Compare commits
2 Commits
f68d11c031
...
af8ac02e5b
| Author | SHA1 | Date | |
|---|---|---|---|
| af8ac02e5b | |||
| e14869691b |
@@ -2,11 +2,12 @@ import numpy as np
|
|||||||
from Hansen_ES_CMA import escma
|
from Hansen_ES_CMA import escma
|
||||||
from ellipsoide import EllipsoidTriaxial
|
from ellipsoide import EllipsoidTriaxial
|
||||||
from numpy.typing import NDArray
|
from numpy.typing import NDArray
|
||||||
|
from typing import Tuple
|
||||||
import plotly.graph_objects as go
|
import plotly.graph_objects as go
|
||||||
from GHA_triaxial.gha2_num import gha2_num
|
from GHA_triaxial.gha2_num import gha2_num
|
||||||
from GHA_triaxial.utils import sigma2alpha
|
from GHA_triaxial.utils import sigma2alpha, pq_ell
|
||||||
|
|
||||||
|
|
||||||
ell_ES: EllipsoidTriaxial = None
|
|
||||||
P_left: NDArray = None
|
P_left: NDArray = None
|
||||||
P_right: NDArray = None
|
P_right: NDArray = None
|
||||||
|
|
||||||
@@ -20,6 +21,7 @@ def Sehne(P1: NDArray, P2: NDArray) -> float:
|
|||||||
"""
|
"""
|
||||||
R12 = P2-P1
|
R12 = P2-P1
|
||||||
s = np.linalg.norm(R12)
|
s = np.linalg.norm(R12)
|
||||||
|
|
||||||
return s
|
return s
|
||||||
|
|
||||||
|
|
||||||
@@ -31,45 +33,42 @@ def midpoint_fitness(x: tuple) -> float:
|
|||||||
:param x: enthält die Startwerte von u und v
|
:param x: enthält die Startwerte von u und v
|
||||||
:return: Fitnesswert (f)
|
:return: Fitnesswert (f)
|
||||||
"""
|
"""
|
||||||
global ell_ES, P_left, P_right
|
global P_left, P_right
|
||||||
|
|
||||||
u, v = x
|
u, v = x
|
||||||
P_middle = ell_ES.para2cart(u, v)
|
P_middle = ell.para2cart(u, v)
|
||||||
d1 = Sehne(P_left, P_middle)
|
d1 = Sehne(P_left, P_middle)
|
||||||
d2 = Sehne(P_middle, P_right)
|
d2 = Sehne(P_middle, P_right)
|
||||||
base = d1 + d2
|
base = d1 + d2
|
||||||
|
|
||||||
# midpoint penalty (dimensionslos)
|
# midpoint penalty (dimensionslos)
|
||||||
# relative Differenz, skaliert stabil über verschiedene Segmentlängen
|
# relative Differenz, skaliert über verschiedene Segmentlängen
|
||||||
denom = max(base, 1e-9)
|
denom = max(base, 1e-9)
|
||||||
pen_equal = ((d1 - d2) / denom) ** 2
|
pen_equal = ((d1 - d2) / denom) ** 2
|
||||||
w_equal = 10.0
|
w_equal = 10.0
|
||||||
|
|
||||||
f = base + denom * w_equal * pen_equal
|
f = base + denom * w_equal * pen_equal
|
||||||
|
|
||||||
return f
|
return f
|
||||||
|
|
||||||
|
|
||||||
def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float = None, maxIter: int = 10000, all_points: bool = False):
|
def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float = None, all_points: bool = True) -> Tuple[float, float, float, NDArray]:
|
||||||
"""
|
"""
|
||||||
Berechnen der 2. GHA mithilfe der CMA-ES.
|
Berechnen der 2. GHA mithilfe der CMA-ES.
|
||||||
Die CMA-ES optimiert sukzessive den Mittelpunkt zwischen Start- und Zielpunkt. Der Abbruch der Berechnung erfolgt, wenn alle Segmentlängen <= maxSegLen sind.
|
Die CMA-ES optimiert sukzessive den Mittelpunkt zwischen Start- und Zielpunkt. Der Abbruch der Berechnung erfolgt, wenn alle Segmentlängen <= maxSegLen sind.
|
||||||
Die Distanzen zwischen den einzelnen Punkten werden als direkte 3D-Distanzen berechnet und aufaddiert.
|
Die Distanzen zwischen den einzelnen Punkten werden als direkte 3D-Distanzen berechnet und aufaddiert.
|
||||||
:param ell: Parameter des triaxialen Ellipsoids
|
:param ell: Ellipsoid
|
||||||
:param P0: Startpunkt
|
:param P0: Startpunkt
|
||||||
:param Pk: Zielpunkt
|
:param Pk: Zielpunkt
|
||||||
:param maxSegLen: maximale Segmentlänge
|
:param maxSegLen: maximale Segmentlänge
|
||||||
:param maxIter: maximale Durchläufe der Mittelpunktsgenerierung
|
:param all_points: Ergebnisliste mit allen Punkte, die wahlweise mit ausgegeben wird
|
||||||
:param all_points: Ergebnisliste mit allen Punkte, die wahlweise mit ausgegeben werden kann
|
:return: Richtungswinkel in RAD des Start- und Zielpunktes und Gesamtlänge
|
||||||
:return: Richtungswinkel des Start- und Zielpunktes und Gesamtlänge
|
|
||||||
"""
|
"""
|
||||||
global ell_ES
|
|
||||||
ell_ES = ell
|
|
||||||
R0 = (ell.ax + ell.ay + ell.b) / 3
|
R0 = (ell.ax + ell.ay + ell.b) / 3
|
||||||
if maxSegLen is None:
|
if maxSegLen is None:
|
||||||
maxSegLen = R0 * 1 / (637.4*2) # 10km Segment bei mittleren Erdradius
|
maxSegLen = R0 * 1 / (637.4*2) # 10km Segment bei mittleren Erdradius
|
||||||
|
|
||||||
sigma_uv_nom = 1e-3 * (maxSegLen / R0) # ~1e-5
|
sigma_uv_nom = 1e-3 * (maxSegLen / R0) # ~1e-5
|
||||||
|
|
||||||
points: list[NDArray] = [P0, Pk]
|
points: list[NDArray] = [P0, Pk]
|
||||||
startIter = 0
|
startIter = 0
|
||||||
level = 0
|
level = 0
|
||||||
@@ -82,7 +81,6 @@ def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float =
|
|||||||
|
|
||||||
level += 1
|
level += 1
|
||||||
new_points: list[NDArray] = [points[0]]
|
new_points: list[NDArray] = [points[0]]
|
||||||
|
|
||||||
for i in range(len(points) - 1):
|
for i in range(len(points) - 1):
|
||||||
A = points[i]
|
A = points[i]
|
||||||
B = points[i+1]
|
B = points[i+1]
|
||||||
@@ -92,22 +90,22 @@ def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float =
|
|||||||
if dAB > maxSegLen:
|
if dAB > maxSegLen:
|
||||||
global P_left, P_right
|
global P_left, P_right
|
||||||
P_left, P_right = A, B
|
P_left, P_right = A, B
|
||||||
Au, Av = ell_ES.cart2para(A)
|
Au, Av = ell.cart2para(A)
|
||||||
Bu, Bv = ell_ES.cart2para(B)
|
Bu, Bv = ell.cart2para(B)
|
||||||
u0 = (Au + Bu) / 2
|
u0 = (Au + Bu) / 2
|
||||||
v0 = Av + 0.5 * np.arctan2(np.sin(Bv - Av), np.cos(Bv - Av))
|
v0 = Av + 0.5 * np.arctan2(np.sin(Bv - Av), np.cos(Bv - Av))
|
||||||
xmean = [u0, v0]
|
xmean = [u0, v0]
|
||||||
|
|
||||||
sigmaStep = sigma_uv_nom * (Sehne(A, B) / maxSegLen)
|
sigmaStep = sigma_uv_nom * (Sehne(A, B) / maxSegLen)
|
||||||
|
|
||||||
u, v = escma(midpoint_fitness, N=2, xmean=xmean, sigma=sigmaStep)
|
u, v = escma(midpoint_fitness, N=2, xmean=xmean, sigma=sigmaStep) # Aufruf CMA-ES
|
||||||
|
|
||||||
P_next = ell.para2cart(u, v)
|
P_next = ell.para2cart(u, v)
|
||||||
new_points.append(P_next)
|
new_points.append(P_next)
|
||||||
startIter += 1
|
startIter += 1
|
||||||
|
maxIter = 10000
|
||||||
if startIter > maxIter:
|
if startIter > maxIter:
|
||||||
raise RuntimeError("Abbruch: maximale Iterationen überschritten.")
|
raise RuntimeError("Abbruch: maximale Iterationen überschritten.")
|
||||||
|
|
||||||
new_points.append(B)
|
new_points.append(B)
|
||||||
|
|
||||||
points = new_points
|
points = new_points
|
||||||
@@ -117,13 +115,13 @@ def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float =
|
|||||||
totalLen = float(np.sum(np.linalg.norm(P_all[1:] - P_all[:-1], axis=1)))
|
totalLen = float(np.sum(np.linalg.norm(P_all[1:] - P_all[:-1], axis=1)))
|
||||||
|
|
||||||
if len(points) >= 3:
|
if len(points) >= 3:
|
||||||
p0i = ell_ES.point_onto_ellipsoid(P0 + 10.0 * (points[1] - P0) / np.linalg.norm(points[1] - P0))
|
p0i = ell.point_onto_ellipsoid(P0 + 10.0 * (points[1] - P0) / np.linalg.norm(points[1] - P0))
|
||||||
sigma0 = (p0i - P0) / np.linalg.norm(p0i - P0)
|
sigma0 = (p0i - P0) / np.linalg.norm(p0i - P0)
|
||||||
alpha0 = sigma2alpha(ell_ES, sigma0, P0)
|
alpha0 = sigma2alpha(ell, sigma0, P0)
|
||||||
|
|
||||||
p1i = ell_ES.point_onto_ellipsoid(Pk - 10.0 * (Pk - points[-2]) / np.linalg.norm(Pk - points[-2]))
|
p1i = ell.point_onto_ellipsoid(Pk - 10.0 * (Pk - points[-2]) / np.linalg.norm(Pk - points[-2]))
|
||||||
sigma1 = (Pk - p1i) / np.linalg.norm(Pk - p1i)
|
sigma1 = (Pk - p1i) / np.linalg.norm(Pk - p1i)
|
||||||
alpha1 = sigma2alpha(ell_ES, sigma1, Pk)
|
alpha1 = sigma2alpha(ell, sigma1, Pk)
|
||||||
else:
|
else:
|
||||||
alpha0 = None
|
alpha0 = None
|
||||||
alpha1 = None
|
alpha1 = None
|
||||||
@@ -166,7 +164,7 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
beta0, lamb0 = (0.2, 0.1)
|
beta0, lamb0 = (0.2, 0.1)
|
||||||
P0 = ell.ell2cart(beta0, lamb0)
|
P0 = ell.ell2cart(beta0, lamb0)
|
||||||
beta1, lamb1 = (0.7, 0.3)
|
beta1, lamb1 = (0.3, 0.2)
|
||||||
P1 = ell.ell2cart(beta1, lamb1)
|
P1 = ell.ell2cart(beta1, lamb1)
|
||||||
|
|
||||||
alpha0, alpha1, s_num, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=1000, all_points=True)
|
alpha0, alpha1, s_num, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=1000, all_points=True)
|
||||||
@@ -175,8 +173,10 @@ if __name__ == '__main__':
|
|||||||
points_num.append(ell.ell2cart(beta, lamb))
|
points_num.append(ell.ell2cart(beta, lamb))
|
||||||
points_num = np.array(points_num)
|
points_num = np.array(points_num)
|
||||||
|
|
||||||
alpha0, alpha1, s, points = gha2_ES(ell, P0, P1, all_points=True)
|
alpha0, alpha1, s, points = gha2_ES(ell, P0, P1)
|
||||||
print(s_num)
|
print(s_num)
|
||||||
print(s)
|
print(s)
|
||||||
|
print(alpha0)
|
||||||
|
print(alpha1)
|
||||||
print(s - s_num)
|
print(s - s_num)
|
||||||
show_points(points, points_num, P0, P1)
|
show_points(points, points_num, P0, P1)
|
||||||
|
|||||||
Reference in New Issue
Block a user