # Aufruf CMA-ES
beta_best = xb[0]
omega_best = wrap_mpi_pi(xb[1])
P_best = ell.ell2cart_karney(beta_best, omega_best)
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta_best, omega_best, ell)
alpha_end = azimuth_at_ESpoint(P_i, P_best, E_j, N_j, U_j)
return beta_best, omega_best, P_best, alpha_end
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000, all_points: bool = False)\
-> Tuple[NDArray, float, NDArray] | Tuple[NDArray, float]:
"""
Aufruf der 1. GHA mittels CMA-ES
:param ell: Ellipsoid
:param beta0: Beta Startkoordinate
:param omega0: Omega Startkoordinate
:param alpha0: Azimut Startkoordinate
:param s_total: Gesamtstrecke
:param maxSegLen: maximale Segmentlänge
:param all_points: Alle Punkte ausgeben?
:return: Zielpunkt Pk, Azimut am Zielpunkt und Punktliste
"""
beta = float(beta0)
omega = wrap_mpi_pi(float(omega0))
alpha = wrap_mpi_pi(float(alpha0))
gamma0 = jacobi_konstante(beta, omega, alpha, ell) # Referenz-γ0
P_all: List[NDArray] = [ell.ell2cart_karney(beta, omega)]
alpha_end: List[float] = [alpha]
s_acc = 0.0
step = 0
nsteps_est = int(np.ceil(s_total / maxSegLen))
while s_acc < s_total - 1e-9:
step += 1
ds = min(maxSegLen, s_total - s_acc)
# print(f"[GHA1-ES] Step {step}/{nsteps_est} ds={ds:.3f} m s_acc={s_acc:.3f} m beta={beta:.6f} omega={omega:.6f} alpha={alpha:.6f}")
beta, omega, P, alpha = optimize_next_point(beta_i=beta, omega_i=omega, alpha_i=alpha, ds=ds, gamma0=gamma0,
ell=ell, maxSegLen=maxSegLen)
s_acc += ds
P_all.append(P)
alpha_end.append(wrap_mpi_pi(alpha))
if step > nsteps_est + 50:
raise RuntimeError("GHA1_ES: Zu viele Schritte vermutlich Konvergenzproblem / falsche Azimut-Konvention.")
Pk = P_all[-1]
alpha1 = float(alpha_end[-1])
if all_points:
return Pk, alpha1, np.array(P_all)
else:
return Pk, alpha1
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
s = 180000
# alpha0 = 3
alpha0 = wu.gms2rad([5, 0, 0])
beta = 0
omega = 0
P0 = ell.ell2cart(beta, omega)
point1, alpha1 = gha1_ana(ell, P0, alpha0=alpha0, s=s, maxM=100, maxPartCircum=32)
point1app, alpha1app = gha1_approx(ell, P0, alpha0=alpha0, s=s, ds=1000)
res, alpha, points = gha1_ES(ell, beta0=beta, omega0=-omega, alpha0=alpha0, s_total=s, maxSegLen=1000)
print(point1)
print(res)
print(alpha)
print(points)
# print("alpha1 (am Endpunkt):", res.alpha1)
print(res - point1)
print(point1app - point1, "approx")

182
ES/gha2_ES.py Normal file
View File

@@ -0,0 +1,182 @@
from typing import Tuple
import numpy as np
import plotly.graph_objects as go
from numpy.typing import NDArray
from ES.Hansen_ES_CMA import escma
from GHA_triaxial.gha2_num import gha2_num
from GHA_triaxial.utils import sigma2alpha
from ellipsoid_triaxial import EllipsoidTriaxial
def Sehne(P1: NDArray, P2: NDArray) -> float:
"""
Berechnung der 3D-Distanz zwischen zwei kartesischen Punkten
:param P1: kartesische Koordinate Punkt 1
:param P2: kartesische Koordinate Punkt 2
:return: Bogenlänge s
"""
R12 = P2-P1
s = float(np.linalg.norm(R12))
return s
def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float = None, all_points: bool = False) -> Tuple[float, float, float, NDArray] | Tuple[float, float, float]:
"""
Berechnen der 2. GHA mithilfe der CMA-ES.
Die CMA-ES optimiert sukzessive den Mittelpunkt zwischen Start- und Zielpunkt. Der Abbruch der Berechnung erfolgt, wenn alle Segmentlängen <= maxSegLen sind.
Die Distanzen zwischen den einzelnen Punkten werden als direkte 3D-Distanzen berechnet und aufaddiert.
:param ell: Ellipsoid
:param P0: Startpunkt
:param Pk: Zielpunkt
:param maxSegLen: maximale Segmentlänge
:param all_points: Ergebnisliste mit allen Punkte, die wahlweise mit ausgegeben wird
:return: Richtungswinkel in RAD des Start- und Zielpunktes und Gesamtlänge
"""
P_left: NDArray = None
P_right: NDArray = None
def midpoint_fitness(x: tuple) -> float:
"""
Fitness für einen Mittelpunkt P_middle zwischen P_left und P_right auf dem triaxialen Ellipsoid:
- Minimiert d(P_left, P_middle) + d(P_middle, P_right)
- Erzwingt d(P_left,P_middle) ≈ d(P_middle,P_right) (echter Mittelpunkt im Sinne der Polygonkette)
:param x: enthält die Startwerte von u und v
:return: Fitnesswert (f)
"""
nonlocal P_left, P_right, ell
u, v = x
P_middle = ell.para2cart(u, v)
d1 = Sehne(P_left, P_middle)
d2 = Sehne(P_middle, P_right)
base = d1 + d2
# midpoint penalty (dimensionslos)
# relative Differenz, skaliert über verschiedene Segmentlängen
denom = max(base, 1e-9)
pen_equal = ((d1 - d2) / denom) ** 2
w_equal = 10.0
f = base + denom * w_equal * pen_equal
return f
R0 = (ell.ax + ell.ay + ell.b) / 3
if maxSegLen is None:
maxSegLen = R0 * 1 / (637.4*2) # 10km Segment bei mittleren Erdradius
sigma_uv_nom = 1e-3 * (maxSegLen / R0) # ~1e-5
points: list[NDArray] = [P0, Pk]
startIter = 0
level = 0
while True:
seg_lens = [Sehne(points[i], points[i+1]) for i in range(len(points)-1)]
max_len = max(seg_lens)
if max_len <= maxSegLen:
break
level += 1
new_points: list[NDArray] = [points[0]]
for i in range(len(points) - 1):
A = points[i]
B = points[i+1]
dAB = Sehne(A, B)
# print(dAB)
if dAB > maxSegLen:
# global P_left, P_right
P_left, P_right = A, B
Au, Av = ell.cart2para(A)
Bu, Bv = ell.cart2para(B)
u0 = (Au + Bu) / 2
v0 = Av + 0.5 * np.arctan2(np.sin(Bv - Av), np.cos(Bv - Av))
xmean = [u0, v0]
sigmaStep = sigma_uv_nom * (Sehne(A, B) / maxSegLen)
u, v = escma(midpoint_fitness, N=2, xmean=xmean, sigma=sigmaStep) # Aufruf CMA-ES
P_next = ell.para2cart(u, v)
new_points.append(P_next)
startIter += 1
maxIter = 10000
if startIter > maxIter:
raise RuntimeError("GHA2_ES: maximale Iterationen überschritten")
new_points.append(B)
points = new_points
# print(f"[Level {level}] Punkte: {len(points)} | max Segment: {max_len:.3f} m")
P_all = np.vstack(points)
totalLen = float(np.sum(np.linalg.norm(P_all[1:] - P_all[:-1], axis=1)))
if len(points) >= 3:
p0i = ell.point_onto_ellipsoid(P0 + 10.0 * (points[1] - P0) / np.linalg.norm(points[1] - P0))
sigma0 = (p0i - P0) / np.linalg.norm(p0i - P0)
alpha0 = sigma2alpha(ell, sigma0, P0)
p1i = ell.point_onto_ellipsoid(Pk - 10.0 * (Pk - points[-2]) / np.linalg.norm(Pk - points[-2]))
sigma1 = (Pk - p1i) / np.linalg.norm(Pk - p1i)
alpha1 = sigma2alpha(ell, sigma1, Pk)
else:
alpha0 = None
alpha1 = None
if all_points:
return alpha0, alpha1, totalLen, P_all
return alpha0, alpha1, totalLen
def show_points(points: NDArray, pointsES: NDArray, p0: NDArray, p1: NDArray):
"""
Anzeigen der Punkte
:param points: wahre Punkte der Linie
:param pointsES: Punkte der Linie aus ES
:param p0: wahrer Startpunkt
:param p1: wahrer Endpunkt
"""
fig = go.Figure()
fig.add_scatter3d(x=pointsES[:, 0], y=pointsES[:, 1], z=pointsES[:, 2],
mode='lines', line=dict(color="green", width=3), name="Numerisch")
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
mode='lines', line=dict(color="red", width=3), name="ES")
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
mode='markers', marker=dict(color="black"), name="P0")
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
mode='markers', marker=dict(color="black"), name="P1")
fig.update_layout(
scene=dict(xaxis_title='X [km]',
yaxis_title='Y [km]',
zaxis_title='Z [km]',
aspectmode='data'))
fig.show()
if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("Bursa1970")
beta0, lamb0 = (0.2, 0.1)
P0 = ell.ell2cart(beta0, lamb0)
beta1, lamb1 = (0.3, 0.2)
P1 = ell.ell2cart(beta1, lamb1)
alpha0, alpha1, s_num, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=1000, all_points=True)
points_num = []
for beta, lamb in zip(betas, lambs):
points_num.append(ell.ell2cart(beta, lamb))
points_num = np.array(points_num)
alpha0, alpha1, s, points = gha2_ES(ell, P0, P1)
print(s_num)
print(s)
print(alpha0)
print(alpha1)
print(s - s_num)
show_points(points, points_num, P0, P1)

View File

@@ -1,25 +0,0 @@
from numpy import *
import scipy as sp
def gha1(re, phi_p1, lambda_p1, A_p1, s):
psi_p1 = re.phi2psi(phi_p1)
A_0 = arcsin(cos(psi_p1) * sin(A_p1))
temp = sin(psi_p1) / cos(A_0)
sigma_p1 = arcsin(sin(psi_p1) / cos(A_0))
sqrt_sigma = lambda sigma: sqrt(1 + re.e_ ** 2 * cos(A_0) ** 2 * sin(sigma) ** 2)
int_sqrt_sigma = lambda sigma: sp.integrate.quad(sqrt_sigma, sigma_p1, sigma)[0]
f_sigma_p2i = lambda sigma_p2i: (int_sqrt_sigma(sigma_p2i) - s / re.b)
sigma_p2_0 = sigma_p1 + s / re.a
sigma_p2 = sp.optimize.newton(f_sigma_p2i, sigma_p2_0)
psi_p2 = arcsin(cos(A_0) * sin(sigma_p2))
phi_p2 = re.psi2phi(psi_p2)
A_p2 = arcsin(sin(A_0) / cos(psi_p2))
f_d_lambda = lambda sigma: sin(A_0) * sqrt_sigma(sigma) / (1 - cos(A_0)**2 * sin(sigma)**2)
d_lambda = sqrt(1-re.e**2) * sp.integrate.quad(f_d_lambda, sigma_p1, sigma_p2)[0]
lambda_p2 = lambda_p1 + d_lambda
return phi_p2, lambda_p2, A_p2

View File

@@ -1,107 +0,0 @@
from numpy import sin, cos, pi, sqrt, tan, arcsin, arccos, arctan
import ausgaben as aus
def gha1(re, phi_p1, lambda_p1, A_p1, s, eps):
"""
Berechnung der 1. Geodätische Hauptaufgabe nach Gauß´schen Mittelbreitenformeln
:param re: Klasse Ellipsoid
:param phi_p1: Breite Punkt 1
:param lambda_p1: Länge Punkt 1
:param A_p1: Azimut der geodätischen Linie in Punkt 1
:param s: Strecke zu Punkt 2
:param eps: Abbruchkriterium für Winkelgrößen
:return: Breite, Länge, Azimut von Punkt 2
"""
t = lambda phi: tan(phi)
eta = lambda phi: sqrt(re.e_ ** 2 * cos(phi) ** 2)
F1 = lambda A, phi, s: 1 + (2 + 3 * t(phi)**2 + 2 * eta(phi)**2) / (24 * re.N(phi) ** 2) * sin(A) ** 2 * s ** 2 \
+ (t(phi)**2 - 1) * eta(phi) ** 2 / (8 * re.N(phi) ** 2) * cos(A) ** 2 * s ** 2
F2 = lambda A, phi, s: 1 + t(phi) ** 2 / (24 * re.N(phi) ** 2) * sin(A) ** 2 * s ** 2 \
- (1 + eta(phi)**2 - 9 * eta(phi)**2 * t(phi)**2) / (24 * re.N(phi) ** 2) * cos(A) ** 2 * s ** 2
F3 = lambda A, phi, s: 1 + (1 + eta(phi)**2) / (12 * re.N(phi) ** 2) * sin(A) ** 2 * s ** 2 \
+ (3 + 8 * eta(phi)**2) / (24 * re.N(phi) ** 2) * cos(A) ** 2 * s ** 2
phi_p2_i = lambda A, phi: phi_p1 + cos(A) / re.M(phi) * s * F1(A, phi, s)
lambda_p2_i = lambda A, phi: lambda_p1 + sin(A) / (re.N(phi) * cos(phi)) * s * F2(A, phi, s)
A_p2_i = lambda A, phi: A_p1 + sin(A) * tan(phi) / re.N(phi) * s * F3(A, phi, s)
phi_p0_i = lambda phi2: (phi_p1 + phi2) / 2
A_p1_i = lambda A2: (A_p1 + A2) / 2
phi_p0 = []
A_p0 = []
phi_p2 = []
lambda_p2 = []
A_p2 = []
# 1. Näherung für P2
phi_p2.append(phi_p1 + cos(A_p1) / re.M(phi_p1) * s)
lambda_p2.append(lambda_p1 + sin(A_p1) / (re.N(phi_p1) * cos(phi_p1)) * s)
A_p2.append(A_p1 + sin(A_p1) * tan(phi_p1) / re.N(phi_p1) * s)
while True:
# Berechnug P0 durch Mittelbildung
phi_p0.append(phi_p0_i(phi_p2[-1]))
A_p0.append(A_p1_i(A_p2[-1]))
# Berechnung P2
phi_p2.append(phi_p2_i(A_p0[-1], phi_p0[-1]))
lambda_p2.append(lambda_p2_i(A_p0[-1], phi_p0[-1]))
A_p2.append(A_p2_i(A_p0[-1], phi_p0[-1]))
# Abbruchkriterium
if abs(phi_p2[-2] - phi_p2[-1]) < eps and \
abs(lambda_p2[-2] - lambda_p2[-1]) < eps and \
abs(A_p2[-2] - A_p2[-1]) < eps:
break
nks = 5
for i in range(len(phi_p2)):
print(f"P2[{i}]: {aus.gms('phi', phi_p2[i], nks)}\t{aus.gms('lambda', lambda_p2[i], nks)}\t{aus.gms('A', A_p2[i], nks)}")
if i != len(phi_p2)-1:
print(f"P0[{i}]: {aus.gms('phi', phi_p0[i], nks)}\t\t\t\t\t\t\t\t{aus.gms('A', A_p0[i], nks)}")
return phi_p2, lambda_p2, A_p2
def gha2(re, phi_p1, lambda_p1, phi_p2, lambda_p2):
"""
Berechnung der 2. Geodätische Hauptaufgabe nach Gauß´schen Mittelbreitenformeln
:param re: Klasse Ellipsoid
:param phi_p1: Breite Punkt 1
:param lambda_p1: Länge Punkt 1
:param phi_p2: Breite Punkt 2
:param lambda_p2: Länge Punkt 2
:return: Länge der geodätischen Linie, Azimut von P1 nach P2, Azimut von P2 nach P1
"""
t = lambda phi: tan(phi)
eta = lambda phi: sqrt(re.e_ ** 2 * cos(phi) ** 2)
phi_0 = (phi_p1 + phi_p2) / 2
d_phi = phi_p2 - phi_p1
d_lambda = lambda_p2 - lambda_p1
f_A = lambda phi: (2 + 3*t(phi)**2 + 2*eta(phi)**2) / 24
f_B = lambda phi: ((t(phi)**2 - 1) * eta(phi)**2) / 8
# f_C = lambda phi: (t(phi)**2) / 24
f_D = lambda phi: (1 + eta(phi)**2 - 9 * eta(phi)**2 * t(phi)**2) / 24
F1 = lambda phi: d_phi * re.M(phi) * (1 - f_A(phi) * d_lambda ** 2 * cos(phi) ** 2 -
f_B(phi) * d_phi ** 2 / re.V(phi) ** 4)
F2 = lambda phi: d_lambda * re.N(phi) * cos(phi) * (1 - 1 / 24 * d_lambda ** 2 * sin(phi) ** 2 +
f_D(phi) * d_phi ** 2 / re.V(phi) ** 4)
s = sqrt(F1(phi_0) ** 2 + F2(phi_0) ** 2)
A_0 = arctan(F2(phi_0) / F1(phi_0))
d_A = d_lambda * sin(phi_0) * (1 + (1 + eta(phi_0) ** 2) / 12 * s ** 2 * sin(A_0) ** 2 / re.N(phi_0) ** 2 +
(3 + 8 * eta(phi_0) ** 2) / 24 * s ** 2 * cos(A_0) ** 2 / re.N(phi_0) ** 2)
A_p1 = A_0 - d_A / 2
A_p2 = A_0 + d_A / 2
A_p2_p1 = A_p2 + pi
return s, A_p1, A_p2_p1

View File

@@ -1,17 +0,0 @@
import Numerische_Integration.num_int_runge_kutta as rk
from numpy import sin, cos, tan
import winkelumrechnungen as wu
from ellipsoide import EllipsoidBiaxial
def gha1(re, x0, y0, z0, A0, s, num):
phi0, lamb0, h0 = re.cart2ell(0.001, wu.gms2rad([0, 0, 0.001]), x0, y0, z0)
f_phi = lambda s, phi, lam, A: cos(A) * re.V(phi) ** 3 / re.c
f_lam = lambda s, phi, lam, A: sin(A) * re.V(phi) / (cos(phi) * re.c)
f_A = lambda s, phi, lam, A: tan(phi) * sin(A) * re.V(phi) / re.c
funktionswerte = rk.verfahren([f_phi, f_lam, f_A],
[0, phi0, lamb0, A0],
s, num)
coords = re.ell2cart(funktionswerte[-1][1], funktionswerte[-1][2], h0)
return coords

145
GHA_triaxial/gha1_ana.py Normal file
View File

@@ -0,0 +1,145 @@
import math
from math import comb
from typing import Tuple
import numpy as np
from numpy import arctan2, cos, sin
from numpy.typing import NDArray
import winkelumrechnungen as wu
from GHA_triaxial.utils import pq_para
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int) -> Tuple[NDArray, float]:
"""
Panou, Korakitits 2020, 5ff.
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha0: Azimut im Startpunkt
:param s: Strecke
:param maxM: maximale Ordnung
:return: Zwischenpunkt, Azimut im Zwischenpunkt
"""
x, y, z = point
# S. 6
x_m = [x]
y_m = [y]
z_m = [z]
p, q = pq_para(ell, point)
# 48-50
x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
y_m.append(p[1] * sin(alpha0) + q[1] * cos(alpha0))
z_m.append(p[2] * sin(alpha0) + q[2] * cos(alpha0))
# 34
H_ = lambda p: np.sum([comb(p, p - i) * (x_m[p - i] * x_m[i] +
1 / (1 - ell.ee ** 2) ** 2 * y_m[p - i] * y_m[i] +
1 / (1 - ell.ex ** 2) ** 2 * z_m[p - i] * z_m[i])
for i in range(0, p + 1)])
# 35
h_ = lambda q: np.sum([comb(q, q-j) * (x_m[q-j+1] * x_m[j+1] +
1 / (1 - ell.ee ** 2) * y_m[q-j+1] * y_m[j+1] +
1 / (1 - ell.ex ** 2) * z_m[q-j+1] * z_m[j+1])
for j in range(0, q+1)])
# 31
hH_ = lambda t: 1/H_(0) * (h_(t) - np.sum([comb(t, l-1) * H_(t+1-l) * hH_t[l-1] for l in range(1, t+1)]))
# 28-30
x_ = lambda m: - np.sum([comb(m-2, k) * hH_t[m-2-k] * x_m[k] for k in range(0, m-2+1)])
y_ = lambda m: -1 / (1-ell.ee**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * y_m[k] for k in range(0, m-2+1)])
z_ = lambda m: -1 / (1-ell.ex**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * z_m[k] for k in range(0, m-2+1)])
hH_t = []
a_m = []
b_m = []
c_m = []
for m in range(0, maxM+1):
if m >= 2:
hH_t.append(hH_(m-2))
x_m.append(x_(m))
y_m.append(y_(m))
z_m.append(z_(m))
fact_m = math.factorial(m)
# 22-24
a_m.append(x_m[m] / fact_m)
b_m.append(y_m[m] / fact_m)
c_m.append(z_m[m] / fact_m)
# 19-21
x_s = 0
for a in reversed(a_m):
x_s = x_s * s + a
y_s = 0
for b in reversed(b_m):
y_s = y_s * s + b
z_s = 0
for c in reversed(c_m):
z_s = z_s * s + c
p1 = np.array([x_s, y_s, z_s])
p_s, q_s = pq_para(ell, p1)
# 57-59
dx_s = 0
for i, a in reversed(list(enumerate(a_m[1:], start=1))):
dx_s = dx_s * s + i * a
dy_s = 0
for i, b in reversed(list(enumerate(b_m[1:], start=1))):
dy_s = dy_s * s + i * b
dz_s = 0
for i, c in reversed(list(enumerate(c_m[1:], start=1))):
dz_s = dz_s * s + i * c
# 52-53
sigma = np.array([dx_s, dy_s, dz_s])
P = float(p_s @ sigma)
Q = float(q_s @ sigma)
# 51
alpha1 = arctan2(P, Q)
if alpha1 < 0:
alpha1 += 2 * np.pi
return p1, wrap_0_2pi(alpha1)
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> Tuple[NDArray, float]:
"""
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha0: Azimut im Startpunkt
:param s: Strecke
:param maxM: maximale Ordnung
:param maxPartCircum: maximale Aufteilung (1/x halber Ellipsoidumfang)
:return: Zielpunkt, Azimut im Zielpunkt
"""
if s > np.pi / maxPartCircum * ell.ax:
s /= 2
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
point_end, alpha_end = gha1_ana(ell, point_step, alpha_step, s, maxM, maxPartCircum)
else:
point_end, alpha_end = gha1_ana_step(ell, point, alpha0, s, maxM)
_, _, h = ell.cart2geod(point_end, "ligas3")
if h > 1e-5:
raise Exception("GHA1_ana: explodiert, Punkt liegt nicht mehr auf dem Ellipsoid")
return point_end, wrap_0_2pi(alpha_end)
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
p0 = ell.ell2cart(wu.deg2rad(10), wu.deg2rad(20))
p1, alpha1 = gha1_ana(ell, p0, wu.deg2rad(36), 200000, 70)
print(p1, wu.rad2gms(alpha1))

108
GHA_triaxial/gha1_approx.py Normal file
View File

@@ -0,0 +1,108 @@
from typing import Tuple
import numpy as np
import plotly.graph_objects as go
from numpy import cos, sin
from numpy.typing import NDArray
import winkelumrechnungen as wu
from GHA_triaxial.utils import louville_constant, pq_ell
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) \
-> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray, NDArray]:
"""
Berechung einer Näherungslösung der ersten Hauptaufgabe
:param ell: Ellipsoid
:param p0: Anfangspunkt
:param alpha0: Azimut im Anfangspunkt
:param s: Strecke bis zum Endpunkt
:param ds: Länge einzelner Streckenelemente
:param all_points: Ausgabe aller Punkte als Array?
:return: Endpunkt, Azimut im Endpunkt, optional alle Punkte
"""
l0 = louville_constant(ell, p0, alpha0)
points = [p0]
alphas = [alpha0]
s_curr = 0.0
last_sigma = None
last_p = None
while s_curr < s:
ds_step = min(ds, s - s_curr)
if ds_step < 1e-8:
break
p1 = points[-1]
alpha1 = alphas[-1]
p, q = pq_ell(ell, p1)
if last_p is not None and np.dot(p, last_p) < 0:
p = -p
q = -q
last_p = p
sigma = p * sin(alpha1) + q * cos(alpha1)
if last_sigma is not None and np.dot(sigma, last_sigma) < 0:
sigma = -sigma
alpha1 += np.pi
alpha1 = wrap_0_2pi(alpha1)
p2 = p1 + ds_step * sigma
p2 = ell.point_onto_ellipsoid(p2)
dalpha = 1e-9
l2 = louville_constant(ell, p2, alpha1)
dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha
if abs(dl_dalpha) < 1e-20:
alpha2 = alpha1 + 0
else:
alpha2 = alpha1 + (l0 - l2) / dl_dalpha
points.append(p2)
alphas.append(wrap_0_2pi(alpha2))
ds_step = np.linalg.norm(p2 - p1)
s_curr += ds_step
last_sigma = sigma
pass
if all_points:
return points[-1], alphas[-1], np.array(points), np.array(alphas)
else:
return points[-1], alphas[-1]
def show_points(points: NDArray, p0: NDArray, p1: NDArray):
"""
Anzeigen der Punkte
:param points: Array aller approximierten Punkte
:param p0: Startpunkt
:param p1: wahrer Endpunkt
"""
fig = go.Figure()
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
mode='lines', line=dict(color="red", width=3), name="Approx")
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
mode='markers', marker=dict(color="green"), name="P0")
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
mode='markers', marker=dict(color="green"), name="P1")
fig.update_layout(
scene=dict(xaxis_title='X [km]',
yaxis_title='Y [km]',
zaxis_title='Z [km]',
aspectmode='data'),
title="CHAMP")
fig.show()
if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
P0 = ell.ell2cart(wu.deg2rad(15), wu.deg2rad(15))
alpha0 = wu.deg2rad(270)
s = 1
P1_app, alpha1_app, points, alphas = gha1_approx(ell, P0, alpha0, s, ds=0.1, all_points=True)
# P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=40, maxPartCircum=32)
# print(np.linalg.norm(P1_app - P1_ana))
# show_points(points, P0, P0)

133
GHA_triaxial/gha1_num.py Normal file
View File

@@ -0,0 +1,133 @@
from typing import Callable, List, Tuple
import numpy as np
from numpy import arctan2, cos, sin
from numpy.typing import NDArray
import GHA_triaxial.numeric_examples_karney as ne_karney
import runge_kutta as rk
import winkelumrechnungen as wu
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.utils import alpha_ell2para, pq_ell
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def buildODE(ell: EllipsoidTriaxial) -> Callable:
"""
Aufbau des DGL-Systems
:param ell: Ellipsoid
:return: DGL-System
"""
def ODE(s: float, v: NDArray) -> NDArray:
"""
DGL-System
:param s: unabhängige Variable
:param v: abhängige Variablen
:return: Ableitungen der abhängigen Variablen
"""
x, dxds, y, dyds, z, dzds = v
H = ell.func_H(np.array([x, y, z]))
h = dxds ** 2 + 1 / (1 - ell.ee ** 2) * dyds ** 2 + 1 / (1 - ell.ex ** 2) * dzds ** 2
ddx = -(h / H) * x
ddy = -(h / H) * y / (1 - ell.ee ** 2)
ddz = -(h / H) * z / (1 - ell.ex ** 2)
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
return ODE
def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, num: int, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, List]:
"""
Panou, Korakitits 2019
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha0: Azimut im Startpunkt
:param s: Strecke
:param num: Anzahl Zwischenpunkte
:param all_points: Ausgabe aller Punkte?
:return: Zielpunkt, Azimut im Zielpunkt (, alle Punkte)
"""
phi, lam, _ = ell.cart2geod(point, "ligas3")
p0 = ell.geod2cart(phi, lam, 0)
x0, y0, z0 = p0
p, q = pq_ell(ell, p0)
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
v_init = np.array([x0, dxds0, y0, dyds0, z0, dzds0])
ode = buildODE(ell)
_, werte = rk.rk4(ode, 0, v_init, s, num)
x1, dx1ds, y1, dy1ds, z1, dz1ds = werte[-1]
point1 = np.array([x1, y1, z1])
p1, q1 = pq_ell(ell, point1)
sigma = np.array([dx1ds, dy1ds, dz1ds])
P = float(p1 @ sigma)
Q = float(q1 @ sigma)
alpha1 = arctan2(P, Q)
alpha1 = wrap_0_2pi(alpha1)
_, _, h = ell.cart2geod(point1, "ligas3")
if h > 1e-5:
raise Exception("GHA1_num: explodiert, Punkt liegt nicht mehr auf dem Ellipsoid")
if all_points:
return point1, alpha1, werte
else:
return point1, alpha1
if __name__ == "__main__":
# ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
# diffs_panou = []
# examples_panou = ne_panou.get_random_examples(5)
# for example in examples_panou:
# beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
# P0 = ell.ell2cart(beta0, lamb0)
#
# P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 100)
# beta1_num, lamb1_num = ell.cart2ell(P1_num)
#
# _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
# P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 60)
# beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
# diffs_panou.append((abs(beta1-beta1_num), abs(lamb1-lamb1_num), abs(beta1-beta1_ana), abs(lamb1-lamb1_ana)))
# diffs_panou = np.array(diffs_panou)
# mask_360 = (diffs_panou > 359) & (diffs_panou < 361)
# diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
# print(diffs_panou)
ell: EllipsoidTriaxial = EllipsoidTriaxial.init_name("KarneyTest2024")
diffs_karney = []
# examples_karney = ne_karney.get_examples((30499, 30500, 40500))
examples_karney = ne_karney.get_random_examples(20)
for example in examples_karney:
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
P0 = ell.ell2cart(beta0, lamb0)
P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 10000)
beta1_num, lamb1_num = ell.cart2ell(P1_num)
try:
_, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 45, maxPartCircum=32)
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
except:
beta1_ana, lamb1_ana = np.inf, np.inf
diffs_karney.append((wu.rad2deg(abs(beta1-beta1_num)), wu.rad2deg(abs(lamb1-lamb1_num)), wu.rad2deg(abs(beta1-beta1_ana)), wu.rad2deg(abs(lamb1-lamb1_ana))))
diffs_karney = np.array(diffs_karney)
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
print(diffs_karney)

105
GHA_triaxial/gha2_approx.py Normal file
View File

@@ -0,0 +1,105 @@
from typing import Tuple
import numpy as np
import plotly.graph_objects as go
from numpy.typing import NDArray
import winkelumrechnungen as wu
from GHA_triaxial.gha2_num import gha2_num
from GHA_triaxial.utils import sigma2alpha
from ellipsoid_triaxial import EllipsoidTriaxial
def gha2_approx(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]:
"""
Numerische Approximation für die zweite Hauptaufgabe
:param ell: Ellipsoid
:param p0: Startpunkt
:param p1: Endpunkt
:param ds: maximales Streckenelement
:param all_points: Alle Punkte ausgeben?
:return:
"""
points = np.array([p0, p1])
while True:
new_points = []
for i in range(len(points)-1):
new_points.append(points[i])
pi = points[i] + 1/2 * (points[i+1] - points[i])
pi = ell.point_onto_ellipsoid(pi)
new_points.append(pi)
new_points.append(points[-1])
points = np.array(new_points)
elements = np.array([np.linalg.norm(points[i] - points[i+1]) for i in range(len(points)-1)])
if np.average(elements) < ds:
break
p0i = ell.point_onto_ellipsoid(p0 + ds / 100 * (points[1] - p0) / np.linalg.norm(points[1] - p0))
sigma0 = (p0i - p0) / np.linalg.norm(p0i - p0)
alpha0 = sigma2alpha(ell, sigma0, p0)
p1i = ell.point_onto_ellipsoid(p1 - ds / 100 * (p1 - points[-2]) / np.linalg.norm(p1 - points[-2]))
sigma1 = (p1 - p1i) / np.linalg.norm(p1 - p1i)
alpha1 = sigma2alpha(ell, sigma1, p1)
s = np.sum(np.array([np.linalg.norm(points[i] - points[i+1]) for i in range(len(points)-1)]))
if all_points:
return alpha0, alpha1, s, np.array(points)
else:
return alpha0, alpha1, s
def show_points(points: NDArray, points_app: NDArray, p0: NDArray, p1: NDArray):
"""
Anzeigen der Punkte
:param points: wahre Punkte der Linie
:param points_app: approximierte Punkte der Linie
:param p0: wahrer Startpunkt
:param p1: wahrer Endpunkt
"""
fig = go.Figure()
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
mode='lines', line=dict(color="green", width=3), name="Analytisch")
fig.add_scatter3d(x=points_app[:, 0], y=points_app[:, 1], z=points_app[:, 2],
mode='lines', line=dict(color="red", width=3), name="Approximiert")
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
mode='markers', marker=dict(color="black"), name="P0")
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
mode='markers', marker=dict(color="black"), name="P1")
fig.update_layout(
scene=dict(xaxis_title='X [km]',
yaxis_title='Y [km]',
zaxis_title='Z [km]',
aspectmode='data'))
fig.show()
if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("Bursa1970")
beta0, lamb0 = (0.1, 0.1)
P0 = ell.ell2cart(beta0, lamb0)
beta1, lamb1 = (0.3, np.pi)
P1 = ell.ell2cart(beta1, lamb1)
alpha0_app, alpha1_app, s_app, points = gha2_approx(ell, P0, P1, ds=100, all_points=True)
print("done")
alpha0, alpha1, s, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=10000, all_points=True)
points_ana = []
for beta, lamb in zip(betas, lambs):
points_ana.append(ell.ell2cart(beta, lamb))
points_ana = np.array(points_ana)
show_points(points_ana, points, P0, P1)
print(f"Differenz s: {s_app - s} m")
print(f"Differenz alpha0: {wu.rad2deg(alpha0_app - alpha0)}°")
print(f"Differenz alpha1: {wu.rad2deg(alpha1_app - alpha1)}°")

643
GHA_triaxial/gha2_num.py Normal file
View File

@@ -0,0 +1,643 @@
from typing import Tuple
import numpy as np
from numpy.typing import NDArray
import GHA_triaxial.numeric_examples_karney as ne_karney
import GHA_triaxial.numeric_examples_panou as ne_panou
import ausgaben as aus
import winkelumrechnungen as wu
from ellipsoid_triaxial import EllipsoidTriaxial
from runge_kutta import rk4, rk4_end, rk4_integral
from utils_angle import cot, wrap_0_2pi, wrap_mpi_pi
def norm_a(a: float) -> float:
a = float(a) % (2 * np.pi)
return a
def azimut(E: float, G: float, dbeta_du: float, dlamb_du: float) -> float:
north = np.sqrt(E) * dbeta_du
east = np.sqrt(G) * dlamb_du
return norm_a(np.arctan2(east, north))
def sph_azimuth(beta1, lam1, beta2, lam2):
dlam = wrap_mpi_pi(lam2 - lam1)
y = np.sin(dlam) * np.cos(beta2)
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
a = np.arctan2(y, x)
if a < 0:
a += 2 * np.pi
return a
# Panou 2013
def gha2_num(
ell: EllipsoidTriaxial,
beta_0: float,
lamb_0: float,
beta_1: float,
lamb_1: float,
n: int = 16000,
epsilon: float = 10**-12,
iter_max: int = 30,
all_points: bool = False,
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
"""
:param ell: Ellipsoid
:param beta_0: Beta Punkt 0
:param lamb_0: Lambda Punkt 0
:param beta_1: Beta Punkt 1
:param lamb_1: Lambda Punkt 1
:param n: Anzahl Schritte
:param epsilon: Genauigkeit
:param iter_max: Maximale Iterationen
:param all_points: Ausgabe aller Punkte
:return: Azimut Startpunkt, Azumit Zielpunkt, Strecke
"""
ax2 = float(ell.ax) * float(ell.ax)
ay2 = float(ell.ay) * float(ell.ay)
b2 = float(ell.b) * float(ell.b)
Ex2 = float(ell.Ex) * float(ell.Ex)
Ey2 = float(ell.Ey) * float(ell.Ey)
Ee2 = float(ell.Ee) * float(ell.Ee)
Ey4 = Ey2 * Ey2
Ee4 = Ee2 * Ee2
two_pi = 2.0 * np.pi
# Berechnung Koeffizienten, Gaußschen Fundamentalgrößen 1. Ordnung sowie deren Ableitungen
def BETA_LAMBDA(beta, lamb):
sb = np.sin(beta)
cb = np.cos(beta)
sl = np.sin(lamb)
cl = np.cos(lamb)
sb2 = sb * sb
cb2 = cb * cb
sl2 = sl * sl
cl2 = cl * cl
s2b = 2.0 * sb * cb
c2b = cb2 - sb2
s2l = 2.0 * sl * cl
c2l = cl2 - sl2
denB = Ex2 - Ey2 * sb2
denL = Ex2 - Ee2 * cl2
BETA = (ay2 * sb2 + b2 * cb2) / denB
LAMBDA = (ax2 * sl2 + ay2 * cl2) / denL
BETA_ = (ax2 * Ey2 * s2b) / (denB * denB)
LAMBDA_ = -(b2 * Ee2 * s2l) / (denL * denL)
BETA__ = (2.0 * ax2 * Ey4 * (s2b * s2b)) / (denB * denB * denB) + (2.0 * ax2 * Ey2 * c2b) / (
denB * denB
)
LAMBDA__ = (2.0 * b2 * Ee4 * (s2l * s2l)) / (denL * denL * denL) - (2.0 * b2 * Ee2 * s2l) / (
denL * denL
)
Q = Ey2 * cb2 + Ee2 * sl2
E = BETA * Q
G = LAMBDA * Q
E_beta = BETA_ * Q - BETA * Ey2 * s2b
E_lamb = BETA * Ee2 * s2l
G_beta = -LAMBDA * Ey2 * s2b
G_lamb = LAMBDA_ * Q + LAMBDA * Ee2 * s2l
E_beta_beta = BETA__ * Q - 2.0 * BETA_ * Ey2 * s2b - 2.0 * BETA * Ey2 * c2b
E_beta_lamb = BETA_ * Ee2 * s2l
E_lamb_lamb = 2.0 * BETA * Ee2 * c2l
G_beta_beta = -2.0 * LAMBDA * Ey2 * c2b
G_beta_lamb = -LAMBDA_ * Ey2 * s2b
G_lamb_lamb = LAMBDA__ * Q + 2.0 * LAMBDA_ * Ee2 * s2l + 2.0 * LAMBDA * Ee2 * c2l
return (
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
)
# Berechnung der ODE Koeffizienten für Fall 1 (lambda_0 != lambda_1)
def p_coef(beta, lamb):
(
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
) = BETA_LAMBDA(beta, lamb)
p_3 = -0.5 * (E_lamb / G)
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
p_0 = 0.5 * (G_beta / E)
p_33 = -0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G**2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G**2)) - 0.5 * (
(E * E_beta_beta - E_beta * E_beta) / (E**2)
)
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G**2)) - (
(E * E_beta_lamb - E_beta * E_lamb) / (E**2)
)
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E**2))
return BETA, LAMBDA, E, G, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00
# Berechnung der ODE Koeffizienten für Fall 2 (lambda_0 == lambda_1)
def q_coef(beta, lamb):
(
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
) = BETA_LAMBDA(beta, lamb)
q_3 = -0.5 * (G_beta / E)
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
q_0 = 0.5 * (E_lamb / G)
q_33 = -0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E**2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E**2)) - 0.5 * (
(G * G_lamb_lamb - G_lamb * G_lamb) / (G**2)
)
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E**2)) - (
(G * G_beta_lamb - G_beta * G_lamb) / (G**2)
)
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G**2))
return BETA, LAMBDA, E, G, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00
def integrand_lambda(lamb, y):
beta = y[0]
beta_p = y[1]
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
return np.sqrt(E * beta_p**2 + G)
def integrand_beta(beta, y):
lamb = y[0]
lamb_p = y[1]
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
return np.sqrt(E + G * lamb_p**2)
def solve_lambda_branch(beta0, lamb0, beta1, lamb1_target, N_run, N_newt, it_max):
dlamb = float(lamb1_target - lamb0)
if abs(dlamb) < 1e-15:
return None
sgn = 1.0 if dlamb >= 0.0 else -1.0
def ode_lamb(lamb, v):
beta, beta_p, X3, X4 = v
(_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
) * X4
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
alpha0_sph = sph_azimuth(beta0, lamb0, beta1, lamb1_target)
(_, _, E0, G0, *_) = BETA_LAMBDA(beta0, lamb0)
beta_p0_sph = np.sqrt(G0 / E0) * cot(alpha0_sph)
def solve_newton(beta_p0_init: float):
beta_p0 = float(beta_p0_init)
for _ in range(it_max):
v0 = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
_, y_end = rk4_end(ode_lamb, lamb0, v0, dlamb, N_newt)
beta_end, _, X3_end, _ = y_end
delta = beta_end - beta1
if abs(delta) < epsilon:
return True, beta_p0
if abs(X3_end) < 1e-20:
return False, None
step = delta / X3_end
step = float(np.clip(step, -0.5, 0.5))
beta_p0 -= step
return False, None
seeds = [beta_p0_sph, -beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
best = None
for seed in seeds:
ok, sol = solve_newton(seed)
if not ok:
continue
v0_sol = np.array([beta0, sol, 0.0, 1.0], dtype=float)
_, _, s_val = rk4_integral(ode_lamb, lamb0, v0_sol, dlamb, N_run, integrand_lambda)
if (best is None) or (s_val < best[0]):
best = (float(s_val), float(sol))
if best is None:
return None
return best[0], best[1], sgn, dlamb, ode_lamb
def solve_beta_branch(beta0, lamb0, beta1, lamb1, N_run, N_newt, it_max):
dbeta = float(beta1 - beta0)
if abs(dbeta) < 1e-15:
return None
sgn = 1.0 if dbeta >= 0.0 else -1.0
def ode_beta(beta, v):
lamb, lamb_p, Y3, Y4 = v
(_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
dlamb = lamb_p
dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
def solve_newton(lamb_p0_init: float):
lamb_p0 = float(lamb_p0_init)
for _ in range(it_max):
v0 = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
_, y_end = rk4_end(ode_beta, beta0, v0, dbeta, N_newt)
lamb_end, _, Y3_end, _ = y_end
delta = lamb_end - lamb1
if abs(delta) < epsilon:
return True, lamb_p0
if abs(Y3_end) < 1e-20:
return False, None
step = delta / Y3_end
step = float(np.clip(step, -1.0, 1.0))
lamb_p0 -= step
return False, None
seeds = [0.0, 0.25, -0.25, 1.0, -1.0]
best = None
for seed in seeds:
ok, sol = solve_newton(seed)
if not ok:
continue
v0_sol = np.array([lamb0, sol, 0.0, 1.0], dtype=float)
_, _, s_val = rk4_integral(ode_beta, beta0, v0_sol, dbeta, N_run, integrand_beta)
if (best is None) or (s_val < best[0]):
best = (float(s_val), float(sol))
if best is None:
return None
return best[0], best[1], sgn, dbeta, ode_beta
lamb0 = float(wrap_mpi_pi(lamb_0))
lamb1 = float(wrap_mpi_pi(lamb_1))
beta0 = float(beta_0)
beta1 = float(beta_1)
N_full = int(n)
if N_full < 2:
N_full = 2
if all_points:
N_fast = min(2000, max(400, N_full // 10))
else:
N_fast = min(1500, max(300, N_full // 12))
k0 = int(np.round((lamb0 - lamb1) / two_pi))
lamb_targets = []
for dk in (-1, 0, 1):
lt = lamb1 + two_pi * float(k0 + dk)
dl = lt - lamb0
if abs(dl) <= np.pi + 1e-12:
lamb_targets.append(float(lt))
if not lamb_targets:
lamb_targets = [float(lamb1 + two_pi * float(k0))]
best_fast = None
for lt in lamb_targets:
if abs(lt - lamb0) >= 1e-15:
res = solve_lambda_branch(beta0, lamb0, beta1, lt, N_fast, min(N_fast, 800), min(iter_max, 12))
if res is None:
continue
s_fast, beta_p0_fast, sgn_fast, dlamb_fast, _ = res
cand = ("lambda", s_fast, lt, beta_p0_fast, sgn_fast, dlamb_fast)
else:
res = solve_beta_branch(beta0, lamb0, beta1, lamb1, N_fast, min(N_fast, 800), min(iter_max, 12))
if res is None:
continue
s_fast, lamb_p0_fast, sgn_fast, dbeta_fast, _ = res
cand = ("beta", s_fast, lt, lamb_p0_fast, sgn_fast, dbeta_fast)
if (best_fast is None) or (cand[1] < best_fast[1]):
best_fast = cand
if best_fast is None:
if abs(lamb1 - lamb0) >= 1e-15:
best_fast = ("lambda", 0.0, lamb1, None, 1.0, float(lamb1 - lamb0))
else:
best_fast = ("beta", 0.0, lamb1, None, 1.0, float(beta1 - beta0))
if best_fast[0] == "lambda":
lt = float(best_fast[2])
dlamb = float(lt - lamb0)
sgn = 1.0 if dlamb >= 0.0 else -1.0
def ode_lamb(lamb, v):
beta, beta_p, X3, X4 = v
(_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
) * X4
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
alpha0_sph = sph_azimuth(beta0, lamb0, beta1, lt)
(_, _, E0, G0, *_) = BETA_LAMBDA(beta0, lamb0)
beta_p0_sph = np.sqrt(G0 / E0) * cot(alpha0_sph)
beta_p0_init = best_fast[3]
if beta_p0_init is None:
beta_p0_init = beta_p0_sph
beta_p0_init = float(beta_p0_init)
N_newton = min(N_full, 4000)
def solve_newton_refine(beta_p0_init: float):
beta_p0 = float(beta_p0_init)
for _ in range(iter_max):
v0 = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
_, y_end = rk4_end(ode_lamb, lamb0, v0, dlamb, N_newton)
beta_end, _, X3_end, _ = y_end
delta = beta_end - beta1
if abs(delta) < epsilon:
return True, beta_p0
if abs(X3_end) < 1e-20:
return False, None
step = delta / X3_end
step = float(np.clip(step, -0.5, 0.5))
beta_p0 -= step
return False, None
ok, beta_p0_sol = solve_newton_refine(beta_p0_init)
if not ok:
seeds = [beta_p0_sph, -beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
best = None
for seed in seeds:
ok_s, sol_s = solve_newton_refine(seed)
if not ok_s:
continue
v0_s = np.array([beta0, sol_s, 0.0, 1.0], dtype=float)
_, _, s_s = rk4_integral(ode_lamb, lamb0, v0_s, dlamb, min(N_full, 2000), integrand_lambda)
if (best is None) or (s_s < best[0]):
best = (float(s_s), float(sol_s))
if best is None:
raise RuntimeError("GHA2_num: Keine Startwert-Variante konvergiert (lambda-Fall)")
beta_p0_sol = best[1]
beta_p0 = float(beta_p0_sol)
v0_final = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
if all_points:
lamb_list, states = rk4(ode_lamb, lamb0, v0_final, dlamb, N_full, False)
lamb_arr = np.array(lamb_list, dtype=float)
beta_arr = np.array([st[0] for st in states], dtype=float)
beta_p_arr = np.array([st[1] for st in states], dtype=float)
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_0 = azimut(E_start, G_start, dbeta_du=beta_p_arr[0] * sgn, dlamb_du=1.0 * sgn)
alpha_1 = azimut(E_end, G_end, dbeta_du=beta_p_arr[-1] * sgn, dlamb_du=1.0 * sgn)
integrand = np.zeros(N_full + 1, dtype=float)
for i in range(N_full + 1):
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
h = abs(dlamb) / N_full
if N_full % 2 == 0:
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(
integrand[2:-1:2]
)
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s), beta_arr, lamb_arr
_, y_end, s = rk4_integral(ode_lamb, lamb0, v0_final, dlamb, N_full, integrand_lambda)
beta_end, beta_p_end, _, _ = y_end
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0)
alpha_0 = azimut(E_start, G_start, dbeta_du=beta_p0 * sgn, dlamb_du=1.0 * sgn)
(_, _, E_end, G_end, *_) = BETA_LAMBDA(float(beta_end), float(lamb0 + dlamb))
alpha_1 = azimut(E_end, G_end, dbeta_du=float(beta_p_end) * sgn, dlamb_du=1.0 * sgn)
return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s)
# Fall 2 (lambda_0 == lambda_1)
N = int(n)
dbeta = float(beta_1 - beta_0)
if abs(dbeta) < 1e-15:
if all_points:
return 0.0, 0.0, 0.0, np.array([]), np.array([])
return 0.0, 0.0, 0.0
sgn = 1.0 if dbeta >= 0.0 else -1.0
def ode_beta(beta, v):
lamb, lamb_p, Y3, Y4 = v
(_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
dlamb = lamb_p
dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
lamb_p0 = float(best_fast[3]) if (best_fast[0] == "beta" and best_fast[3] is not None) else 0.0
for _ in range(iter_max):
v0 = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
_, y_end = rk4_end(ode_beta, beta0, v0, dbeta, N)
lamb_end, _, Y3_end, _ = y_end
delta = lamb_end - lamb1
if abs(delta) < epsilon:
break
if abs(Y3_end) < 1e-20:
raise RuntimeError("GHA2_num: Ableitung ~ 0 im beta-Fall")
step = delta / Y3_end
step = float(np.clip(step, -1.0, 1.0))
lamb_p0 -= step
v0_final = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
if all_points:
beta_list, states = rk4(ode_beta, beta0, v0_final, dbeta, N, False)
beta_arr = np.array(beta_list, dtype=float)
lamb_arr = np.array([st[0] for st in states], dtype=float)
lamb_p_arr = np.array([st[1] for st in states], dtype=float)
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_0 = azimut(E_start, G_start, dbeta_du=1.0 * sgn, dlamb_du=lamb_p_arr[0] * sgn)
alpha_1 = azimut(E_end, G_end, dbeta_du=1.0 * sgn, dlamb_du=lamb_p_arr[-1] * sgn)
integrand = np.zeros(N + 1, dtype=float)
for i in range(N + 1):
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei + Gi * lamb_p_arr[i] ** 2)
h = abs(dbeta) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(
integrand[2:-1:2]
)
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s), beta_arr, lamb_arr
_, y_end, s = rk4_integral(ode_beta, beta0, v0_final, dbeta, N, integrand_beta)
lamb_end, lamb_p_end, _, _ = y_end
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0)
alpha_0 = azimut(E_start, G_start, dbeta_du=1.0 * sgn, dlamb_du=lamb_p0 * sgn)
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta1, float(lamb_end))
alpha_1 = azimut(E_end, G_end, dbeta_du=1.0 * sgn, dlamb_du=float(lamb_p_end) * sgn)
return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s)
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
beta1 = np.deg2rad(75)
lamb1 = np.deg2rad(-90)
beta2 = np.deg2rad(75)
lamb2 = np.deg2rad(66)
a0, a1, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=100)
print(aus.gms("a0", a0, 4))
print(aus.gms("a1", a1, 4))
print("s: ", s)
# print(aus.gms("a2", a2, 4))
# print(s)
cart1 = ell.para2cart(0, 0)
cart2 = ell.para2cart(0.4, 1.4)
beta1, lamb1 = ell.cart2ell(cart1)
beta2, lamb2 = ell.cart2ell(cart2)
a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
print(s)
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
diffs_panou = []
examples_panou = ne_panou.get_random_examples(4)
for example in examples_panou:
beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
P0 = ell.ell2cart(beta0, lamb0)
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
diffs_panou.append(
(wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
except:
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
diffs_panou = np.array(diffs_panou)
print(diffs_panou)
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
diffs_karney = []
# examples_karney = ne_karney.get_examples((30500, 40500))
examples_karney = ne_karney.get_random_examples(2)
for example in examples_karney:
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
except:
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
diffs_karney = np.array(diffs_karney)
print(diffs_karney)
pass

View File

@@ -0,0 +1,118 @@
import random
from typing import List
import winkelumrechnungen as wu
from GHA_triaxial.utils import jacobi_konstante
from ellipsoid_triaxial import EllipsoidTriaxial
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
file_path = r"Karney_2024_Testset.txt"
def line2example(line: str) -> List:
"""
Line-String in Liste umwandeln
:param line: Line-String
:return: Liste mit Zahlenwerten
"""
split = line.split()
example = [float(value) for value in split[:7]]
for i, value in enumerate(example):
if i < 6:
example[i] = wu.deg2rad(value)
# example[i] = value
return example
def get_random_examples(num: int, seed: int = None) -> List:
"""
Rückgabe zufälliger Beispiele
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s12
:param num: Anzahl zufälliger Beispiele
:param seed: Random-Seed
:return: Liste mit Beispielen
"""
if seed is not None:
random.seed(seed)
with open(file_path) as datei:
lines = datei.readlines()
examples = []
for i in range(num):
example = line2example(lines[random.randint(0, len(lines) - 1)])
examples.append(example)
return examples
def get_examples(l_i: List) -> List:
"""
Rückgabe ausgewählter Beispiele
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s12
:param l_i: Liste von Indizes
:return: Liste mit Beispielen
"""
with open(file_path) as datei:
lines = datei.readlines()
examples = []
for i in l_i:
example = line2example(lines[i])
examples.append(example)
return examples
def get_random_examples_gamma(group: str, num: int, seed: int = None, length: str = None) -> List:
"""
Zufällige Beispiele aus Karney in Gruppen nach Einteilung anhand der Jacobi-Konstanten
:param group: Gruppe
:param num: Anzahl
:param seed: Random-Seed
:param length: long oder short, sond egal
:return: Liste mit Beispielen
"""
eps = 1e-20
long_short = 2
if seed is not None:
random.seed(seed)
with open(file_path) as datei:
lines = datei.readlines()
examples = []
i = 0
while len(examples) < num and i < len(lines):
example = line2example(lines[random.randint(0, len(lines) - 1)])
if example in examples:
continue
i += 1
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
gamma = jacobi_konstante(beta0, lamb0, alpha0_ell, ell)
if group not in ["a", "b", "c", "d", "e", "de"]:
break
elif group == "a" and not 1 >= gamma >= 0.01:
continue
elif group == "b" and not 0.01 > gamma > eps:
continue
elif group == "c" and not abs(gamma) <= eps:
continue
elif group == "d" and not -eps > gamma > -1e-17:
continue
elif group == "e" and not -1e-17 >= gamma >= -1:
continue
elif group == "de" and not -eps > gamma > -1:
continue
if length == "short":
if example[6] < long_short:
examples.append(example)
elif length == "long":
if example[6] >= long_short:
examples.append(example)
else:
examples.append(example)
return examples
if __name__ == "__main__":
examples_a = get_random_examples_gamma("a", 10, 42)
examples_b = get_random_examples_gamma("b", 10, 42)
examples_c = get_random_examples_gamma("c", 10, 42)
examples_d = get_random_examples_gamma("d", 10, 42)
examples_e = get_random_examples_gamma("e", 10, 42)
pass

View File

@@ -0,0 +1,154 @@
from typing import Tuple, List
import winkelumrechnungen as wu
import random
table1 = [
(wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(90), 1.00000000000,
wu.gms2rad([90, 0, 0.0000]), wu.gms2rad([90, 0, 0.0000]), 10018754.9569),
(wu.deg2rad(1), wu.deg2rad(0), wu.deg2rad(-80), wu.deg2rad(5), 0.05883743460,
wu.gms2rad([179, 7, 12.2719]), wu.gms2rad([174, 40, 13.8487]), 8947130.7221),
(wu.deg2rad(5), wu.deg2rad(0), wu.deg2rad(-60), wu.deg2rad(40), 0.34128138370,
wu.gms2rad([160, 13, 24.5001]), wu.gms2rad([137, 26, 47.0036]), 8004762.4330),
(wu.deg2rad(30), wu.deg2rad(0), wu.deg2rad(-30), wu.deg2rad(175), 0.86632464962,
wu.gms2rad([91, 7, 30.9337]), wu.gms2rad([91, 7, 30.8672]), 19547128.7971),
(wu.deg2rad(60), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(175), 0.06207487624,
wu.gms2rad([2, 52, 26.2393]), wu.gms2rad([177, 4, 13.6373]), 6705715.1610),
(wu.deg2rad(75), wu.deg2rad(0), wu.deg2rad(80), wu.deg2rad(120), 0.11708984898,
wu.gms2rad([23, 20, 34.7823]), wu.gms2rad([140, 55, 32.6385]), 2482501.2608),
(wu.deg2rad(80), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(90), 0.17478427424,
wu.gms2rad([72, 26, 50.4024]), wu.gms2rad([159, 38, 30.3547]), 3519745.1283)
]
table2 = [
(wu.deg2rad(0), wu.deg2rad(-90), wu.deg2rad(0), wu.deg2rad(89.5), 1.00000000000,
wu.gms2rad([90, 0, 0.0000]), wu.gms2rad([90, 0, 0.0000]), 19981849.8629),
(wu.deg2rad(1), wu.deg2rad(-90), wu.deg2rad(1), wu.deg2rad(89.5), 0.18979826428,
wu.gms2rad([10, 56, 33.6952]), wu.gms2rad([169, 3, 26.4359]), 19776667.0342),
(wu.deg2rad(5), wu.deg2rad(-90), wu.deg2rad(5), wu.deg2rad(89), 0.09398403161,
wu.gms2rad([5, 24, 48.3899]), wu.gms2rad([174, 35, 12.6880]), 18889165.0873),
(wu.deg2rad(30), wu.deg2rad(-90), wu.deg2rad(30), wu.deg2rad(86), 0.06004022935,
wu.gms2rad([3, 58, 23.8038]), wu.gms2rad([176, 2, 7.2825]), 13331814.6078),
(wu.deg2rad(60), wu.deg2rad(-90), wu.deg2rad(60), wu.deg2rad(78), 0.06076096484,
wu.gms2rad([6, 56, 46.4585]), wu.gms2rad([173, 11, 5.9592]), 6637321.6350),
(wu.deg2rad(75), wu.deg2rad(-90), wu.deg2rad(75), wu.deg2rad(66), 0.05805851008,
wu.gms2rad([12, 40, 34.9009]), wu.gms2rad([168, 20, 26.7339]), 3267941.2812),
(wu.deg2rad(80), wu.deg2rad(-90), wu.deg2rad(80), wu.deg2rad(55), 0.05817384452,
wu.gms2rad([18, 35, 40.7848]), wu.gms2rad([164, 25, 34.0017]), 2132316.9048)
]
table3 = [
(wu.deg2rad(0), wu.deg2rad(0.5), wu.deg2rad(80), wu.deg2rad(0.5), 0.05680316848,
wu.gms2rad([0, 0, 16.0757]), wu.gms2rad([0, 1, 32.5762]), 8831874.3717),
(wu.deg2rad(-1), wu.deg2rad(5), wu.deg2rad(75), wu.deg2rad(5), 0.05659149555,
wu.gms2rad([0, -1, 47.2105]), wu.gms2rad([0, 6, 54.0958]), 8405370.4947),
(wu.deg2rad(-5), wu.deg2rad(30), wu.deg2rad(60), wu.deg2rad(30), 0.04921108945,
wu.gms2rad([0, -4, 22.3516]), wu.gms2rad([0, 8, 42.0756]), 7204083.8568),
(wu.deg2rad(-30), wu.deg2rad(45), wu.deg2rad(30), wu.deg2rad(45), 0.04017812574,
wu.gms2rad([0, -3, 41.2461]), wu.gms2rad([0, 3, 41.2461]), 6652788.1287),
(wu.deg2rad(-60), wu.deg2rad(60), wu.deg2rad(5), wu.deg2rad(60), 0.02843082609,
wu.gms2rad([0, -8, 40.4575]), wu.gms2rad([0, 4, 22.1675]), 7213412.4477),
(wu.deg2rad(-75), wu.deg2rad(85), wu.deg2rad(1), wu.deg2rad(85), 0.00497802414,
wu.gms2rad([0, -6, 44.6115]), wu.gms2rad([0, 1, 47.0474]), 8442938.5899),
(wu.deg2rad(-80),wu.deg2rad(89.5), wu.deg2rad(0), wu.deg2rad(89.5), 0.00050178253,
wu.gms2rad([0, -1, 27.9705]), wu.gms2rad([0, 0, 16.0490]), 8888783.7815)
]
# table4 = [
# (wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(90), 1.00000000000,
# wu.gms2rad([90, 0, 0.0000]), wu.gms2rad([90, 0, 0.0000]), 10018754.1714),
#
# (wu.deg2rad(1), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(179.5), 0.30320665822,
# wu.gms2rad([17, 39, 11.0942]), wu.gms2rad([162, 20, 58.9032]), 19884417.8083),
#
# (wu.deg2rad(5), wu.deg2rad(0), wu.deg2rad(-80), wu.deg2rad(170), 0.03104258442,
# wu.gms2rad([178, 12, 51.5083]), wu.gms2rad([10, 17, 52.6423]), 11652530.7514),
#
# (wu.deg2rad(30), wu.deg2rad(0), wu.deg2rad(-75), wu.deg2rad(120), 0.24135347134,
# wu.gms2rad([163, 49, 4.4615]), wu.gms2rad([68, 49, 50.9617]), 14057886.8752),
#
# (wu.deg2rad(60), wu.deg2rad(0), wu.deg2rad(-60), wu.deg2rad(40), 0.19408499032,
# wu.gms2rad([157, 9, 33.5589]), wu.gms2rad([157, 9, 33.5589]), 13767414.8267),
#
# (wu.deg2rad(75), wu.deg2rad(0), wu.deg2rad(-30), wu.deg2rad(0.5), 0.00202789418,
# wu.gms2rad([179, 33, 3.8613]), wu.gms2rad([179, 51, 57.0077]), 11661713.4496),
#
# (wu.deg2rad(80), wu.deg2rad(0), wu.deg2rad(-5), wu.deg2rad(120), 0.15201222384,
# wu.gms2rad([61, 5, 33.9600]), wu.gms2rad([171, 13, 22.0148]), 11105138.2902),
#
# (wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(0), 0.00000000000,
# wu.gms2rad([0, 0, 0.0000]), wu.gms2rad([0, 0, 0.0000]), 6663348.2060)
# ]
tables = [table1, table2, table3]
def get_example(table: int, example: int) -> Tuple:
"""
Rückgabe eines Beispiels
:param table: Tabellen-Nummer
:param example: Beispiel-Nummer
:return: Bespiel
"""
table -= 1
example -= 1
tables = get_tables()
beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = tables[table][example]
return beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s
def get_tables() -> List:
"""
Rückgabe aller Tabellen
:return: Alle Tabellen
"""
sorted_tables = []
for table in tables:
sorted_tables.append([])
for example in table:
beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
sorted_tables[-1].append((beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s))
return sorted_tables
def get_random_examples(num: int, seed: int = None) -> List:
"""
Rückgabe zufälliger Beispiele
:param num: Anzahl Beispiele
:param seed: Random-Seed
:return:
"""
if seed is not None:
random.seed(seed)
examples = []
for i in range(num):
table = random.randint(1, 3)
if table == 4:
example = random.randint(1, 8)
else:
example = random.randint(1, 7)
example = get_example(table, example)
examples.append(example)
return examples
if __name__ == "__main__":
# test = get_example(1, 4)
examples = get_random_examples(5)
pass

View File

@@ -1,192 +0,0 @@
import numpy as np
import ellipsoide
import Numerische_Integration.num_int_runge_kutta as rk
import winkelumrechnungen as wu
import ausgaben as aus
import GHA.rk as ghark
from scipy.special import factorial as fact
from math import comb
# Panou, Korakitits 2019
def p_q(ell: ellipsoide.EllipsoidTriaxial, x, y, z):
H = x ** 2 + y ** 2 / (1 - ell.ee ** 2) ** 2 + z ** 2 / (1 - ell.ex ** 2) ** 2
n = np.array([x / np.sqrt(H), y / ((1 - ell.ee ** 2) * np.sqrt(H)), z / ((1 - ell.ex ** 2) * np.sqrt(H))])
beta, lamb, u = ell.cart2ell(x, y, z)
carts = ell.ell2cart(beta, lamb, u)
B = ell.Ex ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(beta) ** 2
L = ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2
c1 = x ** 2 + y ** 2 + z ** 2 - (ell.ax ** 2 + ell.ay ** 2 + ell.b ** 2)
c0 = (ell.ax ** 2 * ell.ay ** 2 + ell.ax ** 2 * ell.b ** 2 + ell.ay ** 2 * ell.b ** 2 -
(ell.ay ** 2 + ell.b ** 2) * x ** 2 - (ell.ax ** 2 + ell.b ** 2) * y ** 2 - (
ell.ax ** 2 + ell.ay ** 2) * z ** 2)
t2 = (-c1 + np.sqrt(c1**2 - 4*c0)) / 2
t1 = c0 / t2
t2e = ell.ax ** 2 * np.sin(lamb) ** 2 + ell.ay ** 2 * np.cos(lamb) ** 2
t1e = ell.ay ** 2 * np.sin(beta) ** 2 + ell.b ** 2 * np.cos(beta) ** 2
F = ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2
p1 = -np.sqrt(L / (F * t2)) * ell.ax / ell.Ex * np.sqrt(B) * np.sin(lamb)
p2 = np.sqrt(L / (F * t2)) * ell.ay * np.cos(beta) * np.cos(lamb)
p3 = 1 / np.sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * np.sin(beta) * np.sin(2 * lamb)
# p1 = -np.sign(y) * np.sqrt(L / (F * t2)) * ell.ax / (ell.Ex * ell.Ee) * np.sqrt(B) * np.sqrt(t2 - ell.ay ** 2)
# p2 = np.sign(x) * np.sqrt(L / (F * t2)) * ell.ay / (ell.Ey * ell.Ee) * np.sqrt((ell.ay ** 2 - t1) * (ell.ax ** 2 - t2))
# p3 = np.sign(x) * np.sign(y) * np.sign(z) * 1 / np.sqrt(F * t2) * ell.b / (ell.Ex * ell.Ey) * np.sqrt(
# (t1 - ell.b ** 2) * (t2 - ell.ay ** 2) * (ell.ax ** 2 - t2))
p = np.array([p1, p2, p3])
q = np.array([n[1]*p[2]-n[2]*p[1],
n[2]*p[0]-n[0]*p[2],
n[1]*p[1]-n[1]*p[0]])
return {"H": H, "n": n, "beta": beta, "lamb": lamb, "u": u, "B": B, "L": L, "c1": c1, "c0": c0, "t1": t1, "t2": t2,
"F": F, "p": p, "q": q}
def gha1_num(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, num):
values = p_q(ell, x, y, z)
H = values["H"]
p = values["p"]
q = values["q"]
dxds0 = p[0] * np.sin(alpha0) + q[0] * np.cos(alpha0)
dyds0 = p[1] * np.sin(alpha0) + q[1] * np.cos(alpha0)
dzds0 = p[2] * np.sin(alpha0) + q[2] * np.cos(alpha0)
h = lambda dxds, dyds, dzds: dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
f1 = lambda s, x, dxds, y, dyds, z, dzds: dxds
f2 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * x
f3 = lambda s, x, dxds, y, dyds, z, dzds: dyds
f4 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * y/(1-ell.ee**2)
f5 = lambda s, x, dxds, y, dyds, z, dzds: dzds
f6 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * z/(1-ell.ex**2)
funktionswerte = rk.verfahren([f1, f2, f3, f4, f5, f6], [0, x, dxds0, y, dyds0, z, dzds0], s, num)
return funktionswerte
def checkLiouville(ell: ellipsoide.EllipsoidTriaxial, points):
constantValues = []
for point in points:
x = point[1]
dxds = point[2]
y = point[3]
dyds = point[4]
z = point[5]
dzds = point[6]
values = p_q(ell, x, y, z)
p = values["p"]
q = values["q"]
t1 = values["t1"]
t2 = values["t2"]
P = p[0]*dxds + p[1]*dyds + p[2]*dzds
Q = q[0]*dxds + q[1]*dyds + q[2]*dzds
alpha = np.arctan(P/Q)
c = ell.ay**2 - (t1 * np.sin(alpha)**2 + t2 * np.cos(alpha)**2)
constantValues.append(c)
pass
def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, maxM):
"""
Panou, Korakitits 2020, 5ff.
:param ell:
:param x:
:param y:
:param z:
:param alpha0:
:param s:
:param maxM:
:return:
"""
x_m = [x]
y_m = [y]
z_m = [z]
# erste Ableitungen (7-8)
sqrtH = np.sqrt(ell.H(x, y, z))
n = np.array([x / sqrtH,
y / ((1-ell.ee**2) * sqrtH),
z / ((1-ell.ex**2) * sqrtH)])
u, v = ell.cart2para(x, y, z)
G = np.sqrt(1 - ell.ex**2 * np.cos(u)**2 - ell.ee**2 * np.sin(u)**2 * np.sin(v)**2)
q = np.array([-1/G * np.sin(u) * np.cos(v),
-1/G * np.sqrt(1-ell.ee**2) * np.sin(u) * np.sin(v),
1/G * np.sqrt(1-ell.ex**2) * np.cos(u)])
p = np.array([q[1]*n[2] - q[2]*n[1],
q[2]*n[0] - q[0]*n[2],
q[1]*n[1] - q[1]*n[0]])
x_m.append(p[0] * np.sin(alpha0) + q[0] * np.cos(alpha0))
y_m.append(p[1] * np.sin(alpha0) + q[1] * np.cos(alpha0))
z_m.append(p[2] * np.sin(alpha0) + q[2] * np.cos(alpha0))
# H Ableitungen (7)
H_ = lambda p: np.sum([comb(p, i) * (x_m[p - i] * x_m[i] +
1 / (1-ell.ee**2) ** 2 * y_m[p-i] * y_m[i] +
1 / (1-ell.ex**2) ** 2 * z_m[p-i] * z_m[i]) for i in range(0, p+1)])
# h Ableitungen (7)
h_ = lambda q: np.sum([comb(q, j) * (x_m[q-j+1] * x_m[j+1] +
1 / (1 - ell.ee ** 2) ** 2 * y_m[q-j+1] * y_m[j+1] +
1 / (1 - ell.ex ** 2) ** 2 * z_m[q-j+1] * z_m[j+1]) for j in range(0, q + 1)])
# h/H Ableitungen (6)
hH_ = lambda t: 1/H_(0) * (h_(t) - fact(t) *
np.sum([H_(t+1-l)/(fact(t+1-l)*fact(l-1))*hH_t[l-1] for l in range(1, t+1)]))
# xm, ym, zm Ableitungen (6)
x_ = lambda m: -np.sum([comb(m-2, k) * hH_t[m-2-k] * x_m[k] for k in range(0, m-2+1)])
y_ = lambda m: -1/(1-ell.ee**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * y_m[k] for k in range(0, m-2+1)])
z_ = lambda m: -1/(1-ell.ex**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * z_m[k] for k in range(0, m-2+1)])
hH_t = []
a_m = []
b_m = []
c_m = []
for m in range(2, maxM+1):
hH_t.append(hH_(m-2))
x_m.append(x_(m))
a_m.append(x_m[m] / fact(m))
y_m.append(y_(m))
b_m.append(y_m[m] / fact(m))
z_m.append(z_(m))
c_m.append(z_m[m] / fact(m))
# am, bm, cm (6)
x_s = 0
for a in a_m:
x_s = x_s * s + a
y_s = 0
for b in b_m:
y_s = y_s * s + b
z_s = 0
for c in c_m:
z_s = z_s * s + c
return x_s, y_s, z_s
pass
if __name__ == "__main__":
ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978")
ellbi = ellipsoide.EllipsoidTriaxial.init_name("Bessel-biaxial")
re = ellipsoide.EllipsoidBiaxial.init_name("Bessel")
x0 = 5672455.1954766
y0 = 2698193.7242382686
z0 = 1103177.6450055107
alpha0 = wu.gms2rad([20, 0, 0])
s = 100
num = 100
werteTri = gha1_num(ellbi, x0, y0, z0, alpha0, s, num)
print(aus.xyz(werteTri[-1][1], werteTri[-1][3], werteTri[-1][5], 8))
print(np.sqrt((x0-werteTri[-1][1])**2+(y0-werteTri[-1][3])**2+(z0-werteTri[-1][5])**2))
checkLiouville(ell, werteTri)
werteBi = ghark.gha1(re, x0, y0, z0, alpha0, s, num)
print(aus.xyz(werteBi[0], werteBi[1], werteBi[2], 8))
print(np.sqrt((x0-werteBi[0])**2+(y0-werteBi[1])**2+(z0-werteBi[2])**2))
werteAna = gha1_ana(ell, x0, y0, z0, alpha0, s, 7)
print(aus.xyz(werteAna[0], werteAna[1], werteAna[2], 8))

201
GHA_triaxial/utils.py Normal file
View File

@@ -0,0 +1,201 @@
from __future__ import annotations
from typing import Tuple
import numpy as np
from numpy import arctan2, cos, sin, sqrt
from numpy.typing import NDArray
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def sigma2alpha(ell: EllipsoidTriaxial, sigma: NDArray, point: NDArray) -> float:
"""
Berechnung des Azimuts an einem Punkt anhand der Ableitung zu den kartesischen Koordinaten
:param ell: Ellipsoid
:param sigma: Ableitungsvektor ver kartesischen Koordinaten
:param point: Punkt
:return: Azimuts
"""
p, q = pq_ell(ell, point)
P = float(p @ sigma)
Q = float(q @ sigma)
alpha = arctan2(P, Q)
return wrap_0_2pi(alpha)
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> Tuple[float, float, float]:
"""
Umrechnung des Azimuts bezogen auf parametrische Koordinaten zu ellipsoidischen
:param ell: Ellipsoid
:param u: parametrische Breite
:param v: parametrische Länge
:param alpha_para: Azimut bezogen auf parametrische Koordinaten
:return: Azimut bezogen auf ellipsoidische Koordinaten
"""
point = ell.para2cart(u, v)
beta, lamb = ell.para2ell(u, v)
p_para, q_para = pq_para(ell, point)
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
p_ell, q_ell = pq_ell(ell, point)
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-7:
raise Exception("alpha_para2ell: Differenz in den Richtungsableitungen")
return beta, lamb, wrap_0_2pi(alpha_ell)
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> Tuple[float, float, float]:
"""
Umrechnung des Azimuts bezogen auf ellipsoidische Koordinaten zu parametrischen
:param ell: Ellipsoid
:param beta: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:param alpha_ell: Azimut bezogen auf ellipsoidische Koordinaten
:return: Azimut bezogen auf parametrische Koordinaten
"""
point = ell.ell2cart(beta, lamb)
u, v = ell.ell2para(beta, lamb)
p_ell, q_ell = pq_ell(ell, point)
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
p_para, q_para = pq_para(ell, point)
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-7:
raise Exception("alpha_ell2para: Differenz in den Richtungsableitungen")
return u, v, wrap_0_2pi(alpha_para)
def func_sigma_ell(ell: EllipsoidTriaxial, point: NDArray, alpha_ell: float) -> NDArray:
"""
Berechnung der Richtungsableitungen in kartesischen Koordinaten aus ellipsoidischem Azimut
Panou (2019) [6]
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha_ell: ellipsoidischer Azimut
:return: Richtungsableitungen in kartesischen Koordinaten
"""
p, q = pq_ell(ell, point)
sigma = p * sin(alpha_ell) + q * cos(alpha_ell)
return sigma
def func_sigma_para(ell: EllipsoidTriaxial, point: NDArray, alpha_para: float) -> NDArray:
"""
Berechnung der Richtungsableitungen in kartesischen Koordinaten aus parametischem Azimut
Panou, Korakitis (2019) [6]
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha_para: parametrischer Azimut
:return: Richtungsableitungen in kartesischen Koordinaten
"""
p, q = pq_para(ell, point)
sigma = p * sin(alpha_para) + q * cos(alpha_para)
return sigma
def louville_constant(ell: EllipsoidTriaxial, p0: NDArray, alpha_ell: float) -> float:
"""
Berechnung der Louville Konstanten
Panou, Korakitis (2019) [6]
:param ell: Ellipsoid
:param p0: Punkt in kartesischen Koordinaten
:param alpha_ell: ellipsoidischer Azimut
:return:
"""
beta, lamb = ell.cart2ell(p0)
l = ell.Ey**2 * cos(beta)**2 * sin(alpha_ell)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha_ell)**2
return l
def pq_ell(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
"""
Berechnung von p (Tangente entlang konstantem beta) und q (Tangente entlang konstantem lambda)
Panou, Korakitits (2019) [5f.]
:param ell: Ellipsoid
:param point: Punkt
:return: p und q
"""
n = ell.func_n(point)
beta, lamb = ell.cart2ell(point)
if abs(cos(beta)) < 1e-15 and abs(np.sin(lamb)) < 1e-15:
if beta > 0:
p = np.array([0, -1, 0])
else:
p = np.array([0, 1, 0])
else:
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
_, t2 = ell.func_t12(point)
F = ell.Ey ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(lamb) ** 2
p1 = -sqrt(L / (F * t2)) * ell.ax / ell.Ex * sqrt(B) * sin(lamb)
p2 = sqrt(L / (F * t2)) * ell.ay * cos(beta) * cos(lamb)
p3 = 1 / sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * sin(beta) * sin(2 * lamb)
p = np.array([p1, p2, p3])
p = p / np.linalg.norm(p)
q = np.array([n[1] * p[2] - n[2] * p[1],
n[2] * p[0] - n[0] * p[2],
n[0] * p[1] - n[1] * p[0]])
q = q / np.linalg.norm(q)
return p, q
def pq_para(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
"""
Berechnung von p (Tangente entlang konstantem u) und q (Tangente entlang konstantem v)
Panou, Korakitits (2020)
:param ell: Ellipsoid
:param point: Punkt
:return: p und q
"""
n = ell.func_n(point)
u, v = ell.cart2para(point)
# 41-47
G = sqrt(1 - ell.ex ** 2 * cos(u) ** 2 - ell.ee ** 2 * sin(u) ** 2 * sin(v) ** 2)
q = np.array([-1 / G * sin(u) * cos(v),
-1 / G * sqrt(1 - ell.ee ** 2) * sin(u) * sin(v),
1 / G * sqrt(1 - ell.ex ** 2) * cos(u)])
p = np.array([q[1] * n[2] - q[2] * n[1],
q[2] * n[0] - q[0] * n[2],
q[0] * n[1] - q[1] * n[0]])
p = p / np.linalg.norm(p)
q = q / np.linalg.norm(q)
return p, q
def jacobi_konstante(beta: float, omega: float, alpha: float, ell: EllipsoidTriaxial) -> float:
"""
Jacobi-Konstante nach Karney (2025), Gl. (14)
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param alpha: Azimut alpha
:param ell: Ellipsoid
:return: Jacobi-Konstante
"""
gamma_jacobi = float((ell.k ** 2) * (np.cos(beta) ** 2) * (np.sin(alpha) ** 2) - (ell.k_ ** 2) * (np.sin(omega) ** 2) * (np.cos(alpha) ** 2))
return gamma_jacobi
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
alpha_para = 0
u, v = ell.ell2para(np.pi/2, 0)
alpha_ell = alpha_para2ell(ell, u, v, alpha_para)
pass

View File

@@ -1,62 +0,0 @@
def verfahren(funktionen: list, startwerte: list, weite: float, schritte: int) -> list:
"""
Runge-Kutta-Verfahren für ein beliebiges DGLS
:param funktionen: Liste mit allen Funktionen
:param startwerte: Liste mit allen Startwerten der Variablen
:param weite: gesamte Weite über die integriert werden soll
:param schritte: Anzahl der Schritte über die gesamte Weite
:return: Liste mit Listen für alle Wertepaare
"""
h = weite / schritte
werte = [startwerte]
for i in range(schritte):
zuschlaege_grob = zuschlaege(funktionen, werte[-1], h)
werte_grob = [werte[-1][j] if j == 0 else werte[-1][j] + zuschlaege_grob[j - 1]
for j in range(len(startwerte))]
zuschlaege_fein_1 = zuschlaege(funktionen, werte[-1], h / 2)
werte_fein_1 = [werte[-1][j] + h/2 if j == 0 else werte[-1][j]+zuschlaege_fein_1[j-1]
for j in range(len(startwerte))]
zuschlaege_fein_2 = zuschlaege(funktionen, werte_fein_1, h / 2)
werte_fein_2 = [werte_fein_1[j] + h/2 if j == 0 else werte_fein_1[j]+zuschlaege_fein_2[j-1]
for j in range(len(startwerte))]
werte_korr = [werte_fein_2[j] if j == 0 else werte_fein_2[j] + 1/15 * (werte_fein_2[j] - werte_grob[j])
for j in range(len(startwerte))]
werte.append(werte_korr)
return werte
def zuschlaege(funktionen: list, startwerte: list, h: float) -> list:
"""
Berechnung der Zuschläge eines einzelnen Schritts
:param funktionen: Liste mit allen Funktionen
:param startwerte: Liste mit allen Startwerten der Variablen
:param h: Schrittweite
:return: Liste mit Zuschlägen für die einzelnen Variablen
"""
werte = [wert for wert in startwerte]
k1 = [h * funktion(*werte) for funktion in funktionen]
werte = [startwerte[i] + (h / 2 if i == 0 else k1[i - 1] / 2)
for i in range(len(startwerte))]
k2 = [h * funktion(*werte) for funktion in funktionen]
werte = [startwerte[i] + (h / 2 if i == 0 else k2[i - 1] / 2)
for i in range(len(startwerte))]
k3 = [h * funktion(*werte) for funktion in funktionen]
werte = [startwerte[i] + (h if i == 0 else k3[i - 1])
for i in range(len(startwerte))]
k4 = [h * funktion(*werte) for funktion in funktionen]
k_ = [(k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6 for i in range(len(k1))]
return k_

View File

@@ -1,46 +0,0 @@
def f(xi, yi):
ys = xi + yi
return ys
# Gegeben:
x0 = 0
y0 = 0
h = 0.2
xmax = 0.4
Ey = 0.0001
x = [x0]
y = [[y0]]
n = 0
while x[-1] < xmax:
x.append(x[-1]+h)
fn = f(x[n], y[n][-1])
if n == 0:
y_neu = y[n][-1] + h * fn
else:
y_neu = y[n-1][-1] + 2*h * fn
y.append([y_neu])
dy = 1
while dy > Ey:
y_neu = y[n][-1] + h/2 * (fn + f(x[n+1], y[n+1][-1]))
y[-1].append(y_neu)
dy = abs(y[-1][-2]-y[-1][-1])
n += 1
print(x)
print(y)
werte = []
for i in range(len(x)):
werte.append((x[i], y[i][-1]))
for paar in werte:
print(f"({round(paar[0], 5)}, {round(paar[1], 5)})")
integral = 0
for i in range(len(werte)-1):
integral += (werte[i+1][1]+werte[i][1])/2 * (werte[i+1][0]-werte[i][0])
print(f"Integral = {round(integral, 5)}")

View File

@@ -1,7 +0,0 @@
import num_int_runge_kutta as rk
f = lambda ti, xi, yi: yi - ti
g = lambda ti, xi, yi: xi + yi
funktionswerte = rk.verfahren([f, g], [0, 0, 1], 0.6, 3)
print(funktionswerte)

View File

@@ -1,6 +0,0 @@
import num_int_runge_kutta as rk
f = lambda xi, yi: xi + yi
funktionswerte = rk.verfahren([f], [0, 0], 1, 5)
print(funktionswerte)

View File

@@ -1,10 +0,0 @@
import numpy as np
import num_int_runge_kutta as rk
f = lambda ti, ui, phii: -4 * np.sin(phii)
g = lambda ti, ui, phii: ui
funktionswerte = rk.verfahren([f, g], [0, 1, 0], 0.6, 3)
for wert in funktionswerte:
print(f"t = {round(wert[0],1)}s -> phi = {round(wert[2],5)}, phip = {round(wert[1],5)}, v = {round(2.45 * wert[1],5)}")

View File

@@ -1,7 +0,0 @@
import num_int_runge_kutta as rk
f = lambda xi, yi, ui: ui
g = lambda xi, yi, ui: 4 * ui - 4 * yi
funktionswerte = rk.verfahren([f, g], [0, 0, 1], 0.6, 2)
print(funktionswerte)

1
T.py
View File

@@ -1 +0,0 @@
print("T")

BIN
assets/favicon.ico Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.2 KiB

View File

@@ -10,7 +10,7 @@ def xyz(x: float, y: float, z: float, stellen: int) -> str:
:param stellen: Anzahl Nachkommastellen
:return: String zur Ausgabe der Koordinaten
"""
return f"""x = {(round(x,stellen))} m y = {(round(y,stellen))} m z = {(round(z,stellen))} m"""
return f"""x = {(round(x, stellen))} m y = {(round(y, stellen))} m z = {(round(z, stellen))} m"""
def gms(name: str, rad: float, stellen: int) -> str:
@@ -21,5 +21,5 @@ def gms(name: str, rad: float, stellen: int) -> str:
:param stellen: Anzahl Nachkommastellen
:return: String zur Ausgabe des Winkels
"""
gms = wu.rad2gms(rad)
return f"{name} = {int(gms[0])}° {int(gms[1])}' {round(gms[2],stellen):.{stellen}f}''"
values = wu.rad2gms(rad)
return f"{name} = {int(values[0])}° {int(values[1])}' {round(values[2], stellen):.{stellen}f}''"

1482
dashboard.py Normal file

File diff suppressed because it is too large Load Diff

733
ellipsoid_triaxial.py Normal file
View File

@@ -0,0 +1,733 @@
import math
from typing import Tuple
import numpy as np
from numpy import arccos, arctan, arctan2, cos, pi, sin, sqrt
from numpy.typing import NDArray
import jacobian_Ligas
from utils_angle import wrap_mhalfpi_halfpi, wrap_mpi_pi
class EllipsoidTriaxial:
"""
Klasse für dreiachsige Ellipsoide
Parameter: Formparameter
Funktionen: Koordinatenumrechnungen
"""
def __init__(self, ax: float, ay: float, b: float):
self.ax = ax
self.ay = ay
self.b = b
self.ex = sqrt((self.ax**2 - self.b**2) / self.ax**2)
self.ey = sqrt((self.ay**2 - self.b**2) / self.ay**2)
self.ee = sqrt((self.ax**2 - self.ay**2) / self.ax**2)
self.ex_ = sqrt((self.ax**2 - self.b**2) / self.b**2)
self.ey_ = sqrt((self.ay**2 - self.b**2) / self.b**2)
self.ee_ = sqrt((self.ax**2 - self.ay**2) / self.ay**2)
self.Ex = sqrt(self.ax**2 - self.b**2)
self.Ey = sqrt(self.ay**2 - self.b**2)
self.Ee = sqrt(self.ax**2 - self.ay**2)
nenner = sqrt(max(self.ax * self.ax - self.b * self.b, 0.0))
self.k = sqrt(max(self.ay * self.ay - self.b * self.b, 0.0)) / nenner
self.k_ = sqrt(max(self.ax * self.ax - self.ay * self.ay, 0.0)) / nenner
self.e = sqrt(max(self.ax * self.ax - self.b * self.b, 0.0)) / self.ay
@classmethod
def init_name(cls, name: str) -> EllipsoidTriaxial:
"""
Mögliche Ellipsoide: BursaSima1980round, KarneyTest2024, Fiction, BursaFialova1993, BursaSima1980, Eitschberger1978, Bursa1972,
Bursa1970
Panou et al (2020)
:param name: Name des dreiachsigen Ellipsoids
:return: dreiachsiger Ellipsoid
"""
if name == "BursaFialova1993":
ax = 6378171.36
ay = 6378101.61
b = 6356751.84
return cls(ax, ay, b)
elif name == "BursaSima1980":
ax = 6378172
ay = 6378102.7
b = 6356752.6
return cls(ax, ay, b)
elif name == "BursaSima1980round":
# Panou 2013
ax = 6378172
ay = 6378103
b = 6356753
return cls(ax, ay, b)
elif name == "Eitschberger1978":
ax = 6378173.435
ay = 6378103.9
b = 6356754.4
return cls(ax, ay, b)
elif name == "Bursa1972":
ax = 6378173
ay = 6378104
b = 6356754
return cls(ax, ay, b)
elif name == "Bursa1970":
ax = 6378173
ay = 6378105
b = 6356754
return cls(ax, ay, b)
elif name == "Fiction":
ax = 6000000
ay = 4000000
b = 2000000
return cls(ax, ay, b)
elif name == "KarneyTest2024":
ax = sqrt(2)
ay = 1
b = 1 / sqrt(2)
return cls(ax, ay, b)
else:
raise Exception(f"EllipsoidTriaxial.init_name: Name {name} unbekannt")
def func_H(self, point: NDArray) -> float:
"""
Berechnung H
Panou, Korakitis 2019 [43]
:param point: Punkt
:return: H
"""
x, y, z = point
return x ** 2 + y ** 2 / (1 - self.ee ** 2) ** 2 + z ** 2 / (1 - self.ex ** 2) ** 2
def func_n(self, point: NDArray, H: float = None) -> NDArray:
"""
Berechnung normalen Vektor
Panou, Korakitis 2019 [9-12]
:param point: Punkt
:param H:
:return:
"""
if H is None:
H = self.func_H(point)
sqrtH = sqrt(H)
x, y, z = point
return np.array([x / sqrtH,
y / ((1 - self.ee ** 2) * sqrtH),
z / ((1 - self.ex ** 2) * sqrtH)])
def func_t12(self, point: NDArray) -> Tuple[float, float]:
"""
Berechnung Wurzeln
Panou, Korakitis 2019 [9-12]
:param point: Punkt
:return: Wurzeln t1, t2
"""
x, y, z = point
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
self.ax ** 2 + self.ay ** 2) * z ** 2)
if c1 ** 2 - 4 * c0 < -1e-9:
raise Exception("t1, t2: Negativer Wurzelterm")
elif c1 ** 2 - 4 * c0 < 0:
t2 = 0
else:
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
if t2 == 0:
t2 = 1e-18
t1 = c0 / t2
return t1, t2
def ellu2cart(self, beta: float, lamb: float, u: float) -> NDArray:
"""
Panou 2014 12ff.
:param beta: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:param u: radiale Koordinate entlang der kleinen Halbachse
:return: Punkt in kartesischen Koordinaten
"""
x = sqrt(u**2 + self.Ex**2) * sqrt(cos(beta)**2 + self.Ee**2/self.Ex**2 * sin(beta)**2) * cos(lamb)
y = sqrt(u**2 + self.Ey**2) * cos(beta) * sin(lamb)
z = u * sin(beta) * sqrt(1 - self.Ee**2/self.Ex**2 * cos(lamb)**2)
return np.array([x, y, z])
def cart2ellu(self, point: NDArray) -> Tuple[float, float, float]:
"""
Panou 2014 15ff.
:param point: Punkt in kartesischen Koordinaten
:return: ellipsoidische Breite, ellipsoidische Länge, radiale Koordinate entlang der kleinen Halbachse
"""
x, y, z = point
c2 = self.ax**2 + self.ay**2 + self.b**2 - x**2 - y**2 - z**2
c1 = (self.ax**2 * self.ay**2 + self.ax**2 * self.b**2 + self.ay**2 * self.b**2 -
(self.ay**2+self.b**2) * x**2 - (self.ax**2 + self.b**2) * y**2 - (self.ax**2 + self.ay**2) * z**2)
c0 = (self.ax**2 * self.ay**2 * self.b**2 - self.ay**2 * self.b**2 * x**2 -
self.ax**2 * self.b**2 * y**2 - self.ax**2 * self.ay**2 * z**2)
p = (c2**2 - 3*c1) / 9
q = (9*c1*c2 - 27*c0 - 2*c2**3) / 54
omega = arccos(q / sqrt(p**3))
s1 = 2 * sqrt(p) * cos(omega/3) - c2/3
s2 = 2 * sqrt(p) * cos(omega/3 - 2*pi/3) - c2/3
s3 = 2 * sqrt(p) * cos(omega/3 - 4*pi/3) - c2/3
beta = arctan(sqrt((-self.b**2 - s2) / (self.ay**2 + s2)))
if abs((-self.ay**2 - s3) / (self.ax**2 + s3)) > 1e-7:
lamb = arctan(sqrt((-self.ay**2 - s3) / (self.ax**2 + s3)))
else:
lamb = 0
u = sqrt(self.b**2 + s1)
return beta, lamb, u
def ell2cart(self, beta: float | NDArray, lamb: float | NDArray) -> NDArray:
"""
Panou, Korakitis 2019 2
:param beta: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:return: Punkt in kartesischen Koordinaten
"""
beta = np.asarray(beta, dtype=float)
lamb = np.asarray(lamb, dtype=float)
beta, lamb = np.broadcast_arrays(beta, lamb)
beta = np.where(
np.isclose(np.abs(beta), pi / 2, atol=1e-15),
beta * 8999999999999999 / 9000000000000000,
beta
)
B = self.Ex ** 2 * cos(beta) ** 2 + self.Ee ** 2 * sin(beta) ** 2
L = self.Ex ** 2 - self.Ee ** 2 * cos(lamb) ** 2
x = self.ax / self.Ex * sqrt(B) * cos(lamb)
y = self.ay * cos(beta) * sin(lamb)
z = self.b / self.Ex * sin(beta) * sqrt(L)
xyz = np.stack((x, y, z), axis=-1)
# Pole
mask_south = beta == -pi / 2
mask_north = beta == pi / 2
xyz[mask_south] = np.array([0, 0, -self.b])
xyz[mask_north] = np.array([0, 0, self.b])
# Äquator
mask_eq = beta == 0
xyz[mask_eq & (lamb == -pi / 2)] = np.array([0, -self.ay, 0])
xyz[mask_eq & (lamb == pi / 2)] = np.array([0, self.ay, 0])
xyz[mask_eq & (lamb == 0)] = np.array([self.ax, 0, 0])
xyz[mask_eq & (lamb == pi)] = np.array([-self.ax, 0, 0])
return xyz
def ell2cart_bektas(self, beta: float | NDArray, omega: float | NDArray) -> NDArray:
"""
Bektas 2015
:param beta: ellipsoidische Breite
:param omega: ellipsoidische Länge
:return: Punkt in kartesischen Koordinaten
"""
x = self.ax * cos(omega) * sqrt((self.ax**2 - self.ay**2 * sin(beta)**2 - self.b**2 * cos(beta)**2) / (self.ax**2 - self.b**2))
y = self.ay * cos(beta) * sin(omega)
z = self.b * sin(beta) * sqrt((self.ax**2 * sin(omega)**2 + self.ay**2 * cos(omega)**2 - self.b**2) / (self.ax**2 - self.b**2))
return np.array([x, y, z])
def ell2cart_karney(self, beta: float | NDArray, lamb: float | NDArray) -> NDArray:
"""
Karney 2025 Geographic Lib
:param beta: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:return: Punkt in kartesischen Koordinaten
"""
k = sqrt(self.ay**2 - self.b**2) / sqrt(self.ax**2 - self.b**2)
k_ = sqrt(self.ax**2 - self.ay**2) / sqrt(self.ax**2 - self.b**2)
X = self.ax * cos(lamb) * sqrt(k**2*cos(beta)**2+k_**2)
Y = self.ay * cos(beta) * sin(lamb)
Z = self.b * sin(beta) * sqrt(k**2 + k_**2 * sin(lamb)**2)
return np.array([X, Y, Z])
def cart2ell_yFake(self, point: NDArray, delta_y: float = 1e-4) -> Tuple[float, float]:
"""
Bei Fehlschlagen von cart2ell
:param point: Punkt in kartesischen Koordinaten
:param delta_y: Startwert für Suche nach kleinstmöglichem delta_y
:return: ellipsoidische Breite und Länge
"""
x, y, z = point
best_delta = np.inf
while True:
try:
y1 = y - delta_y
beta1, lamb1 = self.cart2ell(np.array([x, y1, z]), noFake=True)
point1 = self.ell2cart(beta1, lamb1)
y2 = y + delta_y
beta2, lamb2 = self.cart2ell(np.array([x, y2, z]), noFake=True)
point2 = self.ell2cart(beta2, lamb2)
pointM = (point1 + point2) / 2
actual_delta = np.linalg.norm(point - pointM)
except:
actual_delta = np.inf
if actual_delta < best_delta:
best_delta = actual_delta
delta_y /= 10
else:
delta_y *= 10
y1 = y - delta_y
beta1, lamb1 = self.cart2ell(np.array([x, y1, z]), noFake=True)
return beta1, lamb1
def cart2ell(self, point: NDArray, eps: float = 1e-12, maxI: int = 100, noFake: bool = False) -> Tuple[float, float]:
"""
Panou, Korakitis 2019 3f. (num)
:param point: Punkt in kartesischen Koordinaten
:param eps: zu erreichende Genauigkeit
:param maxI: maximale Anzahl Iterationen
:param noFake: y numerisch anpassen?
:return: ellipsoidische Breite und Länge
"""
x, y, z = point
beta, lamb = self.cart2ell_panou(point)
delta_ell = np.array([np.inf, np.inf]).T
tiny = 1e-30
try:
i = 0
while np.linalg.norm(delta_ell) > eps and i < maxI:
x0, y0, z0 = self.ell2cart(beta, lamb)
delta_l = np.array([x-x0, y-y0, z-z0]).T
B = max(self.Ex ** 2 * cos(beta) ** 2 + self.Ee ** 2 * sin(beta) ** 2, tiny)
L = max(self.Ex ** 2 - self.Ee ** 2 * cos(lamb) ** 2, tiny)
J = np.array([[(-self.ax * self.Ey ** 2) / (2 * self.Ex) * sin(2 * beta) / sqrt(B) * cos(lamb),
-self.ax / self.Ex * sqrt(B) * sin(lamb)],
[-self.ay * sin(beta) * sin(lamb),
self.ay * cos(beta) * cos(lamb)],
[self.b / self.Ex * cos(beta) * sqrt(L),
(self.b * self.Ee ** 2) / (2 * self.Ex) * sin(beta) * sin(2 * lamb) / sqrt(L)]])
N = J.T @ J
det = N[0, 0] * N[1, 1] - N[0, 1] * N[1, 0]
N_inv = 1 / det * np.array([[N[1, 1], -N[0, 1]], [-N[1, 0], N[0, 0]]])
delta_ell = N_inv @ J.T @ delta_l
# delta_ell, *_ = np.linalg.lstsq(J, delta_l, rcond=None)
beta += delta_ell[0]
lamb += delta_ell[1]
i += 1
if i == maxI:
raise Exception("Umrechnung cart2ell: nicht konvergiert")
point_n = self.ell2cart(beta, lamb)
delta_r = np.linalg.norm(point - point_n, axis=-1)
if delta_r > 1e-6:
raise Exception("Umrechnung cart2ell: Punktdifferenz")
return wrap_mhalfpi_halfpi(beta), wrap_mpi_pi(lamb)
except Exception as e:
# Wenn die Berechnung fehlschlägt auf Grund von sehr kleinem y, solange anpassen, bis Umrechnung ohne Fehler
delta_y = 10 ** math.floor(math.log10(abs(self.ay/1000)))
if abs(y) < delta_y and not noFake:
return self.cart2ell_yFake(point, delta_y)
else:
raise e
def cart2ell_panou(self, point: NDArray) -> Tuple[float, float]:
"""
Panou, Korakitis 2019 2f. (analytisch -> Näherung)
:param point: Punkt in kartesischen Koordinaten
:return: ellipsoidische Breite und Länge
"""
x, y, z = point
eps = 1e-9
if abs(x) < eps and abs(y) < eps: # Punkt in der z-Achse
beta = pi / 2 if z > 0 else -pi / 2
lamb = 0.0
return beta, lamb
elif abs(x) < eps and abs(z) < eps: # Punkt in der y-Achse
beta = 0.0
lamb = pi / 2 if y > 0 else -pi / 2
return beta, lamb
elif abs(y) < eps and abs(z) < eps: # Punkt in der x-Achse
beta = 0.0
lamb = 0.0 if x > 0 else pi
return beta, lamb
# ---- Allgemeiner Fall -----
t1, t2 = self.func_t12(point)
num_beta = max(t1 - self.b ** 2, 0)
den_beta = max(self.ay ** 2 - t1, 1e-30)
num_lamb = max(t2 - self.ay ** 2, 0)
den_lamb = max(self.ax ** 2 - t2, 1e-30)
beta = arctan(sqrt(num_beta / den_beta))
lamb = arctan(sqrt(num_lamb / den_lamb))
if z < 0:
beta = -beta
if y < 0:
lamb = -lamb
if x < 0:
lamb = pi - lamb
if abs(x) < eps:
lamb = -pi/2 if y < 0 else pi/2
elif abs(y) < eps:
lamb = 0 if x > 0 else pi
elif abs(z) < eps:
beta = 0
return beta, lamb
def cart2ell_bektas(self, point: NDArray, eps: float = 1e-12, maxI: int = 100) -> Tuple[float, float]:
"""
Bektas 2015
:param point: Punkt in kartesischen Koordinaten
:param eps: zu erreichende Genauigkeit
:param maxI: maximale Anzahl Iterationen
:return: ellipsoidische Breite und Länge
"""
x, y, z = point
phi, lamb = self.cart2para(point)
p = sqrt((self.ax**2 - self.ay**2) / (self.ax**2 - self.b**2))
d_phi = np.inf
d_lamb = np.inf
i = 0
while d_phi > eps and d_lamb > eps and i < maxI:
lamb_new = arctan2(self.ax * y * sqrt((p**2-1) * sin(phi)**2 + 1), self.ay * x * cos(phi))
phi_new = arctan2(self.ay * z * sin(lamb), self.b * y * sqrt(1 - p**2 * cos(lamb)**2))
d_phi = abs(phi_new - phi)
phi = phi_new
d_lamb = abs(lamb_new - lamb)
lamb = lamb_new
i += 1
if i == maxI:
raise Exception("Umrechnung cart2ell: nicht konvergiert")
return phi, lamb
def geod2cart(self, phi: float | NDArray, lamb: float | NDArray, h: float) -> NDArray:
"""
Ligas 2012, 250
:param phi: geodätische Breite
:param lamb: geodätische Länge
:param h: geodätische Höhe
:return: kartesische Koordinaten
"""
v = self.ax / sqrt(1 - self.ex**2*sin(phi)**2-self.ee**2*cos(phi)**2*sin(lamb)**2)
xG = (v + h) * cos(phi) * cos(lamb)
yG = (v * (1-self.ee**2) + h) * cos(phi) * sin(lamb)
zG = (v * (1-self.ex**2) + h) * sin(phi)
return np.array([xG, yG, zG])
def cart2geod(self, point: NDArray, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> Tuple[float, float, float]:
"""
Ligas 2012
:param mode: ligas1, ligas2, oder ligas3
:param point: Punkt in kartesischen Koordinaten
:param maxIter: maximale Anzahl Iterationen
:param maxLoa: Level of Accuracy, das erreicht werden soll
:return: geodätische Breite, Länge, Höhe
"""
xG, yG, zG = point
eps = 1e-9
if abs(xG) < eps and abs(yG) < eps: # Punkt in der z-Achse
phi = pi / 2 if zG > 0 else -pi / 2
lamb = 0.0
h = abs(zG) - self.b
return phi, lamb, h
elif abs(xG) < eps and abs(zG) < eps: # Punkt in der y-Achse
phi = 0.0
lamb = pi / 2 if yG > 0 else -pi / 2
h = abs(yG) - self.ay
return phi, lamb, h
elif abs(yG) < eps and abs(zG) < eps: # Punkt in der x-Achse
phi = 0.0
lamb = 0.0 if xG > 0 else pi
h = abs(xG) - self.ax
return phi, lamb, h
rG = sqrt(xG ** 2 + yG ** 2 + zG ** 2)
pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64)
E = 1 / self.ax**2
F = 1 / self.ay**2
G = 1 / self.b**2
i = 0
loa = np.inf
while i < maxIter and loa > maxLoa:
if mode == "ligas1":
invJ, fxE = jacobian_Ligas.case1(E, F, G, np.array([xG, yG, zG]), pE)
elif mode == "ligas2":
invJ, fxE = jacobian_Ligas.case2(E, F, G, np.array([xG, yG, zG]), pE)
elif mode == "ligas3":
invJ, fxE = jacobian_Ligas.case3(E, F, G, np.array([xG, yG, zG]), pE)
else:
raise Exception(f"cart2geod: Modus {mode} nicht bekannt")
pEi = pE.reshape(-1, 1) - invJ @ fxE.reshape(-1, 1)
pEi = pEi.reshape(1, -1).flatten()
loa = sqrt((pEi[0]-pE[0])**2 + (pEi[1]-pE[1])**2 + (pEi[2]-pE[2])**2)
pE = pEi
i += 1
if i == maxIter and loa > maxLoa:
act_mode = int(mode[-1])
new_mode = 3 if act_mode == 1 else act_mode - 1
phi, lamb, h = self.cart2geod(point, f"ligas{new_mode}", maxIter, maxLoa)
else:
phi = arctan((1-self.ee**2) / (1-self.ex**2) * pE[2] / sqrt((1-self.ee**2)**2 * pE[0]**2 + pE[1]**2))
lamb = arctan(1/(1-self.ee**2) * pE[1]/pE[0])
h = np.sign(zG - pE[2]) * np.sign(pE[2]) * sqrt((pE[0] - xG) ** 2 + (pE[1] - yG) ** 2 + (pE[2] - zG) ** 2)
if h < -self.ax:
act_mode = int(mode[-1])
new_mode = 3 if act_mode == 1 else act_mode - 1
phi, lamb, h = self.cart2geod(point, f"ligas{new_mode}", maxIter, maxLoa)
else:
if xG < 0 and yG < 0:
lamb += -pi
elif xG < 0:
lamb += pi
if abs(zG) < eps:
phi = 0
wrap_mhalfpi_halfpi(phi), wrap_mpi_pi(lamb)
return wrap_mhalfpi_halfpi(phi), wrap_mpi_pi(lamb), h
def para2cart(self, u: float | NDArray, v: float | NDArray) -> NDArray:
"""
Panou, Korakitits 2020, 4
:param u: parametrische Breite
:param v: parametrische Länge
:return: Punkt in kartesischen Koordinaten
"""
x = self.ax * cos(u) * cos(v)
y = self.ay * cos(u) * sin(v)
z = self.b * sin(u)
z = np.broadcast_to(z, np.shape(x))
return np.array([x, y, z])
def cart2para(self, point: NDArray) -> Tuple[float, float]:
"""
Panou, Korakitits 2020, 4
:param point: Punkt in kartesischen Koordinaten
:return: parametrische Breite, Länge
"""
x, y, z = point
u_check1 = z*sqrt(1 - self.ee**2)
u_check2 = sqrt(x**2 * (1-self.ee**2) + y**2) * sqrt(1-self.ex**2)
if u_check1 <= u_check2:
u = arctan2(u_check1, u_check2)
else:
u = pi/2 - arctan2(u_check2, u_check1)
v_check1 = y
v_check2 = x*sqrt(1-self.ee**2)
v_factor = sqrt(x**2*(1-self.ee**2)+y**2)
if v_check1 <= v_check2:
v = 2 * arctan2(v_check1, v_check2 + v_factor)
else:
v = pi/2 - 2 * arctan2(v_check2, v_check1 + v_factor)
wrap_mhalfpi_halfpi(u), wrap_mpi_pi(v)
return wrap_mhalfpi_halfpi(u), wrap_mpi_pi(v)
def ell2para(self, beta: float, lamb: float) -> Tuple[float, float]:
"""
Umrechung von ellipsoidischen in parametrische Koordinaten (über kartesische Koordinaten)
:param beta: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:return: parametrische Breite, Länge
"""
cart = self.ell2cart(beta, lamb)
return self.cart2para(cart)
def para2ell(self, u: float, v: float) -> Tuple[float, float]:
"""
Umrechung von parametrischen in ellipsoidische Koordinaten (über kartesische Koordinaten)
:param u: parametrische Breite
:param v: parametrische Länge
:return: ellipsoidische Breite, Länge
"""
cart = self.para2cart(u, v)
return self.cart2ell(cart)
def para2geod(self, u: float, v: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> Tuple[float, float, float]:
"""
Umrechung von parametrischen in geodätische Koordinaten (über kartesische Koordinaten)
:param u: parametrische Breite
:param v: parametrische Länge
:param mode: ligas1, ligas2, oder ligas3
:param maxIter: maximale Anzahl Iterationen
:param maxLoa: Level of Accuracy, das erreicht werden soll
:return: geodätische Breite, Länge, Höhe
"""
cart = self.para2cart(u, v)
return self.cart2geod(cart, mode, maxIter, maxLoa)
def geod2para(self, phi: float, lamb: float, h: float) -> Tuple[float, float]:
"""
Umrechung von geodätischen in parametrische Koordinaten (über kartesische Koordinaten)
:param phi: geodätische Breite
:param lamb: geodätische Länge
:param h: geodätische Höhe
:return: parametrische Breite, Länge
"""
cart = self.geod2cart(phi, lamb, h)
return self.cart2para(cart)
def ell2geod(self, beta: float, lamb: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> Tuple[float, float, float]:
"""
Umrechung von ellipsoidischen in geodätische Koordinaten (über kartesische Koordinaten)
:param beta: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:param mode: ligas1, ligas2, oder ligas3
:param maxIter: maximale Anzahl Iterationen
:param maxLoa: Level of Accuracy, das erreicht werden soll
:return: geodätische Breite, Länge, Höhe
"""
cart = self.ell2cart(beta, lamb)
return self.cart2geod(cart, mode, maxIter, maxLoa)
def geod2ell(self, phi: float, lamb: float, h: float) -> Tuple[float, float]:
"""
Umrechung von geodätischen in ellipsoidische Koordinaten (über kartesische Koordinaten)
:param phi: geodätische Breite
:param lamb: geodätische Länge
:param h: geodätische Höhe
:return: ellipsoidische Breite, Länge
"""
cart = self.geod2cart(phi, lamb, h)
return self.cart2ell(cart)
def point_on(self, point: NDArray) -> bool:
"""
Test, ob ein Punkt auf dem Ellipsoid liegt
:param point: kartesische 3D-Koordinaten
:return: Punkt auf dem Ellispoid?
"""
value = point[0]**2/self.ax**2 + point[1]**2/self.ay**2 + point[2]**2/self.b**2
if abs(1-value) < 1e-6:
return True
else:
return False
def point_onto_ellipsoid(self, point: NDArray) -> NDArray:
"""
Berechnung des Lotpunktes entlang der Normalkrümmung auf einem Ellipsoiden
:param point: Punkt in kartesischen Koordinaten, der gelotet werden soll
:return: Lotpunkt in kartesischen Koordinaten
"""
phi, lamb, h = self.cart2geod(point, "ligas3")
p = self. geod2cart(phi, lamb, 0)
return p
def cart_ellh(self, point: NDArray, h: float) -> NDArray:
"""
Punkt auf Ellipsoid hoch loten
:param point: Punkt auf dem Ellipsoid
:param h: Höhe über dem Ellipsoid
:return: hochgeloteter Punkt
"""
phi, lamb, _ = self.cart2geod(point, "ligas3")
pointH = self. geod2cart(phi, lamb, h)
return pointH
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
# cart = ell.ell2cart(pi/2, 0)
# print(cart)
# cart = ell.ell2cart(pi/2*8999999999999999/9000000000000000, 0)
# print(cart)
elli = ell.cart2ell(np.array([0, 0.0, 1/sqrt(2)]))
print(elli)
# ell = EllipsoidTriaxial.init_name("BursaSima1980")
# diff_list = []
# diffs_para = []
# diffs_ell = []
# diffs_geod = []
# points = []
# for v_deg in range(-180, 181, 5):
# for u_deg in range(-90, 91, 5):
# v = wu.deg2rad(v_deg)
# u = wu.deg2rad(u_deg)
# point = ell.para2cart(u, v)
# points.append(point)
#
# elli = ell.cart2ell(point)
# cart_elli = ell.ell2cart(elli[0], elli[1])
# diff_ell = np.linalg.norm(point - cart_elli, axis=-1)
#
# para = ell.cart2para(point)
# cart_para = ell.para2cart(para[0], para[1])
# diff_para = np.linalg.norm(point - cart_para, axis=-1)
#
# geod = ell.cart2geod(point, "ligas3")
# cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
# diff_geod3 = np.linalg.norm(point - cart_geod, axis=-1)
#
# diff_list.append([v_deg, u_deg, diff_ell, diff_para, diff_geod3])
# diffs_ell.append([diff_ell])
# diffs_para.append([diff_para])
# diffs_geod.append([diff_geod3])
#
# diff_list = np.array(diff_list)
# diffs_ell = np.array(diffs_ell)
# diffs_para = np.array(diffs_para)
# diffs_geod = np.array(diffs_geod)
#
# pass
#
# points = np.array(points)
# fig = plt.figure()
# ax = fig.add_subplot(projection='3d')
#
# sc = ax.scatter(
# points[:, 0],
# points[:, 1],
# points[:, 2],
# c=diffs_ell, # Farbcode = diff
# cmap='viridis', # Colormap
# s=10 + 20 * diffs_ell, # optional: Größe abhängig vom diff
# alpha=0.8
# )
#
# # Farbskala
# cbar = plt.colorbar(sc)
# cbar.set_label("diff")
#
# ax.set_xlabel("X")
# ax.set_ylabel("Y")
# ax.set_zlabel("Z")
#
# plt.show()

View File

@@ -1,315 +0,0 @@
import numpy as np
import winkelumrechnungen as wu
import ausgaben as aus
import jacobian_Ligas
class EllipsoidBiaxial:
def __init__(self, a: float, b: float):
self.a = a
self.b = b
self.c = a ** 2 / b
self.e = np.sqrt(a ** 2 - b ** 2) / a
self.e_ = np.sqrt(a ** 2 - b ** 2) / b
@classmethod
def init_name(cls, name: str):
if name == "Bessel":
a = 6377397.15508
b = 6356078.96290
return cls(a, b)
elif name == "Hayford":
a = 6378388
f = 1/297
b = a - a * f
return cls(a, b)
elif name == "Krassowski":
a = 6378245
f = 298.3
b = a - a * f
return cls(a, b)
elif name == "WGS84":
a = 6378137
f = 298.257223563
b = a - a * f
return cls(a, b)
@classmethod
def init_af(cls, a: float, f: float):
b = a - a * f
return cls(a, b)
V = lambda self, phi: np.sqrt(1 + self.e_ ** 2 * np.cos(phi) ** 2)
M = lambda self, phi: self.c / self.V(phi) ** 3
N = lambda self, phi: self.c / self.V(phi)
beta2psi = lambda self, beta: np.arctan(self.a / self.b * np.tan(beta))
beta2phi = lambda self, beta: np.arctan(self.a ** 2 / self.b ** 2 * np.tan(beta))
psi2beta = lambda self, psi: np.arctan(self.b / self.a * np.tan(psi))
psi2phi = lambda self, psi: np.arctan(self.a / self.b * np.tan(psi))
phi2beta = lambda self, phi: np.arctan(self.b ** 2 / self.a ** 2 * np.tan(phi))
phi2psi = lambda self, phi: np.arctan(self.b / self.a * np.tan(phi))
phi2p = lambda self, phi: self.N(phi) * np.cos(phi)
def cart2ell(self, Eh, Ephi, x, y, z):
p = np.sqrt(x**2+y**2)
# print(f"p = {round(p, 5)} m")
lamb = np.arctan(y/x)
phi_null = np.arctan(z/p*(1-self.e**2)**-1)
hi = [0]
phii = [phi_null]
i = 0
while True:
N = self.a*(1-self.e**2*np.sin(phii[i])**2)**(-1/2)
h = p/np.cos(phii[i])-N
phi = np.arctan(z/p*(1-(self.e**2*N)/(N+h))**(-1))
hi.append(h)
phii.append(phi)
dh = abs(hi[i]-h)
dphi = abs(phii[i]-phi)
i = i+1
if dh < Eh:
if dphi < Ephi:
break
for i in range(len(phii)):
# print(f"P3[{i}]: {aus.gms('phi', phii[i], 5)}\th = {round(hi[i], 5)} m")
pass
return phi, lamb, h
def ell2cart(self, phi, lamb, h):
W = np.sqrt(1 - self.e**2 * np.sin(phi)**2)
N = self.a / W
x = (N+h) * np.cos(phi) * np.cos(lamb)
y = (N+h) * np.cos(phi) * np.sin(lamb)
z = (N * (1-self.e**2) + h) * np.sin(lamb)
return x, y, z
class EllipsoidTriaxial:
def __init__(self, ax: float, ay: float, b: float):
self.ax = ax
self.ay = ay
self.b = b
self.ex = np.sqrt((self.ax**2 - self.b**2) / self.ax**2)
self.ey = np.sqrt((self.ay**2 - self.b**2) / self.ay**2)
self.ee = np.sqrt((self.ax**2 - self.ay**2) / self.ax**2)
self.ex_ = np.sqrt((self.ax**2 - self.b**2) / self.b**2)
self.ey_ = np.sqrt((self.ay**2 - self.b**2) / self.b**2)
self.ee_ = np.sqrt((self.ax**2 - self.ay**2) / self.ay**2)
self.Ex = np.sqrt(self.ax**2 - self.b**2)
self.Ey = np.sqrt(self.ay**2 - self.b**2)
self.Ee = np.sqrt(self.ax**2 - self.ay**2)
@classmethod
def init_name(cls, name: str):
if name == "BursaFialova1993":
ax = 6378171.36
ay = 6378101.61
b = 6356751.84
return cls(ax, ay, b)
elif name == "BursaSima1980":
ax = 6378172
ay = 6378102.7
b = 6356752.6
return cls(ax, ay, b)
elif name == "Eitschberger1978":
ax = 6378173.435
ay = 6378103.9
b = 6356754.4
return cls(ax, ay, b)
elif name == "Bursa1972":
ax = 6378173
ay = 6378104
b = 6356754
return cls(ax, ay, b)
elif name == "Bursa1970":
ax = 6378173
ay = 6378105
b = 6356754
return cls(ax, ay, b)
elif name == "Bessel-biaxial":
ax = 6377397.15509
ay = 6377397.15508
b = 6356078.96290
return cls(ax, ay, b)
def ell2cart(self, beta, lamb, u):
"""
Panou 2014 12ff.
:param beta: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:param u: Höhe
:return: kartesische Koordinaten
"""
s1 = u**2 - self.b**2
s2 = -self.ay**2 * np.sin(beta)**2 - self.b**2 * np.cos(beta)**2
s3 = -self.ax**2 * np.sin(lamb)**2 - self.ay**2 * np.cos(lamb)**2
# print(s1, s2, s3)
xe = np.sqrt(((self.ax**2+s1) * (self.ax**2+s2) * (self.ax**2+s3)) /
((self.ax**2-self.ay**2) * (self.ax**2-self.b**2)))
ye = np.sqrt(((self.ay**2+s1) * (self.ay**2+s2) * (self.ay**2+s3)) /
((self.ay**2-self.ax**2) * (self.ay**2-self.b**2)))
ze = np.sqrt(((self.b**2+s1) * (self.b**2+s2) * (self.b**2+s3)) /
((self.b**2-self.ax**2) * (self.b**2-self.ax**2)))
x = np.sqrt(u**2 + self.Ex**2) * np.sqrt(np.cos(beta)**2 + self.Ee**2/self.Ex**2 * np.sin(beta)**2) * np.cos(lamb)
y = np.sqrt(u**2 + self.Ey**2) * np.cos(beta) * np.sin(lamb)
z = u * np.sin(beta) * np.sqrt(1 - self.Ee**2/self.Ex**2 * np.cos(lamb)**2)
return x, y, z
def cart2ell(self, x, y, z):
"""
Panou 2014 15ff.
:param x:
:param y:
:param z:
:return:
"""
c2 = self.ax**2 + self.ay**2 + self.b**2 - x**2 - y**2 - z**2
c1 = (self.ax**2 * self.ay**2 + self.ax**2 * self.b**2 + self.ay**2 * self.b**2 -
(self.ay**2+self.b**2) * x**2 - (self.ax**2 + self.b**2) * y**2 - (self.ax**2 + self.ay**2) * z**2)
c0 = (self.ax**2 * self.ay**2 * self.b**2 - self.ay**2 * self.b**2 * x**2 -
self.ax**2 * self.b**2 * y**2 - self.ax**2 * self.ay**2 * z**2)
p = (c2**2 - 3*c1) / 9
q = (9*c1*c2 - 27*c0 - 2*c2**3) / 54
omega = np.arccos(q / np.sqrt(p**3))
s1 = 2 * np.sqrt(p) * np.cos(omega/3) - c2/3
s2 = 2 * np.sqrt(p) * np.cos(omega/3 - 2*np.pi/3) - c2/3
s3 = 2 * np.sqrt(p) * np.cos(omega/3 - 4*np.pi/3) - c2/3
# print(s1, s2, s3)
beta = np.arctan(np.sqrt((-self.b**2 - s2) / (self.ay**2 + s2)))
lamb = np.arctan(np.sqrt((-self.ay**2 - s3) / (self.ax**2 + s3)))
u = np.sqrt(self.b**2 + s1)
return beta, lamb, u
def cart2geod(self, mode: str, xG, yG, zG, maxIter=30, maxLoa=0.005):
"""
Ligas 2012
:param mode:
:param xG:
:param yG:
:param zG:
:param maxIter:
:param maxLoa:
:return:
"""
rG = np.sqrt(xG**2 + yG**2 + zG**2)
pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64)
E = 1 / self.ax**2
F = 1 / self.ay**2
G = 1 / self.b**2
i = 0
loa = np.inf
while i < maxIter and loa > maxLoa:
if mode == "ligas1":
invJ, fxE = jacobian_Ligas.case1(E, F, G, np.array([xG, yG, zG]), pE)
elif mode == "ligas2":
invJ, fxE = jacobian_Ligas.case2(E, F, G, np.array([xG, yG, zG]), pE)
elif mode == "ligas3":
invJ, fxE = jacobian_Ligas.case3(E, F, G, np.array([xG, yG, zG]), pE)
pEi = pE.reshape(-1, 1) - invJ @ fxE.reshape(-1, 1)
pEi = pEi.reshape(1, -1).flatten()
loa = np.sqrt((pEi[0]-pE[0])**2 + (pEi[1]-pE[1])**2 + (pEi[2]-pE[2])**2)
pE = pEi
i += 1
phi = np.arctan((1-self.ee**2) / (1-self.ex**2) * pE[2] / np.sqrt((1-self.ee**2)**2 * pE[0]**2 + pE[1]**2))
lamb = np.arctan(1/(1-self.ee**2) * pE[1]/pE[0])
h = np.sign(zG-pE[2]) * np.sign(pE[2]) * np.sqrt((pE[0]-xG)**2 + (pE[1]-yG)**2 + (pE[2]-zG)**2)
return phi, lamb, h
def geod2cart(self, phi, lamb, h):
"""
Ligas 2012, 250
:param phi:
:param lamb:
:param h:
:return:
"""
v = self.ax / np.sqrt(1 - self.ex**2*np.sin(phi)**2-self.ee**2*np.cos(phi)**2*np.sin(lamb)**2)
xG = (v + h) * np.cos(phi) * np.cos(lamb)
yG = (v * (1-self.ee**2) + h) * np.cos(phi) * np.sin(lamb)
zG = (v * (1-self.ex**2) + h) * np.sin(phi)
return xG, yG, zG
def para2cart(self, u, v):
"""
Panou, Korakitits 2020, 4
:param u:
:param v:
:return:
"""
x = self.ax * np.cos(u) * np.cos(v)
y = self.ay * np.cos(u) * np.cos(v)
z = self.b * np.sin(u)
def cart2para(self, x, y, z):
"""
Panou, Korakitits 2020, 4
:param x:
:param y:
:param z:
:return:
"""
u_check1 = z*np.sqrt(1 - self.ee**2)
u_check2 = np.sqrt(x**2 * (1-self.ee**2) + y**2) * np.sqrt(1-self.ex**2)
if u_check1 <= u_check2:
u = np.arctan(u_check1 / u_check2)
else:
u = np.pi/2 * np.arctan(u_check2 / u_check1)
v_check1 = y
v_check2 = x*np.sqrt(1-self.ee**2)
if v_check1 <= v_check2:
v = 2 * np.arctan(v_check1 / (v_check2 + np.sqrt(x**2*(1-self.ee**2)+y**2)))
else:
v = np.pi/2 - 2 * np.arctan(v_check2 / (v_check1 + np.sqrt(x**2*(1-self.ee**2)+y**2)))
return u, v
def H(self, x, y, z):
return x**2 + y**2/(1-self.ee**2)**2 + z**2/(1-self.ex**2)**2
if __name__ == "__main__":
ellips = EllipsoidTriaxial.init_name("Eitschberger1978")
carts = ellips.ell2cart(wu.deg2rad(10), wu.deg2rad(30), 6378172)
ells = ellips.cart2ell(carts[0], carts[1], carts[2])
print(aus.gms("beta", ells[0], 3), aus.gms("lambda", ells[1], 3), "u =", ells[2])
ells2 = ellips.cart2ell(5712200, 2663400, 1106000)
carts2 = ellips.ell2cart(ells2[0], ells2[1], ells2[2])
print(aus.xyz(carts2[0], carts2[1], carts2[2], 10))
# stellen = 20
# geod1 = ellips.cart2geod("ligas1", 5712200, 2663400, 1106000)
# print(aus.gms("phi", geod1[0], stellen), aus.gms("lambda", geod1[1], stellen), "h =", geod1[2])
# geod2 = ellips.cart2geod("ligas2", 5712200, 2663400, 1106000)
# print(aus.gms("phi", geod2[0], stellen), aus.gms("lambda", geod2[1], stellen), "h =", geod2[2])
# geod3 = ellips.cart2geod("ligas3", 5712200, 2663400, 1106000)
# print(aus.gms("phi", geod3[0], stellen), aus.gms("lambda", geod3[1], stellen), "h =", geod3[2])
# cart1 = ellips.geod2cart(geod1[0], geod1[1], geod1[2])
# print(aus.xyz(cart1[0], cart1[1], cart1[2], 10))
# cart2 = ellips.geod2cart(geod2[0], geod2[1], geod2[2])
# print(aus.xyz(cart2[0], cart2[1], cart2[2], 10))
# cart3 = ellips.geod2cart(geod3[0], geod3[1], geod3[2])
# print(aus.xyz(cart3[0], cart3[1], cart3[2], 10))
# test_cart = ellips.geod2cart(0.175, 0.444, 100)
# print(aus.xyz(test_cart[0], test_cart[1], test_cart[2], 10))
pass

View File

@@ -1,6 +1,19 @@
import numpy as np
from typing import Tuple
def case1(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
import numpy as np
from numpy.typing import NDArray
def case1(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]:
"""
Aufstellen des Gleichungssystem für den ersten Fall
:param E: Konstante E
:param F: Konstante F
:param G: Konstante G
:param pG: Punkt über dem Ellipsoid
:param pE: Punkt auf dem Ellipsoid
:return: inverse Jacobi-Matrix, Gleichungssystem
"""
j11 = 2 * E * pE[0]
j12 = 2 * F * pE[1]
j13 = 2 * G * pE[2]
@@ -23,7 +36,16 @@ def case1(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
return invJ, fxE
def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
def case2(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]:
"""
Aufstellen des Gleichungssystem für den zweiten Fall
:param E: Konstante E
:param F: Konstante F
:param G: Konstante G
:param pG: Punkt über dem Ellipsoid
:param pE: Punkt auf dem Ellipsoid
:return: inverse Jacobi-Matrix, Gleichungssystem
"""
j11 = 2 * E * pE[0]
j12 = 2 * F * pE[1]
j13 = 2 * G * pE[2]
@@ -35,17 +57,29 @@ def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
j33 = (pE[1] - pG[1]) * G - F * pE[1]
detJ = j11 * j22 * j33 - j21 * j12 * j33 + j21 * j13 * j32
invJ = 1/detJ * np.array([[j22*j33, -(j12*j33-j13*j32), -j13*j22],
[-j21*j33, j11*j33, j13*j21],
[j21*j32, -j11*j32, j11*j22-j12*j21]])
if detJ == 0:
invJ, fxE = case3(E, F, G, pG, pE)
else:
invJ = 1/detJ * np.array([[j22*j33, -(j12*j33-j13*j32), -j13*j22],
[-j21*j33, j11*j33, j13*j21],
[j21*j32, -j11*j32, j11*j22-j12*j21]])
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
(pE[0]-pG[0]) * F*pE[1] - (pE[1]-pG[1]) * E*pE[0],
(pE[1]-pG[1]) * G*pE[2] - (pE[2]-pG[2]) * F*pE[1]])
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
(pE[0]-pG[0]) * F*pE[1] - (pE[1]-pG[1]) * E*pE[0],
(pE[1]-pG[1]) * G*pE[2] - (pE[2]-pG[2]) * F*pE[1]])
return invJ, fxE
def case3(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
def case3(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]:
"""
Aufstellen des Gleichungssystem für den dritten Fall
:param E: Konstante E
:param F: Konstante F
:param G: Konstante G
:param pG: Punkt über dem Ellipsoid
:param pE: Punkt auf dem Ellipsoid
:return: inverse Jacobi-Matrix, Gleichungssystem
"""
j11 = 2 * E * pE[0]
j12 = 2 * F * pE[1]
j13 = 2 * G * pE[2]
@@ -57,13 +91,15 @@ def case3(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
j33 = (pE[1] - pG[1]) * G - F * pE[1]
detJ = -j11 * j23 * j32 - j21 * j12 * j33 + j21 * j13 * j32
if detJ == 0:
invJ, fxE = case2(E, F, G, pG, pE)
else:
invJ = 1/detJ * np.array([[-j23*j32, -(j12*j33-j13*j32), j12*j23],
[-j21*j33, j11*j33, -(j11*j23-j13*j21)],
[j21*j32, -j11*j32, -j12*j21]])
invJ = 1/detJ * np.array([[-j23*j32, -(j12*j33-j13*j32), j12*j23],
[-j21*j33, j11*j33, -(j11*j23-j13*j21)],
[j21*j32, -j11*j32, -j12*j21]])
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
(pE[0]-pG[0]) * G*pE[2] - (pE[2]-pG[2]) * E*pE[0],
(pE[1]-pG[1]) * G*pE[2] - (pE[2]-pG[2]) * F*pE[1]])
fxE = np.array([E*pE[0]**2 + F*pE[1]**2 + G*pE[2]**2 - 1,
(pE[0]-pG[0]) * G*pE[2] - (pE[2]-pG[2]) * E*pE[0],
(pE[1]-pG[1]) * G*pE[2] - (pE[2]-pG[2]) * F*pE[1]])
return invJ, fxE

View File

@@ -0,0 +1,36 @@
from typing import Tuple
import scipy as sp
from ellipsoid_biaxial import EllipsoidBiaxial
from numpy import *
def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0:float, s: float) -> Tuple[float, float, float]:
"""
Berechnung der 1.GHA auf einem Rotationsellipsoid nach Bessel
:param re:
:param phi0:
:param lamb0:
:param alpha0:
:param s:
:return:
"""
psi0 = re.phi2psi(phi0)
clairant = arcsin(cos(psi0) * sin(alpha0))
sigma0 = arcsin(sin(psi0) / cos(clairant))
sqrt_sigma = lambda sigma: sqrt(1 + re.e_ ** 2 * cos(clairant) ** 2 * sin(sigma) ** 2)
int_sqrt_sigma = lambda sigma: sp.integrate.quad(sqrt_sigma, sigma0, sigma)[0]
f_sigma1_i = lambda sigma1_i: (int_sqrt_sigma(sigma1_i) - s / re.b)
sigma1_0 = sigma0 + s / re.a
sigma1 = sp.optimize.newton(f_sigma1_i, sigma1_0)
psi1 = arcsin(cos(clairant) * sin(sigma1))
phi1 = re.psi2phi(psi1)
alpha1 = arcsin(sin(clairant) / cos(psi1))
f_d_lambda = lambda sigma: sin(clairant) * sqrt_sigma(sigma) / (1 - cos(clairant) ** 2 * sin(sigma) ** 2)
d_lambda = sqrt(1-re.e**2) * sp.integrate.quad(f_d_lambda, sigma0, sigma1)[0]
lamb1 = lamb0 + d_lambda
return phi1, lamb1, alpha1

View File

@@ -0,0 +1,101 @@
from typing import Tuple
from ellipsoid_biaxial import EllipsoidBiaxial
from numpy import arctan, cos, sin, sqrt, tan
def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0: float, s: float, eps: float = 1e-12) -> Tuple[float, float, float]:
"""
Berechnung der 1. Geodätische Hauptaufgabe nach Gauß´schen Mittelbreitenformeln
:param re: Klasse Ellipsoid
:param phi0: Breite Punkt 0
:param lamb0: Länge Punkt 0
:param alpha0: Azimut der geodätischen Linie in Punkt 1
:param s: Strecke zu Punkt 1
:param eps: Abbruchkriterium für Winkelgrößen
:return: Breite, Länge, Azimut von Punkt 21
"""
t = lambda phi: tan(phi)
eta = lambda phi: sqrt(re.e_ ** 2 * cos(phi) ** 2)
F1 = lambda alpha, phi, s: 1 + (2 + 3 * t(phi) ** 2 + 2 * eta(phi) ** 2) / (24 * re.N(phi) ** 2) * sin(alpha) ** 2 * s ** 2 \
+ (t(phi)**2 - 1) * eta(phi) ** 2 / (8 * re.N(phi) ** 2) * cos(alpha) ** 2 * s ** 2
F2 = lambda alpha, phi, s: 1 + t(phi) ** 2 / (24 * re.N(phi) ** 2) * sin(alpha) ** 2 * s ** 2 \
- (1 + eta(phi)**2 - 9 * eta(phi)**2 * t(phi)**2) / (24 * re.N(phi) ** 2) * cos(alpha) ** 2 * s ** 2
F3 = lambda alpha, phi, s: 1 + (1 + eta(phi) ** 2) / (12 * re.N(phi) ** 2) * sin(alpha) ** 2 * s ** 2 \
+ (3 + 8 * eta(phi)**2) / (24 * re.N(phi) ** 2) * cos(alpha) ** 2 * s ** 2
phi1_i = lambda alpha, phi: phi0 + cos(alpha) / re.M(phi) * s * F1(alpha, phi, s)
lamb1_i = lambda alpha, phi: lamb0 + sin(alpha) / (re.N(phi) * cos(phi)) * s * F2(alpha, phi, s)
alpha1_i = lambda alpha, phi: alpha0 + sin(alpha) * tan(phi) / re.N(phi) * s * F3(alpha, phi, s)
phi_m_i = lambda phi1: (phi0 + phi1) / 2
alpha_m_i = lambda alpha1: (alpha0 + alpha1) / 2
phi_m = []
alpha_m = []
phi1 = []
lamb1 = []
alpha1 = []
# 1. Näherung für P1
phi1.append(phi0 + cos(alpha0) / re.M(phi0) * s)
lamb1.append(lamb0 + sin(alpha0) / (re.N(phi0) * cos(phi0)) * s)
alpha1.append(alpha0 + sin(alpha0) * tan(phi0) / re.N(phi0) * s)
while True:
# Berechnug P_m durch Mittelbildung
phi_m.append(phi_m_i(phi1[-1]))
alpha_m.append(alpha_m_i(alpha1[-1]))
# Berechnung P1
phi1.append(phi1_i(alpha_m[-1], phi_m[-1]))
lamb1.append(lamb1_i(alpha_m[-1], phi_m[-1]))
alpha1.append(alpha1_i(alpha_m[-1], phi_m[-1]))
# Abbruchkriterium
if abs(phi1[-2] - phi1[-1]) < eps and \
abs(lamb1[-2] - lamb1[-1]) < eps and \
abs(alpha1[-2] - alpha1[-1]) < eps:
break
return phi1[-1], lamb1[-1], alpha1[-1]
def gha2(re: EllipsoidBiaxial, phi0: float, lamb0: float, phi1: float, lamb1: float):
"""
Berechnung der 2. Geodätische Hauptaufgabe nach Gauß´schen Mittelbreitenformeln
:param re: Klasse Ellipsoid
:param phi0: Breite Punkt 1
:param lamb0: Länge Punkt 1
:param phi1: Breite Punkt 2
:param lamb1: Länge Punkt 2
:return: Länge der geodätischen Linie, Azimut von P1 nach P2, Azimut von P2 nach P1
"""
t = lambda phi: tan(phi)
eta = lambda phi: sqrt(re.e_ ** 2 * cos(phi) ** 2)
phi_0 = (phi0 + phi1) / 2
d_phi = phi1 - phi0
d_lambda = lamb1 - lamb0
f_A = lambda phi: (2 + 3*t(phi)**2 + 2*eta(phi)**2) / 24
f_B = lambda phi: ((t(phi)**2 - 1) * eta(phi)**2) / 8
# f_C = lambda phi: (t(phi)**2) / 24
f_D = lambda phi: (1 + eta(phi)**2 - 9 * eta(phi)**2 * t(phi)**2) / 24
F1 = lambda phi: d_phi * re.M(phi) * (1 - f_A(phi) * d_lambda ** 2 * cos(phi) ** 2 -
f_B(phi) * d_phi ** 2 / re.V(phi) ** 4)
F2 = lambda phi: d_lambda * re.N(phi) * cos(phi) * (1 - 1 / 24 * d_lambda ** 2 * sin(phi) ** 2 +
f_D(phi) * d_phi ** 2 / re.V(phi) ** 4)
s = sqrt(F1(phi_0) ** 2 + F2(phi_0) ** 2)
A_0 = arctan(F2(phi_0) / F1(phi_0))
d_A = d_lambda * sin(phi_0) * (1 + (1 + eta(phi_0) ** 2) / 12 * s ** 2 * sin(A_0) ** 2 / re.N(phi_0) ** 2 +
(3 + 8 * eta(phi_0) ** 2) / 24 * s ** 2 * cos(A_0) ** 2 / re.N(phi_0) ** 2)
alpha0 = A_0 - d_A / 2
alpha1 = A_0 + d_A / 2
return alpha0, alpha1, s

View File

@@ -0,0 +1,33 @@
from typing import Tuple
import numpy as np
from ellipsoid_biaxial import EllipsoidBiaxial
from numpy import cos, sin, tan
from numpy.typing import NDArray
import runge_kutta as rk
def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0: float, s: float, num: int) -> Tuple[float, float, float]:
"""
Berechnung der 1. GHA auf einem Rotationsellipsoid mittels RK4
:param re:
:param phi0:
:param lamb0:
:param alpha0:
:param s:
:param num:
:return:
"""
def buildODE():
def ODE(s: float, v: NDArray):
phi, lam, A = v
V = re.V(phi)
dphi = cos(A) * V ** 3 / re.c
dlam = sin(A) * V / (cos(phi) * re.c)
dA = tan(phi) * sin(A) * V / re.c
return np.array([dphi, dlam, dA])
return ODE
_, funktionswerte = rk.rk4(buildODE(), 0, np.array([phi0, lamb0, alpha0]), s, num)
return funktionswerte[-1][0], funktionswerte[-1][1], funktionswerte[-1][2]

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,101 @@
{
"cells": [
{
"metadata": {},
"cell_type": "code",
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
],
"id": "a78faf7f4883772f",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"%reload_ext autoreload\n",
"%autoreload 2\n",
"import numpy as np\n",
"\n",
"import winkelumrechnungen as wu\n",
"from GHA_triaxial.utils import alpha_ell2para, alpha_para2ell\n",
"from ellipsoid_triaxial import EllipsoidTriaxial"
],
"id": "46aa84a937fea491",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"ell = EllipsoidTriaxial.init_name(\"KarneyTest2024\")\n",
"diffs = []\n",
"for beta_deg in range(-90, 91, 15):\n",
" for lamb_deg in range(-180, 180, 15):\n",
" for alpha_deg in range(0, 360, 15):\n",
" beta = wu.deg2rad(beta_deg)\n",
" lamb = wu.deg2rad(lamb_deg)\n",
" u, v = ell.ell2para(beta, lamb)\n",
" alpha = wu.deg2rad(alpha_deg)\n",
"\n",
" alpha_para_1, *_ = alpha_ell2para(ell, beta, lamb, alpha)\n",
" alpha_ell_1, *_ = alpha_para2ell(ell, u, v, alpha_para_1)\n",
" diff_1 = wu.deg2rad(abs(alpha_ell_1 - alpha))/3600\n",
"\n",
" alpha_ell_2, *_ = alpha_para2ell(ell, u, v, alpha)\n",
" alpha_para_2, *_ = alpha_ell2para(ell, beta, lamb, alpha_ell_2)\n",
" diff_2 = wu.deg2rad(abs(alpha_para_2 - alpha))/3600\n",
"\n",
" diffs.append((beta_deg, lamb_deg, alpha_deg, diff_1, diff_2))\n",
"diffs = np.array(diffs)"
],
"id": "82fc6cbbe7d5abcb",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"i_max_ell = np.argmax(diffs[:, 3])\n",
"max_ell = diffs[i_max_ell, 3]\n",
"point_max_ell = diffs[i_max_ell, :3]\n",
"\n",
"i_max_para = np.argmax(diffs[:, 4])\n",
"max_para = diffs[i_max_para, 4]\n",
"point_max_para = diffs[i_max_para, :4]\n",
"\n",
"print(f'Für elliptisches Alpha = {point_max_ell[2]}° und beta = {point_max_ell[0]}°, lamb = {point_max_ell[1]}°: diff = {max_ell}\"')\n",
"print(f'Für parametrisches Alpha = {point_max_para[2]}° und beta = {point_max_para[0]}°, lamb = {point_max_para[1]}°: diff = {max_ell}\"')\n",
"pass"
],
"id": "97b5b8c9ca5377ab",
"outputs": [],
"execution_count": null
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,246 @@
{
"cells": [
{
"metadata": {},
"cell_type": "code",
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
],
"id": "746c5b9e4c0226e7",
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "initial_id",
"metadata": {
"collapsed": true
},
"source": [
"%reload_ext autoreload\n",
"%autoreload 2\n",
"from itertools import product\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import plotly.graph_objects as go\n",
"\n",
"import winkelumrechnungen as wu\n",
"from ellipsoid_triaxial import EllipsoidTriaxial"
],
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"# ellips = \"KarneyTest2024\"\n",
"ellips = \"BursaSima1980\"\n",
"# ellips = \"Fiction\"\n",
"ell: EllipsoidTriaxial = EllipsoidTriaxial.init_name(ellips)"
],
"id": "7b05ca89fcd7b331",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"def deg_range(start, stop, step):\n",
" return [float(x) for x in range(start, stop + step, step)]\n",
"\n",
"def asymptotic_range(start, direction=\"up\", max_decimals=4):\n",
" values = []\n",
" for d in range(0, max_decimals + 1):\n",
" step = 10 ** -d\n",
" if direction == \"up\":\n",
" values.append(start + (1 - step))\n",
" else:\n",
" values.append(start - (1 - step))\n",
" return values"
],
"id": "61a6b14fef0180ad",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"beta_5_85 = deg_range(5, 85, 5)\n",
"lambda_5_85 = deg_range(5, 85, 5)\n",
"beta_5_90 = deg_range(5, 90, 5)\n",
"lambda_5_90 = deg_range(5, 90, 5)\n",
"beta_0_90 = deg_range(0, 90, 5)\n",
"lambda_0_90 = deg_range(0, 90, 5)\n",
"beta_90 = [90.0]\n",
"lambda_90 = [90.0]\n",
"beta_0 = [0.0]\n",
"lambda_0 = [0.0]\n",
"beta_asym_89 = asymptotic_range(89.0, direction=\"up\")\n",
"lambda_asym_0 = asymptotic_range(1.0, direction=\"down\")"
],
"id": "f7184980a4b930b7",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"groups = {\n",
" 1: list(product(beta_5_85, lambda_5_85)),\n",
" 2: list(product(beta_0, lambda_0_90)),\n",
" 3: list(product(beta_5_85, lambda_0)),\n",
" 4: list(product(beta_90, lambda_5_90)),\n",
" 5: list(product(beta_asym_89, lambda_asym_0)),\n",
" 6: list(product(beta_5_85, lambda_90)),\n",
" 7: list(product(lambda_asym_0, lambda_0_90)),\n",
" 8: list(product(beta_0_90, lambda_asym_0)),\n",
" 9: list(product(beta_asym_89, lambda_0_90)),\n",
" 10: list(product(beta_0_90, beta_asym_89)),\n",
"}"
],
"id": "cea9fd9cce6a4fd1",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"for nr, points in groups.items():\n",
" points_cart = []\n",
" for point in points:\n",
" beta, lamb = point\n",
" cart = ell.ell2cart(wu.deg2rad(beta), wu.deg2rad(lamb))\n",
" points_cart.append(cart)\n",
" groups[nr] = points_cart"
],
"id": "17a6a130782a89ce",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"results = {}\n",
"\n",
"for nr, points in groups.items():\n",
" group_results = {\"ell\": [],\n",
" \"para\": [],\n",
" \"geod\": []}\n",
" for point in points:\n",
" elli = ell.cart2ell(point)\n",
" cart_elli = ell.ell2cart(elli[0], elli[1])\n",
" group_results[\"ell\"].append(np.linalg.norm(point - cart_elli, axis=-1))\n",
"\n",
" para = ell.cart2para(point)\n",
" cart_para = ell.para2cart(para[0], para[1])\n",
" group_results[\"para\"].append(np.linalg.norm(point - cart_para, axis=-1))\n",
"\n",
" geod = ell.cart2geod(point, \"ligas3\")\n",
" cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])\n",
" group_results[\"geod\"].append(np.linalg.norm(point - cart_geod, axis=-1))\n",
"\n",
" group_results[\"ell\"] = np.array(group_results[\"ell\"])\n",
" group_results[\"para\"] = np.array(group_results[\"para\"])\n",
" group_results[\"geod\"] = np.array(group_results[\"geod\"])\n",
" results[nr] = group_results"
],
"id": "c3298ea233bca274",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"# with open(f\"conversion_results_{ellips}.pkl\", \"wb\") as f:\n",
"# pickle.dump(results, f)"
],
"id": "e1285860be416ad3",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"# with open(f\"conversion_results_{ellips}.pkl\", \"rb\") as f:\n",
"# results = pickle.load(f)"
],
"id": "d26720e34595ccbc",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"df = pd.DataFrame({\n",
" \"Gruppe\": [nr for nr in results.keys()],\n",
" \"max_Δr_ell\": [f\"{max(result[\"ell\"]):.3g}\" for result in results.values()],\n",
" \"max_Δr_para\": [f\"{max(result[\"para\"]):.3g}\" for result in results.values()],\n",
" \"max_Δr_geod\": [f\"{max(result[\"geod\"]):.3g}\" for result in results.values()]\n",
"})"
],
"id": "4e2e55e4699ec81e",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": [
"fig = go.Figure(data=[go.Table(\n",
" header=dict(\n",
" values=list(df.columns),\n",
" fill_color=\"lightgrey\",\n",
" align=\"left\"\n",
" ),\n",
" cells=dict(\n",
" values=[df[col] for col in df.columns],\n",
" align=\"left\"\n",
" )\n",
")])\n",
"fig.update_layout(\n",
" template=\"simple_white\",\n",
" width=650,\n",
" height=len(groups)*20+80,\n",
" margin=dict(l=20, r=20, t=20, b=20))\n",
"\n",
"fig.show()\n",
"# fig.write_image(f\"conversion_results_{ellips}.png\", width=650, height=len(groups)*20+80, scale=2)"
],
"id": "c2fa82afef2d6e0e",
"outputs": [],
"execution_count": null
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

View File

@@ -0,0 +1,126 @@
from typing import Tuple
import numpy as np
from numpy import arctan2, cos, sin, sqrt
from numpy.typing import NDArray
import winkelumrechnungen as wu
class EllipsoidBiaxial:
"""
Klasse für Rotationsellipdoide
"""
def __init__(self, a: float, b: float):
self.a = a
self.b = b
self.c = a ** 2 / b
self.e = sqrt(a ** 2 - b ** 2) / a
self.e_ = sqrt(a ** 2 - b ** 2) / b
@classmethod
def init_name(cls, name: str) -> EllipsoidBiaxial:
"""
Erstellen eines Rotationsellipdoids nach Namen
:param name: Name des Rotationsellipsoids
:return: Rotationsellipsoid
"""
if name == "Bessel":
a = 6377397.15508
b = 6356078.96290
return cls(a, b)
elif name == "Hayford":
a = 6378388
f = 1/297
b = a - a * f
return cls(a, b)
elif name == "Krassowski":
a = 6378245
f = 298.3
b = a - a * f
return cls(a, b)
elif name == "WGS84":
a = 6378137
f = 298.257223563
b = a - a * f
return cls(a, b)
else:
raise Exception(f"EllipsoidBiaxial.init_name: Name {name} unbekannt")
@classmethod
def init_af(cls, a: float, f: float) -> EllipsoidBiaxial:
"""
Erstellen eines Rotationsellipdoids aus der großen Halbachse und der Abplattung
:param a: große Halbachse
:param f: großen Halbachse
:return: Rotationsellipsoid
"""
b = a - a * f
return cls(a, b)
V = lambda self, phi: sqrt(1 + self.e_ ** 2 * cos(phi) ** 2)
M = lambda self, phi: self.c / self.V(phi) ** 3
N = lambda self, phi: self.c / self.V(phi)
beta2psi = lambda self, beta: arctan2(self.a * sin(beta), self.b * cos(beta))
beta2phi = lambda self, beta: arctan2(self.a ** 2 * sin(beta), self.b ** 2 * cos(beta))
psi2beta = lambda self, psi: arctan2(self.b * sin(psi), self.a * cos(psi))
psi2phi = lambda self, psi: arctan2(self.a * sin(psi), self.b * cos(psi))
phi2beta = lambda self, phi: arctan2(self.b**2 * sin(phi), self.a**2 * cos(phi))
phi2psi = lambda self, phi: arctan2(self.b * sin(phi), self.a * cos(phi))
phi2p = lambda self, phi: self.N(phi) * cos(phi)
def bi_cart2ell(self, point: NDArray, Eh: float = 0.001, Ephi: float = wu.gms2rad([0, 0, 0.001])) -> Tuple[float, float, float]:
"""
Umrechnung von kartesischen in ellipsoidische Koordinaten auf einem Rotationsellipsoid
# TODO: Quelle
:param point: Punkt in kartesischen Koordinaten
:param Eh: Grenzwert für die Höhe
:param Ephi: Grenzwert für die Breite
:return: ellipsoidische Breite, Länge, geodätische Höhe
"""
x, y, z = point
lamb = arctan2(y, x)
p = sqrt(x**2+y**2)
phi_null = arctan2(z, p*(1 - self.e**2))
hi = [0]
phii = [phi_null]
i = 0
while True:
N = self.a / sqrt(1 - self.e**2 * sin(phii[i])**2)
h = p / cos(phii[i]) - N
phi = arctan2(z, p * (1-(self.e**2*N) / (N+h)))
hi.append(h)
phii.append(phi)
dh = abs(hi[i]-h)
dphi = abs(phii[i]-phi)
i += 1
if dh < Eh:
if dphi < Ephi:
break
return phi, lamb, h
def bi_ell2cart(self, phi: float, lamb: float, h: float) -> NDArray:
"""
Umrechnung von ellipsoidischen in kartesische Koordinaten auf einem Rotationsellipsoid
# TODO: Quelle
:param phi: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:param h: geodätische Höhe
:return: Punkt in kartesischen Koordinaten
"""
W = sqrt(1 - self.e**2 * sin(phi)**2)
N = self.a / W
x = (N+h) * cos(phi) * cos(lamb)
y = (N+h) * cos(phi) * sin(lamb)
z = (N * (1-self.e**2) + h) * sin(phi)
return np.array([x, y, z])

100
nicht abgeben/kugel.py Normal file
View File

@@ -0,0 +1,100 @@
from typing import Tuple
import numpy as np
from numpy import arccos, arcsin, arctan2, cos, pi, sin, sqrt
from numpy.typing import NDArray
import winkelumrechnungen as wu
def cart2sph(point: NDArray) -> Tuple[float, float, float]:
"""
Umrechnung von kartesischen in sphärische Koordinaten
# TODO: Quelle
:param point: Punkt in kartesischen Koordinaten
:return: Radius, Breite, Länge
"""
x, y, z = point
r = sqrt(x**2 + y**2 + z**2)
phi = arctan2(z, sqrt(x**2 + y**2))
lamb = arctan2(y, x)
return r, phi, lamb
def sph2cart(r: float, phi: float, lamb: float) -> NDArray:
"""
Umrechnung von sphärischen in kartesische Koordinaten
# TODO: Quelle
:param r: Radius
:param phi: Breite
:param lamb: Länge
:return: Punkt in kartesischen Koordinaten
"""
x = r * cos(phi) * cos(lamb)
y = r * cos(phi) * sin(lamb)
z = r * sin(phi)
return np.array([x, y, z])
def gha1(R: float, phi0: float, lamb0: float, s: float, alpha0: float) -> Tuple[float, float]:
"""
Berechnung der 1. GHA auf der Kugel
# TODO: Quelle
:param R: Radius
:param phi0: Breite des Startpunktes
:param lamb0: Länge des Startpunktes
:param s: Strecke
:param alpha0: Azimut
:return: Breite, Länge des Zielpunktes
"""
s_ = s / R
lamb1 = lamb0 + arctan2(sin(s_) * sin(alpha0),
cos(phi0) * cos(s_) - sin(phi0) * sin(s_) * cos(alpha0))
phi1 = arcsin(sin(phi0) * cos(s_) + cos(phi0) * sin(s_) * cos(alpha0))
return phi1, lamb1
def gha2(R: float, phi0: float, lamb0: float, phi1: float, lamb1: float) -> Tuple[float, float, float]:
"""
Berechnung der 2. GHA auf der Kugel
# TODO: Quelle
:param R: Radius
:param phi0: Breite des Startpunktes
:param lamb0: Länge des Startpunktes
:param phi1: Breite des Zielpunktes
:param lamb1: Länge des Zielpunktes
:return: Azimut im Startpunkt, Azimut im Zielpunkt, Strecke
"""
s_ = arccos(sin(phi0) * sin(phi1) + cos(phi0) * cos(phi1) * cos(lamb1 - lamb0))
s = R * s_
alpha0 = arctan2(cos(phi1) * sin(lamb1 - lamb0),
cos(phi0) * sin(phi1) - sin(phi0) * cos(phi1) * cos(lamb1 - lamb0))
alpha1 = arctan2(-cos(phi0) * sin(lamb1 - lamb0),
cos(phi1) * sin(phi0) - sin(phi1) * cos(phi0) * cos(lamb1 - lamb0))
if alpha1 < 0:
alpha1 += 2 * pi
return alpha0, alpha1, s
if __name__ == "__main__":
R = 6378815.904 # Bern
phi0 = wu.deg2rad(10)
lamb0 = wu.deg2rad(40)
alpha0 = wu.deg2rad(100)
s = 10000
phi1, lamb1 = gha1(R, phi0, lamb0, s, alpha0)
alpha0_g, alpha1, s_g = gha2(R, phi0, lamb0, phi1, lamb1)
phi1 = wu.rad2deg(phi1)
lamb1 = wu.rad2deg(lamb1)
alpha0_g = wu.rad2deg(alpha0_g)
alpha1 = wu.rad2deg(alpha1)
pass

3654
nicht abgeben/plots.ipynb Normal file

File diff suppressed because one or more lines are too long

8
nicht abgeben/test.py Normal file
View File

@@ -0,0 +1,8 @@
import numpy as np
import ellipsoid_triaxial
ell = ellipsoid_triaxial.EllipsoidTriaxial.init_name("KarneyTest2024")
cart = ell.para2cart(0, np.pi/2)
print(cart)

View File

@@ -1,55 +0,0 @@
import winkelumrechnungen as wu
def polyapp_tscheby_hayford(s: float) -> float:
"""
Berechnung der ellipsoidisch geodätischen Breite.
Polynomapproximation mittels Tschebyscheff-Polynomen.
Auf dem Hayford-Ellipsoid.
:param s: Strecke auf einer Ellipse vom Äquator aus
:type s: float
:return: ellipsoidisch geodätische Breite
:rtype: float
"""
c0 = 1
c1 = -0.00837809325
c2 = 0.00428127367
c3 = -0.00114523986
c4 = 0.00023219707
c5 = -0.00004421222
c6 = 0.00000570244
alpha = wu.gms2rad([0, 0, 325643.97199])
s90 = 10002288.2990
xi = s/s90
phi = alpha * xi * (c0*xi**(2*0) + c1*xi**(2*1) + c2*xi**(2*2) + c3*xi**(2*3) +
c4*xi**(2*4) + c5*xi**(2*5) + c6*xi**(2*6))
return phi
def polyapp_tscheby_bessel(s: float) -> float:
"""
Berechnung der ellipsoidisch geodätischen Breite.
Polynomapproximation mittels Tschebyscheff-Polynomen.
Auf dem Bessel-Ellipsoid.
:param s: Strecke auf einer Ellipse vom Äquator aus
:type s: float
:return: ellipsoidisch geodätische Breite
:rtype: float
"""
c0 = 1
c1 = -0.00831729565
c2 = 0.00424914906
c3 = -0.00113566119
c4 = 0.00022976983
c5 = -0.00004363980
c6 = 0.00000562025
alpha = wu.gms2rad([0, 0, 325632.08677])
s90 = 10000855.7644
xi = s/s90
phi = alpha * xi * (c0*xi**(2*0) + c1*xi**(2*1) + c2*xi**(2*2) + c3*xi**(2*3) +
c4*xi**(2*4) + c5*xi**(2*5) + c6*xi**(2*6))
return phi

7
requirements.txt Normal file
View File

@@ -0,0 +1,7 @@
numpy~=2.3.4
plotly~=6.4.0
pandas~=2.3.3
scipy~=1.16.3
dash-bootstrap-components~=2.0.4
dash~=4.0.0
matplotlib~=3.10.7

155
runge_kutta.py Normal file
View File

@@ -0,0 +1,155 @@
from typing import Callable
import numpy as np
from numpy.typing import NDArray
def rk4(ode: Callable, t0: float, v0: NDArray, weite: float, schritte: int, fein: bool = False) -> tuple[list, list]:
"""
Standard Runge-Kutta Verfahren 4. Ordnung
:param ode: ODE-System als Funktion
:param t0: Startwert der unabhängigen Variable
:param v0: Startwerte
:param weite: Integrationsweite
:param schritte: Schrittzahl
:param fein: Fein-Rechnung?
:return: Variable und Funktionswerte an jedem Stützpunkt
"""
h = weite/schritte
t_list = [t0]
werte = [v0]
for _ in range(schritte):
t = t_list[-1]
v = werte[-1]
if not fein:
v_next = rk4_step(ode, t, v, h)
else:
v_grob = rk4_step(ode, t, v, h)
v_half = rk4_step(ode, t, v, 0.5 * h)
v_fein = rk4_step(ode, t + 0.5 * h, v_half, 0.5 * h)
v_next = v_fein + (v_fein - v_grob) / 15.0
t_list.append(t + h)
werte.append(v_next)
return t_list, werte
def rk4_step(ode: Callable, t: float, v: NDArray, h: float) -> NDArray:
"""
Ein Schritt des Runge-Kutta Verfahrens 4. Ordnung
:param ode: ODE-System als Funktion
:param t: unabhängige Variable
:param v: abhängige Variablen
:param h: Schrittweite
:return: abhängige Variablen nach einem Schritt
"""
k1 = ode(t, v)
k2 = ode(t + 0.5 * h, v + 0.5 * h * k1)
k3 = ode(t + 0.5 * h, v + 0.5 * h * k2)
k4 = ode(t + h, v + h * k3)
return v + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
def rk4_end(ode: Callable, t0: float, v0: NDArray, weite: float, schritte: int, fein: bool = False):
"""
Standard Runge-Kutta Verfahren 4. Ordnung, nur Ausgabe der letzten Variablenwerte
:param ode: ODE-System als Funktion
:param t0: Startwert der unabhängigen Variable
:param v0: Startwerte
:param weite: Integrationsweite
:param schritte: Schrittzahl
:param fein: Fein-Rechnung?
:return: Variable und Funktionswerte am letzten Stützpunkt
"""
h = weite / schritte
t = float(t0)
v = np.array(v0, dtype=float, copy=True)
for _ in range(schritte):
if not fein:
v_next = rk4_step(ode, t, v, h)
else:
v_grob = rk4_step(ode, t, v, h)
v_half = rk4_step(ode, t, v, 0.5 * h)
v_fein = rk4_step(ode, t + 0.5 * h, v_half, 0.5 * h)
v_next = v_fein + (v_fein - v_grob) / 15.0
t += h
v = v_next
return t, v
# RK4 mit Simpson bzw. Trapez
def rk4_integral(ode: Callable, t0: float, v0: NDArray, weite: float, schritte: int, integrand_at: Callable, fein: bool = False, simpson: bool = True):
"""
Runge-Kutta Verfahren 4. Ordnung mit Simpson bzw. Trapez
:param ode: ODE-System als Funktion
:param t0: Startwert der unabhängigen Variable
:param v0: Startwerte
:param weite: Integrationsweite
:param integrand_at: Funktion
:param schritte: Schrittzahl
:param fein: Fein-Rechnung?
:param simpson: Simpson? Wenn nein, dann Trapez
:return: Variable und Funktionswerte am letzten Stützpunkt
"""
h = weite / schritte
habs = abs(h)
t = float(t0)
v = np.array(v0, dtype=float, copy=True)
if simpson and (schritte % 2 == 0):
f0 = float(integrand_at(t, v))
odd_sum = 0.0
even_sum = 0.0
fN = None
for i in range(1, schritte + 1):
if not fein:
v_next = rk4_step(ode, t, v, h)
else:
v_grob = rk4_step(ode, t, v, h)
v_half = rk4_step(ode, t, v, 0.5 * h)
v_fein = rk4_step(ode, t + 0.5 * h, v_half, 0.5 * h)
v_next = v_fein + (v_fein - v_grob) / 15.0
t += h
v = v_next
fi = float(integrand_at(t, v))
if i == schritte:
fN = fi
elif i % 2 == 1:
odd_sum += fi
else:
even_sum += fi
S = f0 + fN + 4.0 * odd_sum + 2.0 * even_sum
s = (habs / 3.0) * S
return t, v, s
f_prev = float(integrand_at(t, v))
acc = 0.0
for _ in range(schritte):
if not fein:
v_next = rk4_step(ode, t, v, h)
else:
v_grob = rk4_step(ode, t, v, h)
v_half = rk4_step(ode, t, v, 0.5 * h)
v_fein = rk4_step(ode, t + 0.5 * h, v_half, 0.5 * h)
v_next = v_fein + (v_fein - v_grob) / 15.0
t += h
v = v_next
f_cur = float(integrand_at(t, v))
acc += 0.5 * (f_prev + f_cur)
f_prev = f_cur
s = habs * acc
return t, v, s

View File

@@ -1,78 +0,0 @@
import numpy as np
def reihenentwicklung(es: float, c: float, phi: float) -> float:
"""
Berechnung der Strecke auf einer Ellipse.
Reihenentwicklung.
:param es: zweite numerische Exzentrizität
:type es: float
:param c: Polkrümmungshalbmesser
:type c: float
:param phi: ellipsoidisch geodästische Breite in Radiant
:type phi: float
:return: Strecke auf einer Ellipse vom Äquator aus
:rtype: float
"""
Ass = 1 - 3/4*es**2 + 45/64*es**4 - 175/256*es**6 + 11025/16384*es**8
Bss = - 3/4*es**2 + 15/16*es**4 - 525/512*es**6 + 2205/2048*es**8
Css = 15/64*es**4 - 105/256*es**6 + 2205/4096*es**8
Dss = - 35/512*es**6 + 315/2048*es**8
print(f"A'' = {round(Ass, 10):.10f}\nB'' = {round(Bss, 10):.10f}\nC'' = {round(Css, 10):.10f}\nD'' = {round(Dss, 10):.10f}")
s = c * (Ass*phi + 1/2*Bss * np.sin(2*phi) + 1/4*Css * np.sin(4*phi) + 1/6*Dss * np.sin(6*phi))
return s
def polyapp_tscheby_hayford(phi: float) -> float:
"""
Berechnung der Strecke auf einer Ellipse.
Polynomapproximation mittels Tschebyscheff-Polynomen.
Auf dem Hayford-Ellipsoid.
:param phi: ellipsoidisch geodästische Breite in Radiant
:type phi: float
:return: Strecke auf einer Ellipse vom Äquator aus
:rtype: float
"""
c1s = 0.00829376218
c2s = -0.00398963425
c3s = 0.00084200710
c4s = -0.0000648906
c5s = -0.00001075680
c6s = 0.00000396474
c7s = -0.00000046347
alpha = 9951793.0123
xi = 2 / np.pi * phi
xis = xi ^ 2
s = alpha * xi * (1 + c1s * xis + c2s * xis**2 + c3s * xis**3
+ c4s * xis**4 + c5s * xis**5 + c6s * xis**6 + c7s * xis**7)
return s
def polyapp_tscheby_bessel(phi: float) -> float:
"""
Berechnung der Strecke auf einer Ellipse.
Polynomapproximation mittels Tschebyscheff-Polynomen.
Auf dem Bessel-Ellipsoid.
:param phi: ellipsoidisch geodästische Breite in Radiant
:type phi: float
:return: Strecke auf einer Ellipse vom Äquator aus
:rtype: float
"""
c1s = 0.00823417717
c2s = -0.00396170744
c3s = 0.00083680249
c4s = -0.00006488462
c5s = -0.00001053242
c6s = 0.00000390854
c7s = -0.00000045768
alpha = 9950730.8876
xi = 2 / np.pi * phi
xis = xi ** 2
s = alpha * xi * (1 + c1s * xis + c2s * xis**2 + c3s * xis**3
+ c4s * xis**4 + c5s * xis**5 + c6s * xis**6 + c7s * xis**7)
return s

29
test.py
View File

@@ -1,29 +0,0 @@
import numpy as np
from scipy.special import factorial as fact
from math import comb
J = np.array([
[2, 3, 0],
[0, 3, 0],
[6, 0, 4]
])
xi = np.array([1, 2, 3])
xi_col = xi.reshape(-1, 1)
print(xi_col)
xi_row = xi_col.reshape(1, -1).flatten()
print(xi_row)
# Spaltenvektor-Variante
res_col = xi[:, None] - J @ xi[:, None]
# Zeilenvektor-Variante
res_row = xi[None, :] - xi[None, :] @ J
print("Spaltenvektor:")
print(res_col[0,0])
print("Zeilenvektor:")
print(res_row)
t = 5
l = 2
print(fact(t+1-l) / (fact(t+1-l) * fact(l-1)), comb(l-1, t+1-l))

54
utils_angle.py Normal file
View File

@@ -0,0 +1,54 @@
import numpy as np
import winkelumrechnungen as wu
def arccot(x: float) -> float:
"""
Berechnung von arccot eines Winkels
:param x: Winkel
:return: arccot(Winkel)
"""
return np.arctan2(1.0, x)
def cot(x: float) -> float:
"""
Berechnung von cot eines Winkels
:param x: Winkel
:return: cot(Winkel)
"""
return np.cos(x) / np.sin(x)
def wrap_mpi_pi(x: float) -> float:
"""
Wrap eines Winkels in den Wertebereich [-π, π)
:param x: Winkel
:return: Winkel in [-π, π)
"""
return (x + np.pi) % (2 * np.pi) - np.pi
def wrap_mhalfpi_halfpi(x: float) -> float:
"""
Wrap eines Winkels in den Wertebereich [-π/2, π/2)
:param x: Winkel
:return: Winkel in [-π/2, π/2)
"""
return (x + np.pi / 2) % np.pi - np.pi / 2
def wrap_0_2pi(x: float) -> float:
"""
Wrap eines Winkels in den Wertebereich [0, 2π)
:param x: Winkel
:return: Winkel in [0, 2π)
"""
return x % (2 * np.pi)
if __name__ == "__main__":
print(wu.rad2deg(wrap_mhalfpi_halfpi(wu.deg2rad(181))))
print(wu.rad2deg(wrap_0_2pi(wu.deg2rad(181))))
print(wu.rad2deg(wrap_mpi_pi(wu.deg2rad(181))))

View File

@@ -1,4 +1,5 @@
from numpy import *
import numpy as np
def deg2gms(deg: float) -> list:
@@ -9,14 +10,11 @@ def deg2gms(deg: float) -> list:
:return: Winkel in Grad-Minuten-Sekunden
:rtype: list
"""
gra = deg // 1
min = gra % 1
gra = gra // 1
min *= 60
sek = min % 1
min = min // 1
sek *= 60
return [gra, min, sek]
gra = int(deg)
minu_f = (deg - gra) * 60
minu = int(minu_f)
sek = (minu_f - minu) * 60
return [gra, minu, sek]
def deg2gra(deg: float) -> float:
@@ -30,13 +28,13 @@ def deg2gra(deg: float) -> float:
return deg * 10/9
def deg2rad(deg: float) -> float:
def deg2rad(deg: float | np.ndarray) -> float | np.ndarray:
"""
Umrechnung von Grad in Radiant
:param deg: Winkel in Grad
:type deg: float
:type deg: float or np.ndarray
:return: Winkel in Radiant
:rtype: float
:rtype: float or np.ndarray
"""
return deg * pi / 180
@@ -50,14 +48,11 @@ def gra2gms(gra: float) -> list:
:rtype: list
"""
deg = gra2deg(gra)
gra = deg // 1
min = gra % 1
gra = gra // 1
min *= 60
sek = min % 1
min = min // 1
sek *= 60
return [gra, min, sek]
gra = int(deg)
minu_f = (deg - gra) * 60
minu = int(minu_f)
sek = (minu_f - minu) * 60
return [gra, minu, sek]
def gra2rad(gra: float) -> float:
@@ -113,13 +108,11 @@ def rad2gms(rad: float) -> list:
:rtype: list
"""
deg = rad2deg(rad)
min = deg % 1
gra = deg // 1
min *= 60
sek = min % 1
min = min // 1
sek *= 60
return [gra, min, sek]
gra = int(deg)
minu_f = (deg - gra) * 60
minu = int(minu_f)
sek = (minu_f - minu) * 60
return [gra, minu, sek]
def gms2rad(gms: list) -> float: