Compare commits

...

64 Commits

Author SHA1 Message Date
d90ff5df69 Ellipsoid-Auswahl angepasst 2026-02-11 13:44:53 +01:00
59ad560f36 Abgabe fertig 2026-02-11 12:08:46 +01:00
5a293a823a revert 4f7b9aaef0
revert Delete Tests/gha_resultsKarney.pkl
2026-02-11 11:00:48 +00:00
36b62059fc revert 798cace25d
revert Delete Tests/gha_resultsPanou.pkl
2026-02-11 11:00:33 +00:00
57a086f6cb revert b8d07307aa
revert Delete Tests/gha_resultsRandom.pkl
2026-02-11 11:00:23 +00:00
b8d07307aa Delete Tests/gha_resultsRandom.pkl 2026-02-11 10:58:53 +00:00
798cace25d Delete Tests/gha_resultsPanou.pkl 2026-02-11 10:58:47 +00:00
4f7b9aaef0 Delete Tests/gha_resultsKarney.pkl 2026-02-11 10:58:42 +00:00
1fbfb555a4 wraps 2026-02-10 21:10:11 +01:00
Tammo.Weber
db05f7b6db Merge remote-tracking branch 'origin/main' 2026-02-10 12:36:04 +01:00
Tammo.Weber
73e3694a2a Ausgabe von alpha GHA1 2026-02-10 12:35:35 +01:00
ffc8d3fbce Fehlermeldung dashboard 2026-02-10 11:36:15 +01:00
Tammo.Weber
fd02694ae4 Platzsparen 2026-02-09 21:36:46 +01:00
e1ac0415e7 Merge remote-tracking branch 'origin/main' 2026-02-09 16:28:55 +01:00
e7641ba64f , 2026-02-09 16:28:15 +01:00
Tammo.Weber
fc9bc5defb Optimierung 2026-02-09 15:30:24 +01:00
Tammo.Weber
2864ce50ff s kleiner 0 2026-02-09 11:50:07 +01:00
Tammo.Weber
b44c25928e Merge remote-tracking branch 'origin/main' 2026-02-09 11:45:29 +01:00
Tammo.Weber
67248f9ca9 Anpassungen im Plot 2026-02-09 11:44:52 +01:00
Tammo.Weber
71c13c568a Fehlerkorrektur 2026-02-09 11:43:50 +01:00
19887e4ac5 Merge remote-tracking branch 'origin/main' 2026-02-09 11:29:38 +01:00
737e4730aa dashboard streckenelemente kleiner 0 zulässig 2026-02-09 11:29:15 +01:00
Tammo.Weber
020d282420 Merge remote-tracking branch 'origin/main' 2026-02-09 10:17:11 +01:00
Tammo.Weber
cefa98e3b7 Zweiter Parameter bei GHA1 ana 2026-02-09 10:16:57 +01:00
e8624159e2 karney gruppen 2026-02-08 19:31:52 +01:00
Tammo.Weber
cfab70ac55 Meldung wenn Berechung fehlschlägt 2026-02-08 17:51:55 +01:00
ee85e8b0e6 . 2026-02-08 16:28:59 +01:00
02ce0c0b4a nochmal 2026-02-07 22:03:07 +01:00
3fd967e843 Exceptions einheitlich 2026-02-07 19:35:15 +01:00
322ac94299 Exceptions einheitlich 2026-02-07 19:34:54 +01:00
49d03786dc GHA1 ana richtig aufgerufen im Dashboard und im Test 2026-02-07 18:07:25 +01:00
ef99294502 all points 2026-02-06 16:28:34 +01:00
b3a73270c2 Merge remote-tracking branch 'origin/main' 2026-02-06 16:25:40 +01:00
7a425eae77 Lets go 2026-02-06 16:25:27 +01:00
Tammo.Weber
bd411a8cd7 Merge remote-tracking branch 'origin/main' 2026-02-06 16:01:25 +01:00
Tammo.Weber
d6f9bc4302 Kleinere Anpassungen und Fehler abfangen 2026-02-06 16:01:15 +01:00
50326ba246 Nice 2026-02-06 15:49:36 +01:00
Tammo.Weber
0eeb35f173 GHA1 ES mit Linie, Legende 2026-02-06 15:06:48 +01:00
2954c0ee3a Punktliste 2 2026-02-06 14:43:43 +01:00
476b51071b Merge remote-tracking branch 'origin/main' 2026-02-06 14:30:26 +01:00
a836d2d534 Punktliste 2026-02-06 14:30:11 +01:00
Tammo.Weber
7a2a843285 kleinere Optimierungen 2026-02-06 14:10:48 +01:00
Tammo.Weber
9591045ee2 GHA1 ES implementiert 2026-02-06 13:06:32 +01:00
Tammo.Weber
81ca8a4770 GHA1 analytisch Ordnung variabel 2026-02-06 12:35:55 +01:00
6e63b3c965 Geile Änderungen 2026-02-06 11:32:48 +01:00
af8ac02e5b Merge remote-tracking branch 'origin/main' 2026-02-06 11:24:33 +01:00
e14869691b turbomäßige Anpassungen 2026-02-06 11:24:13 +01:00
Tammo.Weber
f68d11c031 Einmal ein Rechtschreibfehler und einmal in rad ausgegeben. 2026-02-06 11:15:42 +01:00
Tammo.Weber
5d4ed35f17 Anpassungen bei Zwischespeicherung etc. 2026-02-05 22:48:58 +01:00
Tammo.Weber
2ba4dad30d Merge remote-tracking branch 'origin/main'
# Conflicts:
#	GHA_triaxial/gha2_num.py
2026-02-05 21:44:28 +01:00
Tammo.Weber
dd5cf2d6a8 merge 2026-02-05 21:43:26 +01:00
Tammo.Weber
9f0554039c merge 2026-02-05 21:40:39 +01:00
a864cd9279 ES1 in Tests 2026-02-05 21:35:48 +01:00
e894c7089a final 2026-02-05 21:29:20 +01:00
f75672ec36 henreick 2026-02-05 21:03:59 +01:00
e11edd2a43 henreick 2026-02-05 21:01:06 +01:00
82444208d7 gha1_ES 2026-02-05 19:20:09 +01:00
36e243d6d4 Anpassungen 2026-02-05 16:54:28 +01:00
ac1436a7f7 stopfitness=1e-14 2026-02-05 15:58:11 +01:00
09ae06e9b2 ell2 2026-02-05 15:56:09 +01:00
39641b5293 ell 2026-02-05 15:52:22 +01:00
Tammo.Weber
19c1625a11 Merge remote-tracking branch 'origin/main' 2026-02-05 13:04:56 +01:00
Tammo.Weber
c240da85c1 Eingabe Berechnungsparameter 2026-02-05 13:04:31 +01:00
fb4faf9aa4 Fehler in der Umrechnung korrigiert 2026-02-05 11:36:44 +01:00
38 changed files with 11795 additions and 3823 deletions

View File

@@ -1,7 +1,8 @@
import numpy as np import numpy as np
from numpy.typing import NDArray
def felli(x): def felli(x: NDArray) -> float:
N = x.shape[0] N = x.shape[0]
if N < 2: if N < 2:
raise ValueError("dimension must be greater than one") raise ValueError("dimension must be greater than one")
@@ -9,10 +10,9 @@ def felli(x):
return float(np.sum((1e6 ** exponents) * (x ** 2))) return float(np.sum((1e6 ** exponents) * (x ** 2)))
def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-10, stopeval=None, def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-14, stopeval=2000,
func_args=(), func_kwargs=None, seed=None, func_args=(), func_kwargs=None, seed=0,
bestEver = np.inf, noImproveGen = 0, absTolImprove = 1e-12, maxNoImproveGen = 100, sigmaImprove = 1e-12): bestEver=np.inf, noImproveGen=0, absTolImprove=1e-12, maxNoImproveGen=100, sigmaImprove=1e-12):
if func_kwargs is None: if func_kwargs is None:
func_kwargs = {} func_kwargs = {}
@@ -27,7 +27,7 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-10, stopeval=None
N = xmean.shape[0] N = xmean.shape[0]
if stopeval is None: if stopeval is None:
stopeval = int(1e3 * N**2) stopeval = int(1e3 * N ** 2)
# Strategy parameter setting: Selection # Strategy parameter setting: Selection
lambda_ = 4 + int(np.floor(3 * np.log(N))) lambda_ = 4 + int(np.floor(3 * np.log(N)))
@@ -37,14 +37,14 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-10, stopeval=None
weights = np.log(mu + 0.5) - np.log(np.arange(1, int(mu) + 1)) weights = np.log(mu + 0.5) - np.log(np.arange(1, int(mu) + 1))
mu = int(np.floor(mu)) mu = int(np.floor(mu))
weights = weights / np.sum(weights) weights = weights / np.sum(weights)
mueff = np.sum(weights)**2 / np.sum(weights**2) mueff = np.sum(weights) ** 2 / np.sum(weights ** 2)
# Strategy parameter setting: Adaptation # Strategy parameter setting: Adaptation
cc = (4 + mueff / N) / (N + 4 + 2 * mueff / N) cc = (4 + mueff / N) / (N + 4 + 2 * mueff / N)
cs = (mueff + 2) / (N + mueff + 5) cs = (mueff + 2) / (N + mueff + 5)
c1 = 2 / ((N + 1.3)**2 + mueff) c1 = 2 / ((N + 1.3) ** 2 + mueff)
cmu = min(1 - c1, cmu = min(1 - c1,
2 * (mueff - 2 + 1 / mueff) / ((N + 2)**2 + 2 * mueff)) 2 * (mueff - 2 + 1 / mueff) / ((N + 2) ** 2 + 2 * mueff))
damps = 1 + 2 * max(0, np.sqrt((mueff - 1) / (N + 1)) - 1) + cs damps = 1 + 2 * max(0, np.sqrt((mueff - 1) / (N + 1)) - 1) + cs
# Initialize dynamic (internal) strategy parameters and constants # Initialize dynamic (internal) strategy parameters and constants
@@ -54,7 +54,7 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-10, stopeval=None
D = np.eye(N) D = np.eye(N)
C = B @ D @ (B @ D).T C = B @ D @ (B @ D).T
eigeneval = 0 eigeneval = 0
chiN = np.sqrt(N) * (1 - 1/(4*N) + 1/(21 * N**2)) chiN = np.sqrt(N) * (1 - 1 / (4 * N) + 1 / (21 * N ** 2))
# Generation Loop # Generation Loop
counteval = 0 counteval = 0
@@ -64,7 +64,7 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-10, stopeval=None
gen = 0 gen = 0
print(f' [CMA-ES] Start: lambda = {lambda_}, sigma ={round(sigma, 6)}, stopeval = {stopeval}') # print(f' [CMA-ES] Start: lambda = {lambda_}, sigma ={round(sigma, 6)}, stopeval = {stopeval}')
while counteval < stopeval: while counteval < stopeval:
gen += 1 gen += 1
@@ -91,27 +91,24 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-10, stopeval=None
bestEver = fbest bestEver = fbest
noImproveGen = 0 noImproveGen = 0
else: else:
noImproveGen = noImproveGen + 1 noImproveGen += 1
if gen == 1 or gen % 50 == 0:
if gen == 1 or gen%50==0: # print(f' [CMA-ES] Gen {gen}, best = {round(fbest, 6)}, sigma = {sigma:.3g}')
print(f' [CMA-ES] Gen {gen}, best = {round(fbest, 6)}, sigma = {sigma:.3g}') pass
if noImproveGen >= maxNoImproveGen: if noImproveGen >= maxNoImproveGen:
print(f' [CMA-ES] Abbruch: keine Verbesserung > {round(absTolImprove, 3)} in {maxNoImproveGen} Generationen.') # print(f' [CMA-ES] Abbruch: keine Verbesserung > {round(absTolImprove, 3)} in {maxNoImproveGen} Generationen.')
break break
if sigma < sigmaImprove: if sigma < sigmaImprove:
print(f' [CMA-ES] Abbruch: sigma zu klein {sigma:.3g}') # print(f' [CMA-ES] Abbruch: sigma zu klein {sigma:.3g}')
break break
# Cumulation: Update evolution paths # Cumulation: Update evolution paths
ps = (1 - cs) * ps + np.sqrt(cs * (2 - cs) * mueff) * (B @ zmean) ps = (1 - cs) * ps + np.sqrt(cs * (2 - cs) * mueff) * (B @ zmean)
norm_ps = np.linalg.norm(ps) norm_ps = np.linalg.norm(ps)
hsig = norm_ps / np.sqrt(1 - (1 - cs)**(2 * counteval / lambda_)) / chiN < \ hsig = norm_ps / np.sqrt(1 - (1 - cs) ** (2 * counteval / lambda_)) / chiN < (1.4 + 2 / (N + 1))
(1.4 + 2 / (N + 1))
hsig = 1.0 if hsig else 0.0 hsig = 1.0 if hsig else 0.0
pc = (1 - cc) * pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * (B @ D @ zmean) pc = (1 - cc) * pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * (B @ D @ zmean)
@@ -140,16 +137,17 @@ def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-10, stopeval=None
# Escape flat fitness, or better terminate? # Escape flat fitness, or better terminate?
if arfitness[0] == arfitness[int(np.ceil(0.7 * lambda_)) - 1]: if arfitness[0] == arfitness[int(np.ceil(0.7 * lambda_)) - 1]:
sigma = sigma * np.exp(0.2 + cs / damps) sigma = sigma * np.exp(0.2 + cs / damps)
print(' [CMA-ES] stopfitness erreicht.') # print(' [CMA-ES] stopfitness erreicht.')
#print("warning: flat fitness, consider reformulating the objective") # print("warning: flat fitness, consider reformulating the objective")
break
#print(f"{counteval}: {arfitness[0]}") # print(f"{counteval}: {arfitness[0]}")
#Final Message # Final Message
#print(f"{counteval}: {arfitness[0]}") # print(f"{counteval}: {arfitness[0]}")
xmin = arx[:, arindex[0]] xmin = arx[:, arindex[0]]
bestValue = arfitness[0] bestValue = arfitness[0]
print(f' [CMA-ES] Ende: Gen = {gen}, best = {round(bestValue, 6)}') # print(f' [CMA-ES] Ende: Gen = {gen}, best = {round(bestValue, 6)}')
return xmin return xmin

247
ES/gha1_ES.py Normal file
View File

@@ -0,0 +1,247 @@
from __future__ import annotations
from typing import List, Tuple
import numpy as np
from numpy.typing import NDArray
import winkelumrechnungen as wu
from ES.Hansen_ES_CMA import escma
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.gha1_approx import gha1_approx
from GHA_triaxial.utils import jacobi_konstante
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_mpi_pi
def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
-> Tuple[NDArray, NDArray, NDArray, float, float, NDArray]:
"""
Analytische ENU-Basis in ellipsoidische Koordinaten (β, ω) nach Karney (2025), S. 2
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param ell: Ellipsoid
:return: E_hat = Einheitsrichtung entlang wachsendem ω (East)
N_hat = Einheitsrichtung entlang wachsendem β (North)
U_hat = Einheitsnormale (Up)
En & Nn = Längen der unnormierten Ableitungen
R (XYZ) = Punkt in XYZ
"""
# Berechnungshilfen
omega = wrap_mpi_pi(omega)
cb = np.cos(beta)
sb = np.sin(beta)
co = np.cos(omega)
so = np.sin(omega)
# D = sqrt(a^2 - c^2)
D = np.sqrt(ell.ax*ell.ax - ell.b*ell.b)
# Sx = sqrt(a^2 - b^2 sin^2β - c^2 cos^2β)
Sx = np.sqrt(ell.ax*ell.ax - ell.ay*ell.ay*(sb*sb) - ell.b*ell.b*(cb*cb))
# Sz = sqrt(a^2 sin^2ω + b^2 cos^2ω - c^2)
Sz = np.sqrt(ell.ax*ell.ax*(so*so) + ell.ay*ell.ay*(co*co) - ell.b*ell.b)
# Karney Gl. (4)
X = ell.ax * co * Sx / D
Y = ell.ay * cb * so
Z = ell.b * sb * Sz / D
R = np.array([X, Y, Z], dtype=float)
# --- Ableitungen - Karney Gl. (5a,b,c)---
# E = ∂R/∂ω
dX_dw = -ell.ax * so * Sx / D
dY_dw = ell.ay * cb * co
dZ_dw = ell.b * sb * (so * co * (ell.ax*ell.ax - ell.ay*ell.ay) / Sz) / D
E = np.array([dX_dw, dY_dw, dZ_dw], dtype=float)
# N = ∂R/∂β
dX_db = ell.ax * co * (sb * cb * (ell.b*ell.b - ell.ay*ell.ay) / Sx) / D
dY_db = -ell.ay * sb * so
dZ_db = ell.b * cb * Sz / D
N = np.array([dX_db, dY_db, dZ_db], dtype=float)
# U = Grad(x^2/a^2 + y^2/b^2 + z^2/c^2 - 1)
U = np.array([X/(ell.ax*ell.ax), Y/(ell.ay*ell.ay), Z/(ell.b*ell.b)], dtype=float)
En = float(np.linalg.norm(E))
Nn = float(np.linalg.norm(N))
Un = float(np.linalg.norm(U))
N_hat = N / Nn
E_hat = E / En
U_hat = U / Un
E_hat -= float(np.dot(E_hat, N_hat)) * N_hat
E_hat = E_hat / max(np.linalg.norm(E_hat), 1e-18)
return E_hat, N_hat, U_hat, En, Nn, R
def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_hat_curr: NDArray, U_hat_curr: NDArray) -> float:
"""
Berechnet das Azimut in der lokalen Tangentialebene am aktuellen Punkt P_curr, gemessen
an der Bewegungsrichtung vom vorherigen Punkt P_prev nach P_curr.
:param P_prev: vorheriger Punkt
:param P_curr: aktueller Punkt
:param E_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param N_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param U_hat_curr: Einheitsnormalenvektor am Punkt P_curr
:return: Azimut in Radiant
"""
v = (P_curr - P_prev).astype(float)
vT = v - float(np.dot(v, U_hat_curr)) * U_hat_curr
vTn = max(np.linalg.norm(vT), 1e-18)
vT_hat = vT / vTn
sE = float(np.dot(vT_hat, E_hat_curr))
sN = float(np.dot(vT_hat, N_hat_curr))
return wrap_mpi_pi(float(np.arctan2(sE, sN)))
def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float, gamma0: float,
ell: EllipsoidTriaxial, maxSegLen: float = 1000.0, sigma0: float = None) -> Tuple[float, float, NDArray, float]:
"""
Berechnung der 1. GHA mithilfe der CMA-ES.
Die CMA-ES optimiert sukzessive einen Punkt, der maxSegLen vom vorherigen Punkt entfernt und zusätzlich auf der
geodätischen Linien liegt. Somit entsteht ein Geodäten ähnlicher Polygonzug auf der Oberfläche des dreiachsigen Ellipsoids.
:param beta_i: Beta Koordinate am Punkt i
:param omega_i: Omega Koordinate am Punkt i
:param alpha_i: Azimut am Punkt i
:param ds: Gesamtlänge
:param gamma0: Jacobi-Konstante am Startpunkt
:param ell: Ellipsoid
:param maxSegLen: maximale Segmentlänge
:param sigma0:
:return:
"""
# Startbasis
E_i, N_i, U_i, En_i, Nn_i, P_i = ENU_beta_omega(beta_i, omega_i, ell)
# Prediktor: dβ ≈ ds cosα / |N|, dω ≈ ds sinα / |E|
En_eff = max(En_i, 1e-9)
Nn_eff = max(Nn_i, 1e-9)
d_beta = ds * np.cos(alpha_i) / Nn_eff
d_omega = ds * np.sin(alpha_i) / En_eff
# optional: harte Schritt-Clamps (verhindert wrap-chaos)
d_beta = float(np.clip(d_beta, -0.2, 0.2)) # rad
d_omega = float(np.clip(d_omega, -0.2, 0.2)) # rad
# d_beta = ds * float(np.cos(alpha_i)) / Nn_i
# d_omega = ds * float(np.sin(alpha_i)) / En_i
beta_pred = beta_i + d_beta
omega_pred = wrap_mpi_pi(omega_i + d_omega)
xmean = np.array([beta_pred, omega_pred], dtype=float)
if sigma0 is None:
R0 = (ell.ax + ell.ay + ell.b) / 3
sigma0 = 1e-5 * (ds / R0)
def fitness(x: NDArray) -> float:
"""
Fitnessfunktion: Fitnesscheck erfolgt anhand der Segmentlänge und der Jacobi-Konstante.
Die Segmentlänge muss möglichst gut zum Sollwert passen. Die Jacobi-Konstante am Punkt x muss zur
Jacobi-Konstanten am Startpunkt passen, damit der Polygonzug auf derselben geodätischen Linie bleibt.
:param x: Koordinate in beta, lambda aus der CMA-ES
:return: Fitnesswert (f)
"""
beta = x[0]
omega = wrap_mpi_pi(x[1])
P = ell.ell2cart_karney(beta, omega) # in kartesischer Koordinaten
d = float(np.linalg.norm(P - P_i)) # Distanz zwischen
# maxSegLen einhalten
J_len = ((d - ds) / ds) ** 2
w_len = 1.0
# Azimut für Jacobi-Konstante
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta, omega, ell)
alpha_end = azimuth_at_ESpoint(P_i, P, E_j, N_j, U_j)
# Jacobi-Konstante
g_end = jacobi_konstante(beta, omega, alpha_end, ell)
J_gamma = (g_end - gamma0) ** 2
w_gamma = 10
f = float(w_len * J_len + w_gamma * J_gamma)
return f
xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0) # Aufruf CMA-ES
beta_best = xb[0]
omega_best = wrap_mpi_pi(xb[1])
P_best = ell.ell2cart_karney(beta_best, omega_best)
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta_best, omega_best, ell)
alpha_end = azimuth_at_ESpoint(P_i, P_best, E_j, N_j, U_j)
return beta_best, omega_best, P_best, alpha_end
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000, all_points: bool = False)\
-> Tuple[NDArray, float, NDArray] | Tuple[NDArray, float]:
"""
Aufruf der 1. GHA mittels CMA-ES
:param ell: Ellipsoid
:param beta0: Beta Startkoordinate
:param omega0: Omega Startkoordinate
:param alpha0: Azimut Startkoordinate
:param s_total: Gesamtstrecke
:param maxSegLen: maximale Segmentlänge
:param all_points: Alle Punkte ausgeben?
:return: Zielpunkt Pk, Azimut am Zielpunkt und Punktliste
"""
beta = float(beta0)
omega = wrap_mpi_pi(float(omega0))
alpha = wrap_mpi_pi(float(alpha0))
gamma0 = jacobi_konstante(beta, omega, alpha, ell) # Referenz-γ0
P_all: List[NDArray] = [ell.ell2cart_karney(beta, omega)]
alpha_end: List[float] = [alpha]
s_acc = 0.0
step = 0
nsteps_est = int(np.ceil(s_total / maxSegLen))
while s_acc < s_total - 1e-9:
step += 1
ds = min(maxSegLen, s_total - s_acc)
# print(f"[GHA1-ES] Step {step}/{nsteps_est} ds={ds:.3f} m s_acc={s_acc:.3f} m beta={beta:.6f} omega={omega:.6f} alpha={alpha:.6f}")
beta, omega, P, alpha = optimize_next_point(beta_i=beta, omega_i=omega, alpha_i=alpha, ds=ds, gamma0=gamma0,
ell=ell, maxSegLen=maxSegLen)
s_acc += ds
P_all.append(P)
alpha_end.append(wrap_mpi_pi(alpha))
if step > nsteps_est + 50:
raise RuntimeError("GHA1_ES: Zu viele Schritte vermutlich Konvergenzproblem / falsche Azimut-Konvention.")
Pk = P_all[-1]
alpha1 = float(alpha_end[-1])
if all_points:
return Pk, alpha1, np.array(P_all)
else:
return Pk, alpha1
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
s = 180000
# alpha0 = 3
alpha0 = wu.gms2rad([5, 0, 0])
beta = 0
omega = 0
P0 = ell.ell2cart(beta, omega)
point1, alpha1 = gha1_ana(ell, P0, alpha0=alpha0, s=s, maxM=100, maxPartCircum=32)
point1app, alpha1app = gha1_approx(ell, P0, alpha0=alpha0, s=s, ds=1000)
res, alpha, points = gha1_ES(ell, beta0=beta, omega0=-omega, alpha0=alpha0, s_total=s, maxSegLen=1000)
print(point1)
print(res)
print(alpha)
print(points)
# print("alpha1 (am Endpunkt):", res.alpha1)
print(res - point1)
print(point1app - point1, "approx")

View File

@@ -1,14 +1,13 @@
from typing import Tuple
import numpy as np import numpy as np
from Hansen_ES_CMA import escma
from ellipsoide import EllipsoidTriaxial
from numpy.typing import NDArray
import plotly.graph_objects as go import plotly.graph_objects as go
from numpy.typing import NDArray
from ES.Hansen_ES_CMA import escma
from GHA_triaxial.gha2_num import gha2_num from GHA_triaxial.gha2_num import gha2_num
from GHA_triaxial.utils import sigma2alpha from GHA_triaxial.utils import sigma2alpha
from ellipsoid_triaxial import EllipsoidTriaxial
ell_ES: EllipsoidTriaxial = None
P_left: NDArray = None
P_right: NDArray = None
def Sehne(P1: NDArray, P2: NDArray) -> float: def Sehne(P1: NDArray, P2: NDArray) -> float:
@@ -19,58 +18,57 @@ def Sehne(P1: NDArray, P2: NDArray) -> float:
:return: Bogenlänge s :return: Bogenlänge s
""" """
R12 = P2-P1 R12 = P2-P1
s = np.linalg.norm(R12) s = float(np.linalg.norm(R12))
return s return s
def midpoint_fitness(x: tuple) -> float: def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float = None, all_points: bool = False) -> Tuple[float, float, float, NDArray] | Tuple[float, float, float]:
"""
Fitness für einen Mittelpunkt P_middle zwischen P_left und P_right auf dem triaxialen Ellipsoid:
- Minimiert d(P_left, P_middle) + d(P_middle, P_right)
- Erzwingt d(P_left,P_middle) d(P_middle,P_right) (echter Mittelpunkt im Sinne der Polygonkette)
:param x: enthält die Startwerte von u und v
:return: Fitnesswert (f)
"""
global ell_ES, P_left, P_right
u, v = x
P_middle = ell_ES.para2cart(u, v)
d1 = Sehne(P_left, P_middle)
d2 = Sehne(P_middle, P_right)
base = d1 + d2
# midpoint penalty (dimensionslos)
# relative Differenz, skaliert stabil über verschiedene Segmentlängen
denom = max(base, 1e-9)
pen_equal = ((d1 - d2) / denom) ** 2
w_equal = 10.0
f = base + denom * w_equal * pen_equal
return f
def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float = None, stopeval: int = 2000, maxIter: int = 10000, all_points: bool = False):
""" """
Berechnen der 2. GHA mithilfe der CMA-ES. Berechnen der 2. GHA mithilfe der CMA-ES.
Die CMA-ES optimiert sukzessive den Mittelpunkt zwischen Start- und Zielpunkt. Der Abbruch der Berechnung erfolgt, wenn alle Segmentlängen <= maxSegLen sind. Die CMA-ES optimiert sukzessive den Mittelpunkt zwischen Start- und Zielpunkt. Der Abbruch der Berechnung erfolgt, wenn alle Segmentlängen <= maxSegLen sind.
Die Distanzen zwischen den einzelnen Punkten werden als direkte 3D-Distanzen berechnet und aufaddiert. Die Distanzen zwischen den einzelnen Punkten werden als direkte 3D-Distanzen berechnet und aufaddiert.
:param ell: Parameter des triaxialen Ellipsoids :param ell: Ellipsoid
:param P0: Startpunkt :param P0: Startpunkt
:param Pk: Zielpunkt :param Pk: Zielpunkt
:param maxSegLen: maximale Segmentlänge :param maxSegLen: maximale Segmentlänge
:param stopeval: maximale Durchläufe der CMA-ES :param all_points: Ergebnisliste mit allen Punkte, die wahlweise mit ausgegeben wird
:param maxIter: maximale Durchläufe der Mittelpunktsgenerierung :return: Richtungswinkel in RAD des Start- und Zielpunktes und Gesamtlänge
:param all_points: Ergebnisliste mit allen Punkte, die wahlweise mit ausgegeben werden kann
:return: Richtungswinkel des Start- und Zielpunktes und Gesamtlänge
""" """
global ell_ES P_left: NDArray = None
ell_ES = ell P_right: NDArray = None
def midpoint_fitness(x: tuple) -> float:
"""
Fitness für einen Mittelpunkt P_middle zwischen P_left und P_right auf dem triaxialen Ellipsoid:
- Minimiert d(P_left, P_middle) + d(P_middle, P_right)
- Erzwingt d(P_left,P_middle) d(P_middle,P_right) (echter Mittelpunkt im Sinne der Polygonkette)
:param x: enthält die Startwerte von u und v
:return: Fitnesswert (f)
"""
nonlocal P_left, P_right, ell
u, v = x
P_middle = ell.para2cart(u, v)
d1 = Sehne(P_left, P_middle)
d2 = Sehne(P_middle, P_right)
base = d1 + d2
# midpoint penalty (dimensionslos)
# relative Differenz, skaliert über verschiedene Segmentlängen
denom = max(base, 1e-9)
pen_equal = ((d1 - d2) / denom) ** 2
w_equal = 10.0
f = base + denom * w_equal * pen_equal
return f
R0 = (ell.ax + ell.ay + ell.b) / 3 R0 = (ell.ax + ell.ay + ell.b) / 3
if maxSegLen is None: if maxSegLen is None:
maxSegLen = R0 * 1 / (637.4) # 10km Segment bei mittleren Erdradius maxSegLen = R0 * 1 / (637.4*2) # 10km Segment bei mittleren Erdradius
sigma_uv_nom = 1e-3 * (maxSegLen / R0) # ~1e-5 sigma_uv_nom = 1e-3 * (maxSegLen / R0) # ~1e-5
points: list[NDArray] = [P0, Pk] points: list[NDArray] = [P0, Pk]
startIter = 0 startIter = 0
level = 0 level = 0
@@ -83,49 +81,47 @@ def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float =
level += 1 level += 1
new_points: list[NDArray] = [points[0]] new_points: list[NDArray] = [points[0]]
for i in range(len(points) - 1): for i in range(len(points) - 1):
A = points[i] A = points[i]
B = points[i+1] B = points[i+1]
dAB = Sehne(A, B) dAB = Sehne(A, B)
print(dAB) # print(dAB)
if dAB > maxSegLen: if dAB > maxSegLen:
global P_left, P_right # global P_left, P_right
P_left, P_right = A, B P_left, P_right = A, B
Au, Av = ell_ES.cart2para(A) Au, Av = ell.cart2para(A)
Bu, Bv = ell_ES.cart2para(B) Bu, Bv = ell.cart2para(B)
u0 = (Au + Bu) / 2 u0 = (Au + Bu) / 2
v0 = Av + 0.5 * np.arctan2(np.sin(Bv - Av), np.cos(Bv - Av)) v0 = Av + 0.5 * np.arctan2(np.sin(Bv - Av), np.cos(Bv - Av))
xmean = [u0, v0] xmean = [u0, v0]
sigmaStep = sigma_uv_nom * (Sehne(A, B) / maxSegLen) sigmaStep = sigma_uv_nom * (Sehne(A, B) / maxSegLen)
u, v = escma(midpoint_fitness, N=2, xmean=xmean, sigma=sigmaStep, stopfitness=-np.inf, u, v = escma(midpoint_fitness, N=2, xmean=xmean, sigma=sigmaStep) # Aufruf CMA-ES
stopeval=stopeval)
P_next = ell.para2cart(u, v) P_next = ell.para2cart(u, v)
new_points.append(P_next) new_points.append(P_next)
startIter += 1 startIter += 1
maxIter = 10000
if startIter > maxIter: if startIter > maxIter:
raise RuntimeError("Abbruch: maximale Iterationen überschritten.") raise RuntimeError("GHA2_ES: maximale Iterationen überschritten")
new_points.append(B) new_points.append(B)
points = new_points points = new_points
print(f"[Level {level}] Punkte: {len(points)} | max Segment: {max_len:.3f} m") # print(f"[Level {level}] Punkte: {len(points)} | max Segment: {max_len:.3f} m")
P_all = np.vstack(points) P_all = np.vstack(points)
totalLen = float(np.sum(np.linalg.norm(P_all[1:] - P_all[:-1], axis=1))) totalLen = float(np.sum(np.linalg.norm(P_all[1:] - P_all[:-1], axis=1)))
if len(points) >= 3: if len(points) >= 3:
p0i = ell_ES.point_onto_ellipsoid(P0 + 10.0 * (points[1] - P0) / np.linalg.norm(points[1] - P0)) p0i = ell.point_onto_ellipsoid(P0 + 10.0 * (points[1] - P0) / np.linalg.norm(points[1] - P0))
sigma0 = (p0i - P0) / np.linalg.norm(p0i - P0) sigma0 = (p0i - P0) / np.linalg.norm(p0i - P0)
alpha0 = sigma2alpha(ell_ES, sigma0, P0) alpha0 = sigma2alpha(ell, sigma0, P0)
p1i = ell_ES.point_onto_ellipsoid(Pk - 10.0 * (Pk - points[-2]) / np.linalg.norm(Pk - points[-2])) p1i = ell.point_onto_ellipsoid(Pk - 10.0 * (Pk - points[-2]) / np.linalg.norm(Pk - points[-2]))
sigma1 = (Pk - p1i) / np.linalg.norm(Pk - p1i) sigma1 = (Pk - p1i) / np.linalg.norm(Pk - p1i)
alpha1 = sigma2alpha(ell_ES, sigma1, Pk) alpha1 = sigma2alpha(ell, sigma1, Pk)
else: else:
alpha0 = None alpha0 = None
alpha1 = None alpha1 = None
@@ -168,17 +164,19 @@ if __name__ == '__main__':
beta0, lamb0 = (0.2, 0.1) beta0, lamb0 = (0.2, 0.1)
P0 = ell.ell2cart(beta0, lamb0) P0 = ell.ell2cart(beta0, lamb0)
beta1, lamb1 = (0.7, 0.3) beta1, lamb1 = (0.3, 0.2)
P1 = ell.ell2cart(beta1, lamb1) P1 = ell.ell2cart(beta1, lamb1)
alpha0, alpha1, s_num, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=10000, all_points=True) alpha0, alpha1, s_num, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=1000, all_points=True)
points_num = [] points_num = []
for beta, lamb in zip(betas, lambs): for beta, lamb in zip(betas, lambs):
points_num.append(ell.ell2cart(beta, lamb)) points_num.append(ell.ell2cart(beta, lamb))
points_num = np.array(points_num) points_num = np.array(points_num)
alpha0, alpha1, s, points = gha2_ES(ell, P0, P1, all_points=True) alpha0, alpha1, s, points = gha2_ES(ell, P0, P1)
print(s_num) print(s_num)
print(s) print(s)
print(alpha0)
print(alpha1)
print(s - s_num) print(s - s_num)
show_points(points, points_num, P0, P1) show_points(points, points_num, P0, P1)

View File

@@ -1,13 +1,15 @@
import math
from math import comb from math import comb
from typing import Tuple from typing import Tuple
import numpy as np import numpy as np
from numpy import sin, cos, arctan2 from numpy import arctan2, cos, sin
from numpy._typing import NDArray from numpy.typing import NDArray
from scipy.special import factorial as fact
from ellipsoide import EllipsoidTriaxial import winkelumrechnungen as wu
from GHA_triaxial.utils import pq_para from GHA_triaxial.utils import pq_para
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int) -> Tuple[NDArray, float]: def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int) -> Tuple[NDArray, float]:
@@ -64,7 +66,7 @@ def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: floa
x_m.append(x_(m)) x_m.append(x_(m))
y_m.append(y_(m)) y_m.append(y_(m))
z_m.append(z_(m)) z_m.append(z_(m))
fact_m = fact(m) fact_m = math.factorial(m)
# 22-24 # 22-24
a_m.append(x_m[m] / fact_m) a_m.append(x_m[m] / fact_m)
@@ -109,10 +111,10 @@ def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: floa
if alpha1 < 0: if alpha1 < 0:
alpha1 += 2 * np.pi alpha1 += 2 * np.pi
return p1, alpha1 return p1, wrap_0_2pi(alpha1)
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 16) -> Tuple[NDArray, float]: def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> Tuple[NDArray, float]:
""" """
:param ell: Ellipsoid :param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten :param point: Punkt in kartesischen Koordinaten
@@ -131,6 +133,13 @@ def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, ma
_, _, h = ell.cart2geod(point_end, "ligas3") _, _, h = ell.cart2geod(point_end, "ligas3")
if h > 1e-5: if h > 1e-5:
raise Exception("Analytische Methode ist explodiert, Punkt liegt nicht mehr auf dem Ellipsoid") raise Exception("GHA1_ana: explodiert, Punkt liegt nicht mehr auf dem Ellipsoid")
return point_end, alpha_end return point_end, wrap_0_2pi(alpha_end)
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
p0 = ell.ell2cart(wu.deg2rad(10), wu.deg2rad(20))
p1, alpha1 = gha1_ana(ell, p0, wu.deg2rad(36), 200000, 70)
print(p1, wu.rad2gms(alpha1))

View File

@@ -1,11 +1,18 @@
import numpy as np from typing import Tuple
from ellipsoide import EllipsoidTriaxial
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.utils import func_sigma_ell, louville_constant
import plotly.graph_objects as go
import winkelumrechnungen as wu
def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray]: import numpy as np
import plotly.graph_objects as go
from numpy import cos, sin
from numpy.typing import NDArray
import winkelumrechnungen as wu
from GHA_triaxial.utils import louville_constant, pq_ell
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) \
-> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray, NDArray]:
""" """
Berechung einer Näherungslösung der ersten Hauptaufgabe Berechung einer Näherungslösung der ersten Hauptaufgabe
:param ell: Ellipsoid :param ell: Ellipsoid
@@ -20,6 +27,8 @@ def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float,
points = [p0] points = [p0]
alphas = [alpha0] alphas = [alpha0]
s_curr = 0.0 s_curr = 0.0
last_sigma = None
last_p = None
while s_curr < s: while s_curr < s:
ds_step = min(ds, s - s_curr) ds_step = min(ds, s - s_curr)
@@ -29,22 +38,33 @@ def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float,
p1 = points[-1] p1 = points[-1]
alpha1 = alphas[-1] alpha1 = alphas[-1]
sigma = func_sigma_ell(ell, p1, alpha1) p, q = pq_ell(ell, p1)
if last_p is not None and np.dot(p, last_p) < 0:
p = -p
q = -q
last_p = p
sigma = p * sin(alpha1) + q * cos(alpha1)
if last_sigma is not None and np.dot(sigma, last_sigma) < 0:
sigma = -sigma
alpha1 += np.pi
alpha1 = wrap_0_2pi(alpha1)
p2 = p1 + ds_step * sigma p2 = p1 + ds_step * sigma
p2 = ell.point_onto_ellipsoid(p2) p2 = ell.point_onto_ellipsoid(p2)
dalpha = 1e-6 dalpha = 1e-9
l2 = louville_constant(ell, p2, alpha1) l2 = louville_constant(ell, p2, alpha1)
dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha
alpha2 = alpha1 + (l0 - l2) / dl_dalpha if abs(dl_dalpha) < 1e-20:
alpha2 = alpha1 + 0
else:
alpha2 = alpha1 + (l0 - l2) / dl_dalpha
points.append(p2) points.append(p2)
alphas.append(alpha2) alphas.append(wrap_0_2pi(alpha2))
ds_step = np.linalg.norm(p2 - p1) ds_step = np.linalg.norm(p2 - p1)
s_curr += ds_step s_curr += ds_step
if s_curr > 10000000: last_sigma = sigma
pass pass
if all_points: if all_points:
return points[-1], alphas[-1], np.array(points), np.array(alphas) return points[-1], alphas[-1], np.array(points), np.array(alphas)
@@ -78,11 +98,11 @@ def show_points(points: NDArray, p0: NDArray, p1: NDArray):
if __name__ == '__main__': if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("BursaSima1980round") ell = EllipsoidTriaxial.init_name("KarneyTest2024")
P0 = ell.para2cart(0.2, 0.3) P0 = ell.ell2cart(wu.deg2rad(15), wu.deg2rad(15))
alpha0 = wu.deg2rad(35) alpha0 = wu.deg2rad(270)
s = 13000000 s = 1
P1_app, alpha1_app, points, alphas = gha1_approx(ell, P0, alpha0, s, ds=10000, all_points=True) P1_app, alpha1_app, points, alphas = gha1_approx(ell, P0, alpha0, s, ds=0.1, all_points=True)
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=60, maxPartCircum=16) # P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=40, maxPartCircum=32)
show_points(points, P0, P1_ana) # print(np.linalg.norm(P1_app - P1_ana))
print(np.linalg.norm(P1_app - P1_ana)) # show_points(points, P0, P0)

View File

@@ -1,15 +1,16 @@
from typing import Callable, List, Tuple
import numpy as np import numpy as np
from numpy import sin, cos, arctan2 from numpy import arctan2, cos, sin
import ellipsoide
import runge_kutta as rk
import winkelumrechnungen as wu
import GHA_triaxial.numeric_examples_karney as ne_karney
from GHA_triaxial.gha1_ana import gha1_ana
from ellipsoide import EllipsoidTriaxial
from typing import Callable, Tuple, List
from numpy.typing import NDArray from numpy.typing import NDArray
import GHA_triaxial.numeric_examples_karney as ne_karney
import runge_kutta as rk
import winkelumrechnungen as wu
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.utils import alpha_ell2para, pq_ell from GHA_triaxial.utils import alpha_ell2para, pq_ell
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def buildODE(ell: EllipsoidTriaxial) -> Callable: def buildODE(ell: EllipsoidTriaxial) -> Callable:
@@ -75,8 +76,11 @@ def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, nu
alpha1 = arctan2(P, Q) alpha1 = arctan2(P, Q)
if alpha1 < 0: alpha1 = wrap_0_2pi(alpha1)
alpha1 += 2 * np.pi
_, _, h = ell.cart2geod(point1, "ligas3")
if h > 1e-5:
raise Exception("GHA1_num: explodiert, Punkt liegt nicht mehr auf dem Ellipsoid")
if all_points: if all_points:
return point1, alpha1, werte return point1, alpha1, werte
@@ -104,7 +108,7 @@ if __name__ == "__main__":
# diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360) # diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
# print(diffs_panou) # print(diffs_panou)
ell: EllipsoidTriaxial = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024") ell: EllipsoidTriaxial = EllipsoidTriaxial.init_name("KarneyTest2024")
diffs_karney = [] diffs_karney = []
# examples_karney = ne_karney.get_examples((30499, 30500, 40500)) # examples_karney = ne_karney.get_examples((30499, 30500, 40500))
examples_karney = ne_karney.get_random_examples(20) examples_karney = ne_karney.get_random_examples(20)

View File

@@ -1,12 +1,13 @@
import numpy as np
from ellipsoide import EllipsoidTriaxial
from GHA_triaxial.gha2_num import gha2_num
import plotly.graph_objects as go
import winkelumrechnungen as wu
from numpy.typing import NDArray
from typing import Tuple from typing import Tuple
import numpy as np
import plotly.graph_objects as go
from numpy.typing import NDArray
import winkelumrechnungen as wu
from GHA_triaxial.gha2_num import gha2_num
from GHA_triaxial.utils import sigma2alpha from GHA_triaxial.utils import sigma2alpha
from ellipsoid_triaxial import EllipsoidTriaxial
def gha2_approx(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]: def gha2_approx(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]:

View File

@@ -1,420 +1,643 @@
import numpy as np
from ellipsoide import EllipsoidTriaxial
import runge_kutta as rk
from typing import Tuple from typing import Tuple
import numpy as np
from numpy.typing import NDArray from numpy.typing import NDArray
from utils_angle import arccot, cot, wrap_to_pi import GHA_triaxial.numeric_examples_karney as ne_karney
import GHA_triaxial.numeric_examples_panou as ne_panou
import ausgaben as aus
import winkelumrechnungen as wu
from ellipsoid_triaxial import EllipsoidTriaxial
from runge_kutta import rk4, rk4_end, rk4_integral
from utils_angle import cot, wrap_0_2pi, wrap_mpi_pi
def norm_a(a: float) -> float:
a = float(a) % (2 * np.pi)
return a
def azimut(E: float, G: float, dbeta_du: float, dlamb_du: float) -> float:
north = np.sqrt(E) * dbeta_du
east = np.sqrt(G) * dlamb_du
return norm_a(np.arctan2(east, north))
def sph_azimuth(beta1, lam1, beta2, lam2): def sph_azimuth(beta1, lam1, beta2, lam2):
# sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß) dlam = wrap_mpi_pi(lam2 - lam1)
dlam = wrap_to_pi(lam2 - lam1)
y = np.sin(dlam) * np.cos(beta2) y = np.sin(dlam) * np.cos(beta2)
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam) x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
a = np.arctan2(y, x) # (-pi, pi] a = np.arctan2(y, x)
if a < 0: if a < 0:
a += 2 * np.pi a += 2 * np.pi
return a return a
def BETA_LAMBDA(beta, lamb):
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
LAMBDA = (ell.ax**2 * np.sin(lamb)**2 + ell.ay**2 * np.cos(lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)
# Erste Ableitungen von ΒETA und LAMBDA
BETA_ = (ell.ax**2 * ell.Ey**2 * np.sin(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2
LAMBDA_ = - (ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2
# Zweite Ableitungen von ΒETA und LAMBDA
BETA__ = ((2 * ell.ax**2 * ell.Ey**4 * np.sin(2*beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**3) + ((2 * ell.ax**2 * ell.Ey**2 * np.cos(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2)
LAMBDA__ = (((2 * ell.b**2 * ell.Ee**4 * np.sin(2*lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**3) -
((2 * ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2))
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
F = 0
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
# Erste Ableitungen von E und G
E_beta = BETA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - BETA * ell.Ey**2 * np.sin(2*beta)
E_lamb = BETA * ell.Ee**2 * np.sin(2*lamb)
G_beta = - LAMBDA * ell.Ey**2 * np.sin(2*beta)
G_lamb = LAMBDA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + LAMBDA * ell.Ee**2 * np.sin(2*lamb)
# Zweite Ableitungen von E und G
E_beta_beta = BETA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - 2 * BETA_ * ell.Ey**2 * np.sin(2*beta) - 2 * BETA * ell.Ey**2 * np.cos(2*beta)
E_beta_lamb = BETA_ * ell.Ee**2 * np.sin(2*lamb)
E_lamb_lamb = 2 * BETA * ell.Ee**2 * np.cos(2*lamb)
G_beta_beta = - 2 * LAMBDA * ell.Ey**2 * np.cos(2*beta)
G_beta_lamb = - LAMBDA_ * ell.Ey**2 * np.sin(2*beta)
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
return (BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb)
def p_coef(beta, lamb):
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
p_3 = - 0.5 * (E_lamb / G)
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
p_0 = 0.5 * (G_beta / E)
p_33 = - 0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G ** 2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G ** 2)) - 0.5 * ((E * E_beta_beta - E_beta * E_beta) / (E ** 2))
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2)) - ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2))
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E ** 2))
return (BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00)
def buildODElamb():
def ODE(lamb, v):
beta, beta_p, X3, X4 = v
(BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
return np.array([dbeta, dbeta_p, dX3, dX4])
return ODE
def q_coef(beta, lamb):
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
q_3 = - 0.5 * (G_beta / E)
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
q_0 = 0.5 * (E_lamb / G)
q_33 = - 0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E ** 2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E ** 2)) - 0.5 * ((G * G_lamb_lamb - G_lamb * G_lamb) / (G ** 2))
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2)) - ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2))
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G ** 2))
return (BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00)
def buildODEbeta():
def ODE(beta, v):
lamb, lamb_p, Y3, Y4 = v
(BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
dlamb = lamb_p
dlamb_p = q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4])
return ODE
# Panou 2013 # Panou 2013
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float, def gha2_num(
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False ell: EllipsoidTriaxial,
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]: beta_0: float,
lamb_0: float,
beta_1: float,
lamb_1: float,
n: int = 16000,
epsilon: float = 10**-12,
iter_max: int = 30,
all_points: bool = False,
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
""" """
:param ell: Ellipsoid
:param ell: triaxiales Ellipsoid :param beta_0: Beta Punkt 0
:param beta_1: reduzierte ellipsoidische Breite Punkt 1 :param lamb_0: Lambda Punkt 0
:param lamb_1: elllipsoidische Länge Punkt 1 :param beta_1: Beta Punkt 1
:param beta_2: reduzierte ellipsoidische Breite Punkt 2 :param lamb_1: Lambda Punkt 1
:param lamb_2: elllipsoidische Länge Punkt 2
:param n: Anzahl Schritte :param n: Anzahl Schritte
:param epsilon: :param epsilon: Genauigkeit
:param iter_max: Maximale Anzhal Iterationen :param iter_max: Maximale Iterationen
:param all_points: :param all_points: Ausgabe aller Punkte
:return: :return: Azimut Startpunkt, Azumit Zielpunkt, Strecke
""" """
# h_x, h_y, h_e entsprechen E_x, E_y, E_e ax2 = float(ell.ax) * float(ell.ax)
ay2 = float(ell.ay) * float(ell.ay)
b2 = float(ell.b) * float(ell.b)
Ex2 = float(ell.Ex) * float(ell.Ex)
Ey2 = float(ell.Ey) * float(ell.Ey)
Ee2 = float(ell.Ee) * float(ell.Ee)
Ey4 = Ey2 * Ey2
Ee4 = Ee2 * Ee2
two_pi = 2.0 * np.pi
if lamb_1 != lamb_2: # Berechnung Koeffizienten, Gaußschen Fundamentalgrößen 1. Ordnung sowie deren Ableitungen
N = n def BETA_LAMBDA(beta, lamb):
dlamb = lamb_2 - lamb_1 sb = np.sin(beta)
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2) cb = np.cos(beta)
sl = np.sin(lamb)
cl = np.cos(lamb)
sb2 = sb * sb
cb2 = cb * cb
sl2 = sl * sl
cl2 = cl * cl
s2b = 2.0 * sb * cb
c2b = cb2 - sb2
s2l = 2.0 * sl * cl
c2l = cl2 - sl2
denB = Ex2 - Ey2 * sb2
denL = Ex2 - Ee2 * cl2
BETA = (ay2 * sb2 + b2 * cb2) / denB
LAMBDA = (ax2 * sl2 + ay2 * cl2) / denL
BETA_ = (ax2 * Ey2 * s2b) / (denB * denB)
LAMBDA_ = -(b2 * Ee2 * s2l) / (denL * denL)
BETA__ = (2.0 * ax2 * Ey4 * (s2b * s2b)) / (denB * denB * denB) + (2.0 * ax2 * Ey2 * c2b) / (
denB * denB
)
LAMBDA__ = (2.0 * b2 * Ee4 * (s2l * s2l)) / (denL * denL * denL) - (2.0 * b2 * Ee2 * s2l) / (
denL * denL
)
Q = Ey2 * cb2 + Ee2 * sl2
E = BETA * Q
G = LAMBDA * Q
E_beta = BETA_ * Q - BETA * Ey2 * s2b
E_lamb = BETA * Ee2 * s2l
G_beta = -LAMBDA * Ey2 * s2b
G_lamb = LAMBDA_ * Q + LAMBDA * Ee2 * s2l
E_beta_beta = BETA__ * Q - 2.0 * BETA_ * Ey2 * s2b - 2.0 * BETA * Ey2 * c2b
E_beta_lamb = BETA_ * Ee2 * s2l
E_lamb_lamb = 2.0 * BETA * Ee2 * c2l
G_beta_beta = -2.0 * LAMBDA * Ey2 * c2b
G_beta_lamb = -LAMBDA_ * Ey2 * s2b
G_lamb_lamb = LAMBDA__ * Q + 2.0 * LAMBDA_ * Ee2 * s2l + 2.0 * LAMBDA * Ee2 * c2l
return (
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
)
# Berechnung der ODE Koeffizienten für Fall 1 (lambda_0 != lambda_1)
def p_coef(beta, lamb):
(
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
) = BETA_LAMBDA(beta, lamb)
p_3 = -0.5 * (E_lamb / G)
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
p_0 = 0.5 * (G_beta / E)
p_33 = -0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G**2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G**2)) - 0.5 * (
(E * E_beta_beta - E_beta * E_beta) / (E**2)
)
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G**2)) - (
(E * E_beta_lamb - E_beta * E_lamb) / (E**2)
)
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E**2))
return BETA, LAMBDA, E, G, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00
# Berechnung der ODE Koeffizienten für Fall 2 (lambda_0 == lambda_1)
def q_coef(beta, lamb):
(
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
) = BETA_LAMBDA(beta, lamb)
q_3 = -0.5 * (G_beta / E)
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
q_0 = 0.5 * (E_lamb / G)
q_33 = -0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E**2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E**2)) - 0.5 * (
(G * G_lamb_lamb - G_lamb * G_lamb) / (G**2)
)
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E**2)) - (
(G * G_beta_lamb - G_beta * G_lamb) / (G**2)
)
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G**2))
return BETA, LAMBDA, E, G, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00
def integrand_lambda(lamb, y):
beta = y[0]
beta_p = y[1]
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
return np.sqrt(E * beta_p**2 + G)
def integrand_beta(beta, y):
lamb = y[0]
lamb_p = y[1]
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
return np.sqrt(E + G * lamb_p**2)
def solve_lambda_branch(beta0, lamb0, beta1, lamb1_target, N_run, N_newt, it_max):
dlamb = float(lamb1_target - lamb0)
if abs(dlamb) < 1e-15: if abs(dlamb) < 1e-15:
beta_0 = 0.0 return None
else:
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
ode_lamb = buildODElamb() sgn = 1.0 if dlamb >= 0.0 else -1.0
def ode_lamb(lamb, v):
beta, beta_p, X3, X4 = v
(_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
) * X4
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
alpha0_sph = sph_azimuth(beta0, lamb0, beta1, lamb1_target)
(_, _, E0, G0, *_) = BETA_LAMBDA(beta0, lamb0)
beta_p0_sph = np.sqrt(G0 / E0) * cot(alpha0_sph)
def solve_newton(beta_p0_init: float): def solve_newton(beta_p0_init: float):
beta_p0 = float(beta_p0_init) beta_p0 = float(beta_p0_init)
for _ in range(it_max):
v0 = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
_, y_end = rk4_end(ode_lamb, lamb0, v0, dlamb, N_newt)
for _ in range(iter_max): beta_end, _, X3_end, _ = y_end
startwerte = np.array([beta_1, beta_p0, 0.0, 1.0], dtype=float) delta = beta_end - beta1
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
beta_end, beta_p_end, X3_end, X4_end = states[-1]
delta = beta_end - beta_2
if abs(delta) < epsilon: if abs(delta) < epsilon:
return True, beta_p0, lamb_list, states return True, beta_p0
d_beta_end_d_beta0 = X3_end if abs(X3_end) < 1e-20:
if abs(d_beta_end_d_beta0) < 1e-20: return False, None
return False, None, None, None
step = delta / d_beta_end_d_beta0 step = delta / X3_end
max_step = 0.5 step = float(np.clip(step, -0.5, 0.5))
if abs(step) > max_step: beta_p0 -= step
step = np.sign(step) * max_step
beta_p0 = beta_p0 - step return False, None
return False, None, None, None
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
guesses = [
beta_p0_sph,
0.5 * beta_p0_sph,
2.0 * beta_p0_sph,
-beta_p0_sph,
-0.5 * beta_p0_sph,
]
seeds = [beta_p0_sph, -beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
best = None best = None
for g in guesses: for seed in seeds:
ok, beta_p0_sol, lamb_list_cand, states_cand = solve_newton(g) ok, sol = solve_newton(seed)
if not ok: if not ok:
continue continue
v0_sol = np.array([beta0, sol, 0.0, 1.0], dtype=float)
beta_arr_c = np.array([st[0] for st in states_cand], dtype=float) _, _, s_val = rk4_integral(ode_lamb, lamb0, v0_sol, dlamb, N_run, integrand_lambda)
beta_p_arr_c = np.array([st[1] for st in states_cand], dtype=float) if (best is None) or (s_val < best[0]):
lamb_arr_c = np.array(lamb_list_cand, dtype=float) best = (float(s_val), float(sol))
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr_c[i], lamb_arr_c[i])
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi)
h = abs(dlamb) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s_cand = h / 3.0 * S
else:
s_cand = np.trapz(integrand, dx=h)
if (best is None) or (s_cand < best[0]):
best = (s_cand, beta_p0_sol, lamb_list_cand, states_cand)
if best is None: if best is None:
raise RuntimeError("Keine Multi-Start-Variante konvergiert.") return None
s_best, beta_0, lamb_list, werte = best return best[0], best[1], sgn, dlamb, ode_lamb
beta_arr = np.zeros(N + 1) def solve_beta_branch(beta0, lamb0, beta1, lamb1, N_run, N_newt, it_max):
# lamb_arr = np.zeros(N + 1) dbeta = float(beta1 - beta0)
lamb_arr = np.array(lamb_list) if abs(dbeta) < 1e-15:
beta_p_arr = np.zeros(N + 1) return None
for i, state in enumerate(werte): sgn = 1.0 if dbeta >= 0.0 else -1.0
# lamb_arr[i] = state[0]
# beta_arr[i] = state[1]
# beta_p_arr[i] = state[2]
beta_arr[i] = state[0]
beta_p_arr[i] = state[1]
(_, _, E1, G1, def ode_beta(beta, v):
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0]) lamb, lamb_p, Y3, Y4 = v
(_, _, E2, G2, (_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0]) dlamb = lamb_p
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1]) dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
integrand = np.zeros(N + 1) def solve_newton(lamb_p0_init: float):
for i in range(N + 1): lamb_p0 = float(lamb_p0_init)
(_, _, Ei, Gi, for _ in range(it_max):
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i]) v0 = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi) _, y_end = rk4_end(ode_beta, beta0, v0, dbeta, N_newt)
h = abs(dlamb) / N lamb_end, _, Y3_end, _ = y_end
if N % 2 == 0: delta = lamb_end - lamb1
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \ if abs(delta) < epsilon:
+ 2.0 * np.sum(integrand[2:-1:2]) return True, lamb_p0
s = h / 3.0 * S
if abs(Y3_end) < 1e-20:
return False, None
step = delta / Y3_end
step = float(np.clip(step, -1.0, 1.0))
lamb_p0 -= step
return False, None
seeds = [0.0, 0.25, -0.25, 1.0, -1.0]
best = None
for seed in seeds:
ok, sol = solve_newton(seed)
if not ok:
continue
v0_sol = np.array([lamb0, sol, 0.0, 1.0], dtype=float)
_, _, s_val = rk4_integral(ode_beta, beta0, v0_sol, dbeta, N_run, integrand_beta)
if (best is None) or (s_val < best[0]):
best = (float(s_val), float(sol))
if best is None:
return None
return best[0], best[1], sgn, dbeta, ode_beta
lamb0 = float(wrap_mpi_pi(lamb_0))
lamb1 = float(wrap_mpi_pi(lamb_1))
beta0 = float(beta_0)
beta1 = float(beta_1)
N_full = int(n)
if N_full < 2:
N_full = 2
if all_points:
N_fast = min(2000, max(400, N_full // 10))
else:
N_fast = min(1500, max(300, N_full // 12))
k0 = int(np.round((lamb0 - lamb1) / two_pi))
lamb_targets = []
for dk in (-1, 0, 1):
lt = lamb1 + two_pi * float(k0 + dk)
dl = lt - lamb0
if abs(dl) <= np.pi + 1e-12:
lamb_targets.append(float(lt))
if not lamb_targets:
lamb_targets = [float(lamb1 + two_pi * float(k0))]
best_fast = None
for lt in lamb_targets:
if abs(lt - lamb0) >= 1e-15:
res = solve_lambda_branch(beta0, lamb0, beta1, lt, N_fast, min(N_fast, 800), min(iter_max, 12))
if res is None:
continue
s_fast, beta_p0_fast, sgn_fast, dlamb_fast, _ = res
cand = ("lambda", s_fast, lt, beta_p0_fast, sgn_fast, dlamb_fast)
else: else:
s = np.trapz(integrand, dx=h) res = solve_beta_branch(beta0, lamb0, beta1, lamb1, N_fast, min(N_fast, 800), min(iter_max, 12))
if res is None:
continue
s_fast, lamb_p0_fast, sgn_fast, dbeta_fast, _ = res
cand = ("beta", s_fast, lt, lamb_p0_fast, sgn_fast, dbeta_fast)
beta0 = beta_arr[0] if (best_fast is None) or (cand[1] < best_fast[1]):
lamb0 = lamb_arr[0] best_fast = cand
c = np.sqrt(
(np.cos(beta0) ** 2 + (ell.Ee**2 / ell.Ex**2) * np.sin(beta0) ** 2) * np.sin(alpha_1) ** 2 if best_fast is None:
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2 if abs(lamb1 - lamb0) >= 1e-15:
) best_fast = ("lambda", 0.0, lamb1, None, 1.0, float(lamb1 - lamb0))
else:
best_fast = ("beta", 0.0, lamb1, None, 1.0, float(beta1 - beta0))
if best_fast[0] == "lambda":
lt = float(best_fast[2])
dlamb = float(lt - lamb0)
sgn = 1.0 if dlamb >= 0.0 else -1.0
def ode_lamb(lamb, v):
beta, beta_p, X3, X4 = v
(_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
) * X4
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
alpha0_sph = sph_azimuth(beta0, lamb0, beta1, lt)
(_, _, E0, G0, *_) = BETA_LAMBDA(beta0, lamb0)
beta_p0_sph = np.sqrt(G0 / E0) * cot(alpha0_sph)
beta_p0_init = best_fast[3]
if beta_p0_init is None:
beta_p0_init = beta_p0_sph
beta_p0_init = float(beta_p0_init)
N_newton = min(N_full, 4000)
def solve_newton_refine(beta_p0_init: float):
beta_p0 = float(beta_p0_init)
for _ in range(iter_max):
v0 = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
_, y_end = rk4_end(ode_lamb, lamb0, v0, dlamb, N_newton)
beta_end, _, X3_end, _ = y_end
delta = beta_end - beta1
if abs(delta) < epsilon:
return True, beta_p0
if abs(X3_end) < 1e-20:
return False, None
step = delta / X3_end
step = float(np.clip(step, -0.5, 0.5))
beta_p0 -= step
return False, None
ok, beta_p0_sol = solve_newton_refine(beta_p0_init)
if not ok:
seeds = [beta_p0_sph, -beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
best = None
for seed in seeds:
ok_s, sol_s = solve_newton_refine(seed)
if not ok_s:
continue
v0_s = np.array([beta0, sol_s, 0.0, 1.0], dtype=float)
_, _, s_s = rk4_integral(ode_lamb, lamb0, v0_s, dlamb, min(N_full, 2000), integrand_lambda)
if (best is None) or (s_s < best[0]):
best = (float(s_s), float(sol_s))
if best is None:
raise RuntimeError("GHA2_num: Keine Startwert-Variante konvergiert (lambda-Fall)")
beta_p0_sol = best[1]
beta_p0 = float(beta_p0_sol)
v0_final = np.array([beta0, beta_p0, 0.0, 1.0], dtype=float)
if all_points: if all_points:
return alpha_1, alpha_2, s, beta_arr, lamb_arr lamb_list, states = rk4(ode_lamb, lamb0, v0_final, dlamb, N_full, False)
else: lamb_arr = np.array(lamb_list, dtype=float)
return alpha_1, alpha_2, s beta_arr = np.array([st[0] for st in states], dtype=float)
beta_p_arr = np.array([st[1] for st in states], dtype=float)
else: # lamb_1 == lamb_2 (_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
N = n (_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
dbeta = beta_2 - beta_1
if abs(dbeta) < 1e-15: alpha_0 = azimut(E_start, G_start, dbeta_du=beta_p_arr[0] * sgn, dlamb_du=1.0 * sgn)
if all_points: alpha_1 = azimut(E_end, G_end, dbeta_du=beta_p_arr[-1] * sgn, dlamb_du=1.0 * sgn)
return 0, 0, 0, np.array([]), np.array([])
integrand = np.zeros(N_full + 1, dtype=float)
for i in range(N_full + 1):
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
h = abs(dlamb) / N_full
if N_full % 2 == 0:
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(
integrand[2:-1:2]
)
s = h / 3.0 * S
else: else:
return 0, 0, 0 s = np.trapz(integrand, dx=h)
lamb_0 = 0 return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s), beta_arr, lamb_arr
ode_beta = buildODEbeta() _, y_end, s = rk4_integral(ode_lamb, lamb0, v0_final, dlamb, N_full, integrand_lambda)
beta_end, beta_p_end, _, _ = y_end
for i in range(iter_max): (_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0)
startwerte = [lamb_1, lamb_0, 0.0, 1.0] alpha_0 = azimut(E_start, G_start, dbeta_du=beta_p0 * sgn, dlamb_du=1.0 * sgn)
beta_list, werte = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False) (_, _, E_end, G_end, *_) = BETA_LAMBDA(float(beta_end), float(lamb0 + dlamb))
alpha_1 = azimut(E_end, G_end, dbeta_du=float(beta_p_end) * sgn, dlamb_du=1.0 * sgn)
beta_end = beta_list[-1] return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s)
lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
d_lamb_end_d_lambda0 = Y3_end # Fall 2 (lambda_0 == lambda_1)
delta = lamb_end - lamb_2 N = int(n)
dbeta = float(beta_1 - beta_0)
if abs(delta) < epsilon: if abs(dbeta) < 1e-15:
break if all_points:
return 0.0, 0.0, 0.0, np.array([]), np.array([])
return 0.0, 0.0, 0.0
if abs(d_lamb_end_d_lambda0) < 1e-20: sgn = 1.0 if dbeta >= 0.0 else -1.0
raise RuntimeError("Abbruch (Ableitung ~ 0).")
max_step = 1.0 def ode_beta(beta, v):
step = delta / d_lamb_end_d_lambda0 lamb, lamb_p, Y3, Y4 = v
if abs(step) > max_step: (_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
step = np.sign(step) * max_step
lamb_0 = lamb_0 - step dlamb = lamb_p
dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
beta_list, werte = rk.rk4(ode_beta, beta_1, np.array([lamb_1, lamb_0, 0.0, 1.0]), dbeta, N, False) lamb_p0 = float(best_fast[3]) if (best_fast[0] == "beta" and best_fast[3] is not None) else 0.0
# beta_arr = np.zeros(N + 1) for _ in range(iter_max):
beta_arr = np.array(beta_list) v0 = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
lamb_arr = np.zeros(N + 1) _, y_end = rk4_end(ode_beta, beta0, v0, dbeta, N)
lambda_p_arr = np.zeros(N + 1)
for i, state in enumerate(werte): lamb_end, _, Y3_end, _ = y_end
# beta_arr[i] = state[0] delta = lamb_end - lamb1
# lamb_arr[i] = state[1]
# lambda_p_arr[i] = state[2]
lamb_arr[i] = state[0]
lambda_p_arr[i] = state[1]
# Azimute if abs(delta) < epsilon:
(BETA1, LAMBDA1, E1, G1, break
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(BETA2, LAMBDA2, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0]) if abs(Y3_end) < 1e-20:
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1]) raise RuntimeError("GHA2_num: Ableitung ~ 0 im beta-Fall")
integrand = np.zeros(N + 1) step = delta / Y3_end
step = float(np.clip(step, -1.0, 1.0))
lamb_p0 -= step
v0_final = np.array([lamb0, lamb_p0, 0.0, 1.0], dtype=float)
if all_points:
beta_list, states = rk4(ode_beta, beta0, v0_final, dbeta, N, False)
beta_arr = np.array(beta_list, dtype=float)
lamb_arr = np.array([st[0] for st in states], dtype=float)
lamb_p_arr = np.array([st[1] for st in states], dtype=float)
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_0 = azimut(E_start, G_start, dbeta_du=1.0 * sgn, dlamb_du=lamb_p_arr[0] * sgn)
alpha_1 = azimut(E_end, G_end, dbeta_du=1.0 * sgn, dlamb_du=lamb_p_arr[-1] * sgn)
integrand = np.zeros(N + 1, dtype=float)
for i in range(N + 1): for i in range(N + 1):
(_, _, Ei, Gi, (_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i]) integrand[i] = np.sqrt(Ei + Gi * lamb_p_arr[i] ** 2)
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
h = abs(dbeta) / N h = abs(dbeta) / N
if N % 2 == 0: if N % 2 == 0:
S = integrand[0] + integrand[-1] \ S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(
+ 4.0 * np.sum(integrand[1:-1:2]) \ integrand[2:-1:2]
+ 2.0 * np.sum(integrand[2:-1:2]) )
s = h / 3.0 * S s = h / 3.0 * S
else: else:
s = np.trapz(integrand, dx=h) s = np.trapz(integrand, dx=h)
if all_points: return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s), beta_arr, lamb_arr
return alpha_1, alpha_2, s, beta_arr, lamb_arr
else: _, y_end, s = rk4_integral(ode_beta, beta0, v0_final, dbeta, N, integrand_beta)
return alpha_1, alpha_2, s lamb_end, lamb_p_end, _, _ = y_end
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0)
alpha_0 = azimut(E_start, G_start, dbeta_du=1.0 * sgn, dlamb_du=lamb_p0 * sgn)
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta1, float(lamb_end))
alpha_1 = azimut(E_end, G_end, dbeta_du=1.0 * sgn, dlamb_du=float(lamb_p_end) * sgn)
return float(wrap_0_2pi(alpha_0)), float(wrap_0_2pi(alpha_1)), float(s)
if __name__ == "__main__": if __name__ == "__main__":
# ell = EllipsoidTriaxial.init_name("Fiction") ell = EllipsoidTriaxial.init_name("BursaSima1980round")
# # beta1 = np.deg2rad(75) beta1 = np.deg2rad(75)
# # lamb1 = np.deg2rad(-90) lamb1 = np.deg2rad(-90)
# # beta2 = np.deg2rad(75) beta2 = np.deg2rad(75)
# # lamb2 = np.deg2rad(66) lamb2 = np.deg2rad(66)
# # a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2) a0, a1, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=100)
# # print(aus.gms("a1", a1, 4)) print(aus.gms("a0", a0, 4))
# # print(aus.gms("a2", a2, 4)) print(aus.gms("a1", a1, 4))
# # print(s) print("s: ", s)
# cart1 = ell.para2cart(0, 0) # print(aus.gms("a2", a2, 4))
# cart2 = ell.para2cart(0.4, 1.4)
# beta1, lamb1 = ell.cart2ell(cart1)
# beta2, lamb2 = ell.cart2ell(cart2)
#
# a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
# print(s) # print(s)
cart1 = ell.para2cart(0, 0)
cart2 = ell.para2cart(0.4, 1.4)
beta1, lamb1 = ell.cart2ell(cart1)
beta2, lamb2 = ell.cart2ell(cart2)
# ell = EllipsoidTriaxial.init_name("BursaSima1980round") a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
# diffs_panou = [] print(s)
# examples_panou = ne_panou.get_random_examples(4)
# for example in examples_panou: ell = EllipsoidTriaxial.init_name("BursaSima1980round")
# beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example diffs_panou = []
# P0 = ell.ell2cart(beta0, lamb0) examples_panou = ne_panou.get_random_examples(4)
# try: for example in examples_panou:
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10) beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
# diffs_panou.append( P0 = ell.ell2cart(beta0, lamb0)
# (wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num))) try:
# except: alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}") diffs_panou.append(
# diffs_panou = np.array(diffs_panou) (wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
# print(diffs_panou) except:
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
# ell = EllipsoidTriaxial.init_name("KarneyTest2024") diffs_panou = np.array(diffs_panou)
# diffs_karney = [] print(diffs_panou)
# # examples_karney = ne_karney.get_examples((30500, 40500))
# examples_karney = ne_karney.get_random_examples(2) ell = EllipsoidTriaxial.init_name("KarneyTest2024")
# for example in examples_karney: diffs_karney = []
# beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example # examples_karney = ne_karney.get_examples((30500, 40500))
# examples_karney = ne_karney.get_random_examples(2)
# try: for example in examples_karney:
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10) beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
# diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
# except: try:
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}") alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
# diffs_karney = np.array(diffs_karney) diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
# print(diffs_karney) except:
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
diffs_karney = np.array(diffs_karney)
print(diffs_karney)
pass pass

View File

@@ -1,6 +1,12 @@
import random import random
from typing import List
import winkelumrechnungen as wu import winkelumrechnungen as wu
from typing import List, Tuple from GHA_triaxial.utils import jacobi_konstante
from ellipsoid_triaxial import EllipsoidTriaxial
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
file_path = r"Karney_2024_Testset.txt"
def line2example(line: str) -> List: def line2example(line: str) -> List:
""" """
@@ -26,7 +32,7 @@ def get_random_examples(num: int, seed: int = None) -> List:
""" """
if seed is not None: if seed is not None:
random.seed(seed) random.seed(seed)
with open(r"C:\Users\moell\OneDrive\Desktop\Vorlesungen\Master-Projekt\Python_Masterprojekt\GHA_triaxial\Karney_2024_Testset.txt") as datei: with open(file_path) as datei:
lines = datei.readlines() lines = datei.readlines()
examples = [] examples = []
for i in range(num): for i in range(num):
@@ -41,7 +47,7 @@ def get_examples(l_i: List) -> List:
:param l_i: Liste von Indizes :param l_i: Liste von Indizes
:return: Liste mit Beispielen :return: Liste mit Beispielen
""" """
with open("Karney_2024_Testset.txt") as datei: with open(file_path) as datei:
lines = datei.readlines() lines = datei.readlines()
examples = [] examples = []
for i in l_i: for i in l_i:
@@ -50,5 +56,63 @@ def get_examples(l_i: List) -> List:
return examples return examples
def get_random_examples_gamma(group: str, num: int, seed: int = None, length: str = None) -> List:
"""
Zufällige Beispiele aus Karney in Gruppen nach Einteilung anhand der Jacobi-Konstanten
:param group: Gruppe
:param num: Anzahl
:param seed: Random-Seed
:param length: long oder short, sond egal
:return: Liste mit Beispielen
"""
eps = 1e-20
long_short = 2
if seed is not None:
random.seed(seed)
with open(file_path) as datei:
lines = datei.readlines()
examples = []
i = 0
while len(examples) < num and i < len(lines):
example = line2example(lines[random.randint(0, len(lines) - 1)])
if example in examples:
continue
i += 1
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
gamma = jacobi_konstante(beta0, lamb0, alpha0_ell, ell)
if group not in ["a", "b", "c", "d", "e", "de"]:
break
elif group == "a" and not 1 >= gamma >= 0.01:
continue
elif group == "b" and not 0.01 > gamma > eps:
continue
elif group == "c" and not abs(gamma) <= eps:
continue
elif group == "d" and not -eps > gamma > -1e-17:
continue
elif group == "e" and not -1e-17 >= gamma >= -1:
continue
elif group == "de" and not -eps > gamma > -1:
continue
if length == "short":
if example[6] < long_short:
examples.append(example)
elif length == "long":
if example[6] >= long_short:
examples.append(example)
else:
examples.append(example)
return examples
if __name__ == "__main__": if __name__ == "__main__":
get_random_examples(10) examples_a = get_random_examples_gamma("a", 10, 42)
examples_b = get_random_examples_gamma("b", 10, 42)
examples_c = get_random_examples_gamma("c", 10, 42)
examples_d = get_random_examples_gamma("d", 10, 42)
examples_e = get_random_examples_gamma("e", 10, 42)
pass

View File

@@ -1,11 +1,13 @@
from __future__ import annotations
from typing import Tuple from typing import Tuple
import numpy as np import numpy as np
from numpy import arctan2, sin, cos, sqrt from numpy import arctan2, cos, sin, sqrt
from numpy._typing import NDArray
from numpy.typing import NDArray from numpy.typing import NDArray
from ellipsoide import EllipsoidTriaxial from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_0_2pi
def sigma2alpha(ell: EllipsoidTriaxial, sigma: NDArray, point: NDArray) -> float: def sigma2alpha(ell: EllipsoidTriaxial, sigma: NDArray, point: NDArray) -> float:
@@ -21,7 +23,7 @@ def sigma2alpha(ell: EllipsoidTriaxial, sigma: NDArray, point: NDArray) -> float
Q = float(q @ sigma) Q = float(q @ sigma)
alpha = arctan2(P, Q) alpha = arctan2(P, Q)
return alpha return wrap_0_2pi(alpha)
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> Tuple[float, float, float]: def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> Tuple[float, float, float]:
@@ -43,10 +45,10 @@ def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para) alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell) sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12: if np.linalg.norm(sigma_para - sigma_ell) > 1e-7:
raise Exception("Alpha Umrechnung fehlgeschlagen") raise Exception("alpha_para2ell: Differenz in den Richtungsableitungen")
return beta, lamb, alpha_ell return beta, lamb, wrap_0_2pi(alpha_ell)
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> Tuple[float, float, float]: def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> Tuple[float, float, float]:
@@ -68,10 +70,10 @@ def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell:
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell) alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para) sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-9: if np.linalg.norm(sigma_para - sigma_ell) > 1e-7:
raise Exception("Alpha Umrechnung fehlgeschlagen") raise Exception("alpha_ell2para: Differenz in den Richtungsableitungen")
return u, v, alpha_para return u, v, wrap_0_2pi(alpha_para)
def func_sigma_ell(ell: EllipsoidTriaxial, point: NDArray, alpha_ell: float) -> NDArray: def func_sigma_ell(ell: EllipsoidTriaxial, point: NDArray, alpha_ell: float) -> NDArray:
@@ -124,25 +126,26 @@ def pq_ell(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
:param point: Punkt :param point: Punkt
:return: p und q :return: p und q
""" """
x, y, z = point
n = ell.func_n(point) n = ell.func_n(point)
beta, lamb = ell.cart2ell(point) beta, lamb = ell.cart2ell(point)
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2 if abs(cos(beta)) < 1e-15 and abs(np.sin(lamb)) < 1e-15:
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2 if beta > 0:
p = np.array([0, -1, 0])
else:
p = np.array([0, 1, 0])
else:
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
c1 = x ** 2 + y ** 2 + z ** 2 - (ell.ax ** 2 + ell.ay ** 2 + ell.b ** 2) _, t2 = ell.func_t12(point)
c0 = (ell.ax ** 2 * ell.ay ** 2 + ell.ax ** 2 * ell.b ** 2 + ell.ay ** 2 * ell.b ** 2 -
(ell.ay ** 2 + ell.b ** 2) * x ** 2 - (ell.ax ** 2 + ell.b ** 2) * y ** 2 - (
ell.ax ** 2 + ell.ay ** 2) * z ** 2)
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
F = ell.Ey ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(lamb) ** 2 F = ell.Ey ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(lamb) ** 2
p1 = -sqrt(L / (F * t2)) * ell.ax / ell.Ex * sqrt(B) * sin(lamb) p1 = -sqrt(L / (F * t2)) * ell.ax / ell.Ex * sqrt(B) * sin(lamb)
p2 = sqrt(L / (F * t2)) * ell.ay * cos(beta) * cos(lamb) p2 = sqrt(L / (F * t2)) * ell.ay * cos(beta) * cos(lamb)
p3 = 1 / sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * sin(beta) * sin(2 * lamb) p3 = 1 / sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * sin(beta) * sin(2 * lamb)
p = np.array([p1, p2, p3]) p = np.array([p1, p2, p3])
p = p / np.linalg.norm(p) p = p / np.linalg.norm(p)
q = np.array([n[1] * p[2] - n[2] * p[1], q = np.array([n[1] * p[2] - n[2] * p[1],
n[2] * p[0] - n[0] * p[2], n[2] * p[0] - n[0] * p[2],
n[0] * p[1] - n[1] * p[0]]) n[0] * p[1] - n[1] * p[0]])
@@ -171,13 +174,28 @@ def pq_para(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
q[2] * n[0] - q[0] * n[2], q[2] * n[0] - q[0] * n[2],
q[0] * n[1] - q[1] * n[0]]) q[0] * n[1] - q[1] * n[0]])
t1 = np.dot(n, q)
t2 = np.dot(n, p)
t3 = np.dot(p, q)
if not (t1 < 1e-10 or t1 > 1-1e-10) and not (t2 < 1e-10 or t2 > 1-1e-10) and not (t3 < 1e-10 or t3 > 1-1e-10):
raise Exception("Fehler in den normierten Vektoren")
p = p / np.linalg.norm(p) p = p / np.linalg.norm(p)
q = q / np.linalg.norm(q) q = q / np.linalg.norm(q)
return p, q return p, q
def jacobi_konstante(beta: float, omega: float, alpha: float, ell: EllipsoidTriaxial) -> float:
"""
Jacobi-Konstante nach Karney (2025), Gl. (14)
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param alpha: Azimut alpha
:param ell: Ellipsoid
:return: Jacobi-Konstante
"""
gamma_jacobi = float((ell.k ** 2) * (np.cos(beta) ** 2) * (np.sin(alpha) ** 2) - (ell.k_ ** 2) * (np.sin(omega) ** 2) * (np.cos(alpha) ** 2))
return gamma_jacobi
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
alpha_para = 0
u, v = ell.ell2para(np.pi/2, 0)
alpha_ell = alpha_para2ell(ell, u, v, alpha_para)
pass

File diff suppressed because it is too large Load Diff

View File

@@ -1,34 +0,0 @@
import numpy as np
from ellipsoide import EllipsoidBiaxial
from GHA_biaxial.bessel import gha1 as gha1_bessel
from GHA_biaxial.gauss import gha1 as gha1_gauss
from GHA_biaxial.rk import gha1 as gha1_rk
from GHA_biaxial.gauss import gha2 as gha2_gauss
re = EllipsoidBiaxial.init_name("Bessel")
# phi0 = 0.6
# lamb0 = 1.2
# alpha0 = 0.45
# s = 123456
#
# values_bessel = gha1_bessel(re, phi0, lamb0, alpha0, s)
# alpha1_bessel = values_bessel[-1]
# p1_bessel = re.bi_ell2cart(values_bessel[0], values_bessel[1], 0)
#
# values_gauss1 = gha1_gauss(re, phi0, lamb0, alpha0, s)
# alpha1_gauss1 = values_gauss1[-1]
# p1_gauss = re.bi_ell2cart(values_gauss1[0], values_gauss1[1], 0)
#
# values_rk = gha1_rk(re, phi0, lamb0 , alpha0, s, 10000)
# alpha1_rk = values_rk[-1]
# p1_rk = re.bi_ell2cart(values_rk[0], values_rk[1], 0)
#
# alpha0_gauss, alpha1_gauss2, s_gauss = gha2_gauss(re, phi0, lamb0, values_gauss1[0], values_gauss1[1])
phi0 = 0.6
lamb0 = 1.2
cart = re.bi_ell2cart(phi0, lamb0, 0)
ell = re.bi_cart2ell(cart)
pass

View File

@@ -10,7 +10,7 @@ def xyz(x: float, y: float, z: float, stellen: int) -> str:
:param stellen: Anzahl Nachkommastellen :param stellen: Anzahl Nachkommastellen
:return: String zur Ausgabe der Koordinaten :return: String zur Ausgabe der Koordinaten
""" """
return f"""x = {(round(x,stellen))} m y = {(round(y,stellen))} m z = {(round(z,stellen))} m""" return f"""x = {(round(x, stellen))} m y = {(round(y, stellen))} m z = {(round(z, stellen))} m"""
def gms(name: str, rad: float, stellen: int) -> str: def gms(name: str, rad: float, stellen: int) -> str:
@@ -21,5 +21,5 @@ def gms(name: str, rad: float, stellen: int) -> str:
:param stellen: Anzahl Nachkommastellen :param stellen: Anzahl Nachkommastellen
:return: String zur Ausgabe des Winkels :return: String zur Ausgabe des Winkels
""" """
gms = wu.rad2gms(rad) values = wu.rad2gms(rad)
return f"{name} = {int(gms[0])}° {int(gms[1])}' {round(gms[2],stellen):.{stellen}f}''" return f"{name} = {int(values[0])}° {int(values[1])}' {round(values[2], stellen):.{stellen}f}''"

File diff suppressed because it is too large Load Diff

View File

@@ -1,116 +1,20 @@
import numpy as np
from numpy import sin, cos, arctan, arctan2, sqrt, pi, arccos
import winkelumrechnungen as wu
import jacobian_Ligas
import matplotlib.pyplot as plt
from typing import Tuple
from numpy.typing import NDArray
import math import math
from typing import Tuple
import numpy as np
from numpy import arccos, arctan, arctan2, cos, pi, sin, sqrt
from numpy.typing import NDArray
class EllipsoidBiaxial: import jacobian_Ligas
def __init__(self, a: float, b: float): from utils_angle import wrap_mhalfpi_halfpi, wrap_mpi_pi
self.a = a
self.b = b
self.c = a ** 2 / b
self.e = sqrt(a ** 2 - b ** 2) / a
self.e_ = sqrt(a ** 2 - b ** 2) / b
@classmethod
def init_name(cls, name: str):
if name == "Bessel":
a = 6377397.15508
b = 6356078.96290
return cls(a, b)
elif name == "Hayford":
a = 6378388
f = 1/297
b = a - a * f
return cls(a, b)
elif name == "Krassowski":
a = 6378245
f = 298.3
b = a - a * f
return cls(a, b)
elif name == "WGS84":
a = 6378137
f = 298.257223563
b = a - a * f
return cls(a, b)
@classmethod
def init_af(cls, a: float, f: float):
b = a - a * f
return cls(a, b)
V = lambda self, phi: sqrt(1 + self.e_ ** 2 * cos(phi) ** 2)
M = lambda self, phi: self.c / self.V(phi) ** 3
N = lambda self, phi: self.c / self.V(phi)
beta2psi = lambda self, beta: np.arctan2(self.a * np.sin(beta), self.b * np.cos(beta))
beta2phi = lambda self, beta: np.arctan2(self.a ** 2 * np.sin(beta), self.b ** 2 * np.cos(beta))
psi2beta = lambda self, psi: np.arctan2(self.b * np.sin(psi), self.a * np.cos(psi))
psi2phi = lambda self, psi: np.arctan2(self.a * np.sin(psi), self.b * np.cos(psi))
phi2beta = lambda self, phi: np.arctan2(self.b**2 * np.sin(phi), self.a**2 * np.cos(phi))
phi2psi = lambda self, phi: np.arctan2(self.b * np.sin(phi), self.a * np.cos(phi))
phi2p = lambda self, phi: self.N(phi) * cos(phi)
def bi_cart2ell(self, point: NDArrayself, Eh: float = 0.001, Ephi: float = wu.gms2rad([0, 0, 0.001])) -> Tuple[float, float, float]:
"""
Umrechnung von kartesischen in ellipsoidische Koordinaten auf einem Rotationsellipsoid
# TODO: Quelle
:param point: Punkt in kartesischen Koordinaten
:param Eh: Grenzwert für die Höhe
:param Ephi: Grenzwert für die Breite
:return: ellipsoidische Breite, Länge, geodätische Höhe
"""
x, y, z = point
lamb = arctan2(y, x)
p = sqrt(x**2+y**2)
phi_null = arctan2(z, p*(1 - self.e**2))
hi = [0]
phii = [phi_null]
i = 0
while True:
N = self.a / sqrt(1 - self.e**2 * sin(phii[i])**2)
h = p / cos(phii[i]) - N
phi = arctan2(z, p * (1-(self.e**2*N) / (N+h)))
hi.append(h)
phii.append(phi)
dh = abs(hi[i]-h)
dphi = abs(phii[i]-phi)
i = i+1
if dh < Eh:
if dphi < Ephi:
break
return phi, lamb, h
def bi_ell2cart(self, phi: float, lamb: float, h: float) -> NDArray:
"""
Umrechnung von ellipsoidischen in kartesische Koordinaten auf einem Rotationsellipsoid
# TODO: Quelle
:param phi: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:param h: geodätische Höhe
:return: Punkt in kartesischen Koordinaten
"""
W = sqrt(1 - self.e**2 * sin(phi)**2)
N = self.a / W
x = (N+h) * cos(phi) * cos(lamb)
y = (N+h) * cos(phi) * sin(lamb)
z = (N * (1-self.e**2) + h) * sin(phi)
return np.array([x, y, z])
class EllipsoidTriaxial: class EllipsoidTriaxial:
"""
Klasse für dreiachsige Ellipsoide
Parameter: Formparameter
Funktionen: Koordinatenumrechnungen
"""
def __init__(self, ax: float, ay: float, b: float): def __init__(self, ax: float, ay: float, b: float):
self.ax = ax self.ax = ax
self.ay = ay self.ay = ay
@@ -124,14 +28,19 @@ class EllipsoidTriaxial:
self.Ex = sqrt(self.ax**2 - self.b**2) self.Ex = sqrt(self.ax**2 - self.b**2)
self.Ey = sqrt(self.ay**2 - self.b**2) self.Ey = sqrt(self.ay**2 - self.b**2)
self.Ee = sqrt(self.ax**2 - self.ay**2) self.Ee = sqrt(self.ax**2 - self.ay**2)
nenner = sqrt(max(self.ax * self.ax - self.b * self.b, 0.0))
self.k = sqrt(max(self.ay * self.ay - self.b * self.b, 0.0)) / nenner
self.k_ = sqrt(max(self.ax * self.ax - self.ay * self.ay, 0.0)) / nenner
self.e = sqrt(max(self.ax * self.ax - self.b * self.b, 0.0)) / self.ay
@classmethod @classmethod
def init_name(cls, name: str): def init_name(cls, name: str) -> EllipsoidTriaxial:
""" """
Mögliche Ellipsoide: BursaFialova1993, BursaSima1980, BursaSima1980round, Eitschberger1978, Bursa1972, Mögliche Ellipsoide: BursaSima1980round, KarneyTest2024, Fiction, BursaFialova1993, BursaSima1980, Eitschberger1978, Bursa1972,
Bursa1970, BesselBiaxial, Fiction, KarneyTest2024 Bursa1970
Panou et al (2020) Panou et al (2020)
:param name: Name des dreiachsigen Ellipsoids :param name: Name des dreiachsigen Ellipsoids
:return: dreiachsiger Ellipsoid
""" """
if name == "BursaFialova1993": if name == "BursaFialova1993":
ax = 6378171.36 ax = 6378171.36
@@ -164,11 +73,6 @@ class EllipsoidTriaxial:
ay = 6378105 ay = 6378105
b = 6356754 b = 6356754
return cls(ax, ay, b) return cls(ax, ay, b)
elif name == "BesselBiaxial":
ax = 6377397.15509
ay = 6377397.15508
b = 6356078.96290
return cls(ax, ay, b)
elif name == "Fiction": elif name == "Fiction":
ax = 6000000 ax = 6000000
ay = 4000000 ay = 4000000
@@ -179,6 +83,8 @@ class EllipsoidTriaxial:
ay = 1 ay = 1
b = 1 / sqrt(2) b = 1 / sqrt(2)
return cls(ax, ay, b) return cls(ax, ay, b)
else:
raise Exception(f"EllipsoidTriaxial.init_name: Name {name} unbekannt")
def func_H(self, point: NDArray) -> float: def func_H(self, point: NDArray) -> float:
""" """
@@ -218,8 +124,10 @@ class EllipsoidTriaxial:
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 - c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - ( (self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
self.ax ** 2 + self.ay ** 2) * z ** 2) self.ax ** 2 + self.ay ** 2) * z ** 2)
if c1 ** 2 - 4 * c0 < 0: if c1 ** 2 - 4 * c0 < -1e-9:
t2 = np.nan raise Exception("t1, t2: Negativer Wurzelterm")
elif c1 ** 2 - 4 * c0 < 0:
t2 = 0
else: else:
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2 t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
if t2 == 0: if t2 == 0:
@@ -261,7 +169,6 @@ class EllipsoidTriaxial:
s1 = 2 * sqrt(p) * cos(omega/3) - c2/3 s1 = 2 * sqrt(p) * cos(omega/3) - c2/3
s2 = 2 * sqrt(p) * cos(omega/3 - 2*pi/3) - c2/3 s2 = 2 * sqrt(p) * cos(omega/3 - 2*pi/3) - c2/3
s3 = 2 * sqrt(p) * cos(omega/3 - 4*pi/3) - c2/3 s3 = 2 * sqrt(p) * cos(omega/3 - 4*pi/3) - c2/3
# print(s1, s2, s3)
beta = arctan(sqrt((-self.b**2 - s2) / (self.ay**2 + s2))) beta = arctan(sqrt((-self.b**2 - s2) / (self.ay**2 + s2)))
if abs((-self.ay**2 - s3) / (self.ax**2 + s3)) > 1e-7: if abs((-self.ay**2 - s3) / (self.ax**2 + s3)) > 1e-7:
@@ -284,6 +191,11 @@ class EllipsoidTriaxial:
beta, lamb = np.broadcast_arrays(beta, lamb) beta, lamb = np.broadcast_arrays(beta, lamb)
beta = np.where(
np.isclose(np.abs(beta), pi / 2, atol=1e-15),
beta * 8999999999999999 / 9000000000000000,
beta
)
B = self.Ex ** 2 * cos(beta) ** 2 + self.Ee ** 2 * sin(beta) ** 2 B = self.Ex ** 2 * cos(beta) ** 2 + self.Ee ** 2 * sin(beta) ** 2
L = self.Ex ** 2 - self.Ee ** 2 * cos(lamb) ** 2 L = self.Ex ** 2 - self.Ee ** 2 * cos(lamb) ** 2
@@ -335,14 +247,14 @@ class EllipsoidTriaxial:
Z = self.b * sin(beta) * sqrt(k**2 + k_**2 * sin(lamb)**2) Z = self.b * sin(beta) * sqrt(k**2 + k_**2 * sin(lamb)**2)
return np.array([X, Y, Z]) return np.array([X, Y, Z])
def cart2ell_yFake(self, point: NDArray) -> Tuple[float, float]: def cart2ell_yFake(self, point: NDArray, delta_y: float = 1e-4) -> Tuple[float, float]:
""" """
Bei Fehlschlagen von cart2ell Bei Fehlschlagen von cart2ell
:param point: Punkt in kartesischen Koordinaten :param point: Punkt in kartesischen Koordinaten
:param delta_y: Startwert für Suche nach kleinstmöglichem delta_y
:return: ellipsoidische Breite und Länge :return: ellipsoidische Breite und Länge
""" """
x, y, z = point x, y, z = point
delta_y = 1e-4
best_delta = np.inf best_delta = np.inf
while True: while True:
try: try:
@@ -412,14 +324,14 @@ class EllipsoidTriaxial:
i += 1 i += 1
if i == maxI: if i == maxI:
raise Exception("Umrechnung ist nicht konvergiert") raise Exception("Umrechnung cart2ell: nicht konvergiert")
point_n = self.ell2cart(beta, lamb) point_n = self.ell2cart(beta, lamb)
delta_r = np.linalg.norm(point - point_n, axis=-1) delta_r = np.linalg.norm(point - point_n, axis=-1)
if delta_r > 1e-6: if delta_r > 1e-6:
raise Exception("Fehler in der Umrechnung cart2ell") raise Exception("Umrechnung cart2ell: Punktdifferenz")
return beta, lamb return wrap_mhalfpi_halfpi(beta), wrap_mpi_pi(lamb)
except Exception as e: except Exception as e:
# Wenn die Berechnung fehlschlägt auf Grund von sehr kleinem y, solange anpassen, bis Umrechnung ohne Fehler # Wenn die Berechnung fehlschlägt auf Grund von sehr kleinem y, solange anpassen, bis Umrechnung ohne Fehler
@@ -511,7 +423,7 @@ class EllipsoidTriaxial:
i += 1 i += 1
if i == maxI: if i == maxI:
raise Exception("Umrechung ist nicht konvergiert") raise Exception("Umrechnung cart2ell: nicht konvergiert")
return phi, lamb return phi, lamb
@@ -577,6 +489,8 @@ class EllipsoidTriaxial:
invJ, fxE = jacobian_Ligas.case2(E, F, G, np.array([xG, yG, zG]), pE) invJ, fxE = jacobian_Ligas.case2(E, F, G, np.array([xG, yG, zG]), pE)
elif mode == "ligas3": elif mode == "ligas3":
invJ, fxE = jacobian_Ligas.case3(E, F, G, np.array([xG, yG, zG]), pE) invJ, fxE = jacobian_Ligas.case3(E, F, G, np.array([xG, yG, zG]), pE)
else:
raise Exception(f"cart2geod: Modus {mode} nicht bekannt")
pEi = pE.reshape(-1, 1) - invJ @ fxE.reshape(-1, 1) pEi = pE.reshape(-1, 1) - invJ @ fxE.reshape(-1, 1)
pEi = pEi.reshape(1, -1).flatten() pEi = pEi.reshape(1, -1).flatten()
loa = sqrt((pEi[0]-pE[0])**2 + (pEi[1]-pE[1])**2 + (pEi[2]-pE[2])**2) loa = sqrt((pEi[0]-pE[0])**2 + (pEi[1]-pE[1])**2 + (pEi[2]-pE[2])**2)
@@ -598,15 +512,15 @@ class EllipsoidTriaxial:
phi, lamb, h = self.cart2geod(point, f"ligas{new_mode}", maxIter, maxLoa) phi, lamb, h = self.cart2geod(point, f"ligas{new_mode}", maxIter, maxLoa)
else: else:
if xG < 0 and yG < 0: if xG < 0 and yG < 0:
lamb = -pi + lamb lamb += -pi
elif xG < 0: elif xG < 0:
lamb = pi + lamb lamb += pi
if abs(zG) < eps: if abs(zG) < eps:
phi = 0 phi = 0
wrap_mhalfpi_halfpi(phi), wrap_mpi_pi(lamb)
return phi, lamb, h return wrap_mhalfpi_halfpi(phi), wrap_mpi_pi(lamb), h
def para2cart(self, u: float | NDArray, v: float | NDArray) -> NDArray: def para2cart(self, u: float | NDArray, v: float | NDArray) -> NDArray:
""" """
@@ -643,8 +557,8 @@ class EllipsoidTriaxial:
v = 2 * arctan2(v_check1, v_check2 + v_factor) v = 2 * arctan2(v_check1, v_check2 + v_factor)
else: else:
v = pi/2 - 2 * arctan2(v_check2, v_check1 + v_factor) v = pi/2 - 2 * arctan2(v_check2, v_check1 + v_factor)
wrap_mhalfpi_halfpi(u), wrap_mpi_pi(v)
return u, v return wrap_mhalfpi_halfpi(u), wrap_mpi_pi(v)
def ell2para(self, beta: float, lamb: float) -> Tuple[float, float]: def ell2para(self, beta: float, lamb: float) -> Tuple[float, float]:
""" """
@@ -749,63 +663,71 @@ class EllipsoidTriaxial:
if __name__ == "__main__": if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980") ell = EllipsoidTriaxial.init_name("KarneyTest2024")
diff_list = [] # cart = ell.ell2cart(pi/2, 0)
diffs_para = [] # print(cart)
diffs_ell = [] # cart = ell.ell2cart(pi/2*8999999999999999/9000000000000000, 0)
diffs_geod = [] # print(cart)
points = [] elli = ell.cart2ell(np.array([0, 0.0, 1/sqrt(2)]))
for v_deg in range(-180, 181, 5): print(elli)
for u_deg in range(-90, 91, 5):
v = wu.deg2rad(v_deg)
u = wu.deg2rad(u_deg)
point = ell.para2cart(u, v)
points.append(point)
elli = ell.cart2ell(point) # ell = EllipsoidTriaxial.init_name("BursaSima1980")
cart_elli = ell.ell2cart(elli[0], elli[1]) # diff_list = []
diff_ell = np.linalg.norm(point - cart_elli, axis=-1) # diffs_para = []
# diffs_ell = []
para = ell.cart2para(point) # diffs_geod = []
cart_para = ell.para2cart(para[0], para[1]) # points = []
diff_para = np.linalg.norm(point - cart_para, axis=-1) # for v_deg in range(-180, 181, 5):
# for u_deg in range(-90, 91, 5):
geod = ell.cart2geod(point, "ligas3") # v = wu.deg2rad(v_deg)
cart_geod = ell.geod2cart(geod[0], geod[1], geod[2]) # u = wu.deg2rad(u_deg)
diff_geod3 = np.linalg.norm(point - cart_geod, axis=-1) # point = ell.para2cart(u, v)
# points.append(point)
diff_list.append([v_deg, u_deg, diff_ell, diff_para, diff_geod3]) #
diffs_ell.append([diff_ell]) # elli = ell.cart2ell(point)
diffs_para.append([diff_para]) # cart_elli = ell.ell2cart(elli[0], elli[1])
diffs_geod.append([diff_geod3]) # diff_ell = np.linalg.norm(point - cart_elli, axis=-1)
#
diff_list = np.array(diff_list) # para = ell.cart2para(point)
diffs_ell = np.array(diffs_ell) # cart_para = ell.para2cart(para[0], para[1])
diffs_para = np.array(diffs_para) # diff_para = np.linalg.norm(point - cart_para, axis=-1)
diffs_geod = np.array(diffs_geod) #
# geod = ell.cart2geod(point, "ligas3")
pass # cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
# diff_geod3 = np.linalg.norm(point - cart_geod, axis=-1)
points = np.array(points) #
fig = plt.figure() # diff_list.append([v_deg, u_deg, diff_ell, diff_para, diff_geod3])
ax = fig.add_subplot(projection='3d') # diffs_ell.append([diff_ell])
# diffs_para.append([diff_para])
sc = ax.scatter( # diffs_geod.append([diff_geod3])
points[:, 0], #
points[:, 1], # diff_list = np.array(diff_list)
points[:, 2], # diffs_ell = np.array(diffs_ell)
c=diffs_ell, # Farbcode = diff # diffs_para = np.array(diffs_para)
cmap='viridis', # Colormap # diffs_geod = np.array(diffs_geod)
s=10 + 20 * diffs_ell, # optional: Größe abhängig vom diff #
alpha=0.8 # pass
) #
# points = np.array(points)
# Farbskala # fig = plt.figure()
cbar = plt.colorbar(sc) # ax = fig.add_subplot(projection='3d')
cbar.set_label("diff") #
# sc = ax.scatter(
ax.set_xlabel("X") # points[:, 0],
ax.set_ylabel("Y") # points[:, 1],
ax.set_zlabel("Z") # points[:, 2],
# c=diffs_ell, # Farbcode = diff
plt.show() # cmap='viridis', # Colormap
# s=10 + 20 * diffs_ell, # optional: Größe abhängig vom diff
# alpha=0.8
# )
#
# # Farbskala
# cbar = plt.colorbar(sc)
# cbar.set_label("diff")
#
# ax.set_xlabel("X")
# ax.set_ylabel("Y")
# ax.set_zlabel("Z")
#
# plt.show()

View File

@@ -1,6 +1,8 @@
from typing import Tuple
import numpy as np import numpy as np
from numpy.typing import NDArray from numpy.typing import NDArray
from typing import Tuple
def case1(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]: def case1(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]:
""" """
@@ -34,7 +36,7 @@ def case1(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArr
return invJ, fxE return invJ, fxE
def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray) -> Tuple[NDArray, NDArray]: def case2(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]:
""" """
Aufstellen des Gleichungssystem für den zweiten Fall Aufstellen des Gleichungssystem für den zweiten Fall
:param E: Konstante E :param E: Konstante E
@@ -68,7 +70,7 @@ def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray) -> Tuple
return invJ, fxE return invJ, fxE
def case3(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray) -> Tuple[NDArray, NDArray]: def case3(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]:
""" """
Aufstellen des Gleichungssystem für den dritten Fall Aufstellen des Gleichungssystem für den dritten Fall
:param E: Konstante E :param E: Konstante E

View File

@@ -1,10 +1,20 @@
from numpy import *
import scipy as sp
from ellipsoide import EllipsoidBiaxial
from typing import Tuple from typing import Tuple
import scipy as sp
from ellipsoid_biaxial import EllipsoidBiaxial
from numpy import *
def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0:float, s: float) -> Tuple[float, float, float]: def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0:float, s: float) -> Tuple[float, float, float]:
"""
Berechnung der 1.GHA auf einem Rotationsellipsoid nach Bessel
:param re:
:param phi0:
:param lamb0:
:param alpha0:
:param s:
:return:
"""
psi0 = re.phi2psi(phi0) psi0 = re.phi2psi(phi0)
clairant = arcsin(cos(psi0) * sin(alpha0)) clairant = arcsin(cos(psi0) * sin(alpha0))
sigma0 = arcsin(sin(psi0) / cos(clairant)) sigma0 = arcsin(sin(psi0) / cos(clairant))

View File

@@ -1,8 +1,8 @@
from numpy import sin, cos, pi, sqrt, tan, arcsin, arccos, arctan
import ausgaben as aus
from ellipsoide import EllipsoidBiaxial
from typing import Tuple from typing import Tuple
from ellipsoid_biaxial import EllipsoidBiaxial
from numpy import arctan, cos, sin, sqrt, tan
def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0: float, s: float, eps: float = 1e-12) -> Tuple[float, float, float]: def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0: float, s: float, eps: float = 1e-12) -> Tuple[float, float, float]:
""" """

View File

@@ -1,13 +1,26 @@
import runge_kutta as rk from typing import Tuple
from numpy import sin, cos, tan
import winkelumrechnungen as wu
from ellipsoide import EllipsoidBiaxial
import numpy as np import numpy as np
from ellipsoid_biaxial import EllipsoidBiaxial
from numpy import cos, sin, tan
from numpy.typing import NDArray from numpy.typing import NDArray
import runge_kutta as rk
def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0: float, s: float, num: int) -> Tuple[float, float, float]: def gha1(re: EllipsoidBiaxial, phi0: float, lamb0: float, alpha0: float, s: float, num: int) -> Tuple[float, float, float]:
"""
Berechnung der 1. GHA auf einem Rotationsellipsoid mittels RK4
:param re:
:param phi0:
:param lamb0:
:param alpha0:
:param s:
:param num:
:return:
"""
def buildODE(): def buildODE():
def ODE(s, v): def ODE(s: float, v: NDArray):
phi, lam, A = v phi, lam, A = v
V = re.V(phi) V = re.V(phi)
dphi = cos(A) * V ** 3 / re.c dphi = cos(A) * V ** 3 / re.c

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,56 +1,41 @@
{ {
"cells": [ "cells": [
{ {
"metadata": {},
"cell_type": "code", "cell_type": "code",
"id": "initial_id",
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2026-01-20T15:30:31.978159Z",
"start_time": "2026-01-20T15:30:31.835157Z"
}
},
"source": [ "source": [
"%load_ext autoreload\n", "%load_ext autoreload\n",
"%autoreload 2" "%autoreload 2"
], ],
"id": "a78faf7f4883772f",
"outputs": [], "outputs": [],
"execution_count": 1 "execution_count": null
}, },
{ {
"metadata": { "metadata": {},
"ExecuteTime": {
"end_time": "2026-01-20T15:30:33.910807Z",
"start_time": "2026-01-20T15:30:32.803089Z"
}
},
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"%reload_ext autoreload\n", "%reload_ext autoreload\n",
"%autoreload 2\n", "%autoreload 2\n",
"import numpy as np\n",
"\n",
"import winkelumrechnungen as wu\n", "import winkelumrechnungen as wu\n",
"from ellipsoide import EllipsoidTriaxial\n", "from GHA_triaxial.utils import alpha_ell2para, alpha_para2ell\n",
"from GHA_triaxial.utils import alpha_para2ell, alpha_ell2para\n", "from ellipsoid_triaxial import EllipsoidTriaxial"
"import numpy as np"
], ],
"id": "9ad815aea55574e3", "id": "46aa84a937fea491",
"outputs": [], "outputs": [],
"execution_count": 2 "execution_count": null
}, },
{ {
"metadata": { "metadata": {},
"ExecuteTime": {
"end_time": "2026-01-20T15:33:40.785362Z",
"start_time": "2026-01-20T15:33:34.296487Z"
}
},
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"ell = EllipsoidTriaxial.init_name(\"KarneyTest2024\")\n", "ell = EllipsoidTriaxial.init_name(\"KarneyTest2024\")\n",
"diffs = []\n", "diffs = []\n",
"for beta_deg in range(-180, 181, 45):\n", "for beta_deg in range(-90, 91, 15):\n",
" for lamb_deg in range(-90, 91, 45):\n", " for lamb_deg in range(-180, 180, 15):\n",
" for alpha_deg in range(0, 360, 45):\n", " for alpha_deg in range(0, 360, 15):\n",
" beta = wu.deg2rad(beta_deg)\n", " beta = wu.deg2rad(beta_deg)\n",
" lamb = wu.deg2rad(lamb_deg)\n", " lamb = wu.deg2rad(lamb_deg)\n",
" u, v = ell.ell2para(beta, lamb)\n", " u, v = ell.ell2para(beta, lamb)\n",
@@ -67,17 +52,12 @@
" diffs.append((beta_deg, lamb_deg, alpha_deg, diff_1, diff_2))\n", " diffs.append((beta_deg, lamb_deg, alpha_deg, diff_1, diff_2))\n",
"diffs = np.array(diffs)" "diffs = np.array(diffs)"
], ],
"id": "98b9b220118deb3f", "id": "82fc6cbbe7d5abcb",
"outputs": [], "outputs": [],
"execution_count": 6 "execution_count": null
}, },
{ {
"metadata": { "metadata": {},
"ExecuteTime": {
"end_time": "2026-01-20T15:33:50.497990Z",
"start_time": "2026-01-20T15:33:50.261115Z"
}
},
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"i_max_ell = np.argmax(diffs[:, 3])\n", "i_max_ell = np.argmax(diffs[:, 3])\n",
@@ -92,18 +72,9 @@
"print(f'Für parametrisches Alpha = {point_max_para[2]}° und beta = {point_max_para[0]}°, lamb = {point_max_para[1]}°: diff = {max_ell}\"')\n", "print(f'Für parametrisches Alpha = {point_max_para[2]}° und beta = {point_max_para[0]}°, lamb = {point_max_para[1]}°: diff = {max_ell}\"')\n",
"pass" "pass"
], ],
"id": "3c74b65b0e85e3c2", "id": "97b5b8c9ca5377ab",
"outputs": [ "outputs": [],
{ "execution_count": null
"name": "stdout",
"output_type": "stream",
"text": [
"Für elliptisches Alpha = 315.0° und beta = -90.0°, lamb = -90.0°: diff = 3.426945967752335e-05\"\n",
"Für parametrisches Alpha = 315.0° und beta = -90.0°, lamb = -90.0°: diff = 3.426945967752335e-05\"\n"
]
}
],
"execution_count": 7
} }
], ],
"metadata": { "metadata": {

View File

@@ -20,13 +20,14 @@
"source": [ "source": [
"%reload_ext autoreload\n", "%reload_ext autoreload\n",
"%autoreload 2\n", "%autoreload 2\n",
"import pickle\n",
"import numpy as np\n",
"import winkelumrechnungen as wu\n",
"from itertools import product\n", "from itertools import product\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n", "import pandas as pd\n",
"from ellipsoide import EllipsoidTriaxial\n", "import plotly.graph_objects as go\n",
"import plotly.graph_objects as go" "\n",
"import winkelumrechnungen as wu\n",
"from ellipsoid_triaxial import EllipsoidTriaxial"
], ],
"outputs": [], "outputs": [],
"execution_count": null "execution_count": null

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

View File

@@ -0,0 +1,126 @@
from typing import Tuple
import numpy as np
from numpy import arctan2, cos, sin, sqrt
from numpy.typing import NDArray
import winkelumrechnungen as wu
class EllipsoidBiaxial:
"""
Klasse für Rotationsellipdoide
"""
def __init__(self, a: float, b: float):
self.a = a
self.b = b
self.c = a ** 2 / b
self.e = sqrt(a ** 2 - b ** 2) / a
self.e_ = sqrt(a ** 2 - b ** 2) / b
@classmethod
def init_name(cls, name: str) -> EllipsoidBiaxial:
"""
Erstellen eines Rotationsellipdoids nach Namen
:param name: Name des Rotationsellipsoids
:return: Rotationsellipsoid
"""
if name == "Bessel":
a = 6377397.15508
b = 6356078.96290
return cls(a, b)
elif name == "Hayford":
a = 6378388
f = 1/297
b = a - a * f
return cls(a, b)
elif name == "Krassowski":
a = 6378245
f = 298.3
b = a - a * f
return cls(a, b)
elif name == "WGS84":
a = 6378137
f = 298.257223563
b = a - a * f
return cls(a, b)
else:
raise Exception(f"EllipsoidBiaxial.init_name: Name {name} unbekannt")
@classmethod
def init_af(cls, a: float, f: float) -> EllipsoidBiaxial:
"""
Erstellen eines Rotationsellipdoids aus der großen Halbachse und der Abplattung
:param a: große Halbachse
:param f: großen Halbachse
:return: Rotationsellipsoid
"""
b = a - a * f
return cls(a, b)
V = lambda self, phi: sqrt(1 + self.e_ ** 2 * cos(phi) ** 2)
M = lambda self, phi: self.c / self.V(phi) ** 3
N = lambda self, phi: self.c / self.V(phi)
beta2psi = lambda self, beta: arctan2(self.a * sin(beta), self.b * cos(beta))
beta2phi = lambda self, beta: arctan2(self.a ** 2 * sin(beta), self.b ** 2 * cos(beta))
psi2beta = lambda self, psi: arctan2(self.b * sin(psi), self.a * cos(psi))
psi2phi = lambda self, psi: arctan2(self.a * sin(psi), self.b * cos(psi))
phi2beta = lambda self, phi: arctan2(self.b**2 * sin(phi), self.a**2 * cos(phi))
phi2psi = lambda self, phi: arctan2(self.b * sin(phi), self.a * cos(phi))
phi2p = lambda self, phi: self.N(phi) * cos(phi)
def bi_cart2ell(self, point: NDArray, Eh: float = 0.001, Ephi: float = wu.gms2rad([0, 0, 0.001])) -> Tuple[float, float, float]:
"""
Umrechnung von kartesischen in ellipsoidische Koordinaten auf einem Rotationsellipsoid
# TODO: Quelle
:param point: Punkt in kartesischen Koordinaten
:param Eh: Grenzwert für die Höhe
:param Ephi: Grenzwert für die Breite
:return: ellipsoidische Breite, Länge, geodätische Höhe
"""
x, y, z = point
lamb = arctan2(y, x)
p = sqrt(x**2+y**2)
phi_null = arctan2(z, p*(1 - self.e**2))
hi = [0]
phii = [phi_null]
i = 0
while True:
N = self.a / sqrt(1 - self.e**2 * sin(phii[i])**2)
h = p / cos(phii[i]) - N
phi = arctan2(z, p * (1-(self.e**2*N) / (N+h)))
hi.append(h)
phii.append(phi)
dh = abs(hi[i]-h)
dphi = abs(phii[i]-phi)
i += 1
if dh < Eh:
if dphi < Ephi:
break
return phi, lamb, h
def bi_ell2cart(self, phi: float, lamb: float, h: float) -> NDArray:
"""
Umrechnung von ellipsoidischen in kartesische Koordinaten auf einem Rotationsellipsoid
# TODO: Quelle
:param phi: ellipsoidische Breite
:param lamb: ellipsoidische Länge
:param h: geodätische Höhe
:return: Punkt in kartesischen Koordinaten
"""
W = sqrt(1 - self.e**2 * sin(phi)**2)
N = self.a / W
x = (N+h) * cos(phi) * cos(lamb)
y = (N+h) * cos(phi) * sin(lamb)
z = (N * (1-self.e**2) + h) * sin(phi)
return np.array([x, y, z])

View File

@@ -1,7 +1,9 @@
import numpy as np
from numpy import sqrt, arctan2, sin, cos, arcsin, arccos
from numpy.typing import NDArray
from typing import Tuple from typing import Tuple
import numpy as np
from numpy import arccos, arcsin, arctan2, cos, pi, sin, sqrt
from numpy.typing import NDArray
import winkelumrechnungen as wu import winkelumrechnungen as wu
@@ -77,7 +79,7 @@ def gha2(R: float, phi0: float, lamb0: float, phi1: float, lamb1: float) -> Tupl
alpha1 = arctan2(-cos(phi0) * sin(lamb1 - lamb0), alpha1 = arctan2(-cos(phi0) * sin(lamb1 - lamb0),
cos(phi1) * sin(phi0) - sin(phi1) * cos(phi0) * cos(lamb1 - lamb0)) cos(phi1) * sin(phi0) - sin(phi1) * cos(phi0) * cos(lamb1 - lamb0))
if alpha1 < 0: if alpha1 < 0:
alpha1 += 2 * np.pi alpha1 += 2 * pi
return alpha0, alpha1, s return alpha0, alpha1, s

View File

@@ -9,10 +9,11 @@
}, },
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"import plotly.graph_objects as go\n",
"import numpy as np\n", "import numpy as np\n",
"from ellipsoide import EllipsoidTriaxial\n", "import plotly.graph_objects as go\n",
"import winkelumrechnungen as wu" "\n",
"import winkelumrechnungen as wu\n",
"from ellipsoid_triaxial import EllipsoidTriaxial"
], ],
"id": "731173e4745cfe7c", "id": "731173e4745cfe7c",
"outputs": [], "outputs": [],

8
nicht abgeben/test.py Normal file
View File

@@ -0,0 +1,8 @@
import numpy as np
import ellipsoid_triaxial
ell = ellipsoid_triaxial.EllipsoidTriaxial.init_name("KarneyTest2024")
cart = ell.para2cart(0, np.pi/2)
print(cart)

7
requirements.txt Normal file
View File

@@ -0,0 +1,7 @@
numpy~=2.3.4
plotly~=6.4.0
pandas~=2.3.3
scipy~=1.16.3
dash-bootstrap-components~=2.0.4
dash~=4.0.0
matplotlib~=3.10.7

View File

@@ -1,7 +1,10 @@
from typing import Callable
import numpy as np import numpy as np
from numpy.typing import NDArray
def rk4(ode, t0: float, v0: np.ndarray, weite: float, schritte: int, fein: bool = False) -> tuple[list, list]: def rk4(ode: Callable, t0: float, v0: NDArray, weite: float, schritte: int, fein: bool = False) -> tuple[list, list]:
""" """
Standard Runge-Kutta Verfahren 4. Ordnung Standard Runge-Kutta Verfahren 4. Ordnung
:param ode: ODE-System als Funktion :param ode: ODE-System als Funktion
@@ -9,7 +12,7 @@ def rk4(ode, t0: float, v0: np.ndarray, weite: float, schritte: int, fein: bool
:param v0: Startwerte :param v0: Startwerte
:param weite: Integrationsweite :param weite: Integrationsweite
:param schritte: Schrittzahl :param schritte: Schrittzahl
:param fein: :param fein: Fein-Rechnung?
:return: Variable und Funktionswerte an jedem Stützpunkt :return: Variable und Funktionswerte an jedem Stützpunkt
""" """
h = weite/schritte h = weite/schritte
@@ -35,9 +38,118 @@ def rk4(ode, t0: float, v0: np.ndarray, weite: float, schritte: int, fein: bool
return t_list, werte return t_list, werte
def rk4_step(ode, t: float, v: np.ndarray, h: float) -> np.ndarray: def rk4_step(ode: Callable, t: float, v: NDArray, h: float) -> NDArray:
"""
Ein Schritt des Runge-Kutta Verfahrens 4. Ordnung
:param ode: ODE-System als Funktion
:param t: unabhängige Variable
:param v: abhängige Variablen
:param h: Schrittweite
:return: abhängige Variablen nach einem Schritt
"""
k1 = ode(t, v) k1 = ode(t, v)
k2 = ode(t + 0.5 * h, v + 0.5 * h * k1) k2 = ode(t + 0.5 * h, v + 0.5 * h * k1)
k3 = ode(t + 0.5 * h, v + 0.5 * h * k2) k3 = ode(t + 0.5 * h, v + 0.5 * h * k2)
k4 = ode(t + h, v + h * k3) k4 = ode(t + h, v + h * k3)
return v + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4) return v + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
def rk4_end(ode: Callable, t0: float, v0: NDArray, weite: float, schritte: int, fein: bool = False):
"""
Standard Runge-Kutta Verfahren 4. Ordnung, nur Ausgabe der letzten Variablenwerte
:param ode: ODE-System als Funktion
:param t0: Startwert der unabhängigen Variable
:param v0: Startwerte
:param weite: Integrationsweite
:param schritte: Schrittzahl
:param fein: Fein-Rechnung?
:return: Variable und Funktionswerte am letzten Stützpunkt
"""
h = weite / schritte
t = float(t0)
v = np.array(v0, dtype=float, copy=True)
for _ in range(schritte):
if not fein:
v_next = rk4_step(ode, t, v, h)
else:
v_grob = rk4_step(ode, t, v, h)
v_half = rk4_step(ode, t, v, 0.5 * h)
v_fein = rk4_step(ode, t + 0.5 * h, v_half, 0.5 * h)
v_next = v_fein + (v_fein - v_grob) / 15.0
t += h
v = v_next
return t, v
# RK4 mit Simpson bzw. Trapez
def rk4_integral(ode: Callable, t0: float, v0: NDArray, weite: float, schritte: int, integrand_at: Callable, fein: bool = False, simpson: bool = True):
"""
Runge-Kutta Verfahren 4. Ordnung mit Simpson bzw. Trapez
:param ode: ODE-System als Funktion
:param t0: Startwert der unabhängigen Variable
:param v0: Startwerte
:param weite: Integrationsweite
:param integrand_at: Funktion
:param schritte: Schrittzahl
:param fein: Fein-Rechnung?
:param simpson: Simpson? Wenn nein, dann Trapez
:return: Variable und Funktionswerte am letzten Stützpunkt
"""
h = weite / schritte
habs = abs(h)
t = float(t0)
v = np.array(v0, dtype=float, copy=True)
if simpson and (schritte % 2 == 0):
f0 = float(integrand_at(t, v))
odd_sum = 0.0
even_sum = 0.0
fN = None
for i in range(1, schritte + 1):
if not fein:
v_next = rk4_step(ode, t, v, h)
else:
v_grob = rk4_step(ode, t, v, h)
v_half = rk4_step(ode, t, v, 0.5 * h)
v_fein = rk4_step(ode, t + 0.5 * h, v_half, 0.5 * h)
v_next = v_fein + (v_fein - v_grob) / 15.0
t += h
v = v_next
fi = float(integrand_at(t, v))
if i == schritte:
fN = fi
elif i % 2 == 1:
odd_sum += fi
else:
even_sum += fi
S = f0 + fN + 4.0 * odd_sum + 2.0 * even_sum
s = (habs / 3.0) * S
return t, v, s
f_prev = float(integrand_at(t, v))
acc = 0.0
for _ in range(schritte):
if not fein:
v_next = rk4_step(ode, t, v, h)
else:
v_grob = rk4_step(ode, t, v, h)
v_half = rk4_step(ode, t, v, 0.5 * h)
v_fein = rk4_step(ode, t + 0.5 * h, v_half, 0.5 * h)
v_next = v_fein + (v_fein - v_grob) / 15.0
t += h
v = v_next
f_cur = float(integrand_at(t, v))
acc += 0.5 * (f_prev + f_cur)
f_prev = f_cur
s = habs * acc
return t, v, s

View File

@@ -1,7 +0,0 @@
import numpy as np
import ellipsoide
ell = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
cart = ell.para2cart(0, np.pi/2)
print(cart)

View File

@@ -1,13 +1,54 @@
import numpy as np import numpy as np
import winkelumrechnungen as wu
def arccot(x):
def arccot(x: float) -> float:
"""
Berechnung von arccot eines Winkels
:param x: Winkel
:return: arccot(Winkel)
"""
return np.arctan2(1.0, x) return np.arctan2(1.0, x)
def cot(a): def cot(x: float) -> float:
return np.cos(a) / np.sin(a) """
Berechnung von cot eines Winkels
:param x: Winkel
:return: cot(Winkel)
"""
return np.cos(x) / np.sin(x)
def wrap_to_pi(x): def wrap_mpi_pi(x: float) -> float:
"""
Wrap eines Winkels in den Wertebereich [-π, π)
:param x: Winkel
:return: Winkel in [-π, π)
"""
return (x + np.pi) % (2 * np.pi) - np.pi return (x + np.pi) % (2 * np.pi) - np.pi
def wrap_mhalfpi_halfpi(x: float) -> float:
"""
Wrap eines Winkels in den Wertebereich [-π/2, π/2)
:param x: Winkel
:return: Winkel in [-π/2, π/2)
"""
return (x + np.pi / 2) % np.pi - np.pi / 2
def wrap_0_2pi(x: float) -> float:
"""
Wrap eines Winkels in den Wertebereich [0, 2π)
:param x: Winkel
:return: Winkel in [0, 2π)
"""
return x % (2 * np.pi)
if __name__ == "__main__":
print(wu.rad2deg(wrap_mhalfpi_halfpi(wu.deg2rad(181))))
print(wu.rad2deg(wrap_0_2pi(wu.deg2rad(181))))
print(wu.rad2deg(wrap_mpi_pi(wu.deg2rad(181))))