Compare commits

..

3 Commits

Author SHA1 Message Date
Tammo.Weber
2ba4dad30d Merge remote-tracking branch 'origin/main'
# Conflicts:
#	GHA_triaxial/gha2_num.py
2026-02-05 21:44:28 +01:00
Tammo.Weber
dd5cf2d6a8 merge 2026-02-05 21:43:26 +01:00
Tammo.Weber
9f0554039c merge 2026-02-05 21:40:39 +01:00
2 changed files with 476 additions and 314 deletions

View File

@@ -1,395 +1,509 @@
import numpy as np
from ellipsoide import EllipsoidTriaxial
import runge_kutta as rk
import GHA_triaxial.numeric_examples_karney as ne_karney
import GHA_triaxial.numeric_examples_panou as ne_panou
import winkelumrechnungen as wu
from typing import Tuple
from numpy.typing import NDArray
import ausgaben as aus
from utils_angle import cot, wrap_to_pi
from utils_angle import arccot, cot, wrap_to_pi
def arccot(x):
x = np.asarray(x)
a = np.arctan2(1.0, x)
return np.where(x < 0.0, a - np.pi, a)
def normalize_alpha_0_pi(alpha):
if alpha < 0.0:
alpha += np.pi
return alpha
def sph_azimuth(beta1, lam1, beta2, lam2):
# sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß)
dlam = wrap_to_pi(lam2 - lam1)
y = np.sin(dlam) * np.cos(beta2)
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
a = np.arctan2(y, x) # (-pi, pi]
a = np.arctan2(y, x)
if a < 0:
a += 2 * np.pi
return a
# Panou 2013
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float,
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
"""
def gha2_num(
ell: EllipsoidTriaxial,
beta_1: float,
lamb_1: float,
beta_2: float,
lamb_2: float,
n: int = 16000,
epsilon: float = 10 ** -12,
iter_max: int = 30,
all_points: bool = False,
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
:param ell: triaxiales Ellipsoid
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
:param lamb_1: elllipsoidische Länge Punkt 1
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
:param lamb_2: elllipsoidische Länge Punkt 2
:param n: Anzahl Schritte
:param epsilon:
:param iter_max: Maximale Anzhal Iterationen
:param all_points:
:return:
"""
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
def BETA_LAMBDA(beta, lamb):
BETA = (ell.ay ** 2 * np.sin(beta) ** 2 + ell.b ** 2 * np.cos(beta) ** 2) / (
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2)
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2
)
LAMBDA = (ell.ax ** 2 * np.sin(lamb) ** 2 + ell.ay ** 2 * np.cos(lamb) ** 2) / (
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2)
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2
)
# Erste Ableitungen von ΒETA und LAMBDA
BETA_ = (ell.ax ** 2 * ell.Ey ** 2 * np.sin(2 * beta)) / (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2
LAMBDA_ = - (ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2
BETA_ = (ell.ax ** 2 * ell.Ey ** 2 * np.sin(2 * beta)) / (
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2
) ** 2
LAMBDA_ = -(ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2
) ** 2
# Zweite Ableitungen von ΒETA und LAMBDA
BETA__ = ((2 * ell.ax ** 2 * ell.Ey ** 4 * np.sin(2 * beta) ** 2) / (
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 3) + (
(2 * ell.ax ** 2 * ell.Ey ** 2 * np.cos(2 * beta)) / (
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2)
LAMBDA__ = (((2 * ell.b ** 2 * ell.Ee ** 4 * np.sin(2 * lamb) ** 2) / (
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 3) -
((2 * ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2))
BETA__ = (
(2 * ell.ax ** 2 * ell.Ey ** 4 * np.sin(2 * beta) ** 2)
/ (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 3
+ (2 * ell.ax ** 2 * ell.Ey ** 2 * np.cos(2 * beta))
/ (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2
)
LAMBDA__ = (
(2 * ell.b ** 2 * ell.Ee ** 4 * np.sin(2 * lamb) ** 2)
/ (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 3
- (2 * ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb))
/ (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2
)
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
F = 0
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
# Erste Ableitungen von E und G
E_beta = BETA_ * (
ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) - BETA * ell.Ey ** 2 * np.sin(
2 * beta)
E_beta = (
BETA_ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
- BETA * ell.Ey ** 2 * np.sin(2 * beta)
)
E_lamb = BETA * ell.Ee ** 2 * np.sin(2 * lamb)
G_beta = - LAMBDA * ell.Ey ** 2 * np.sin(2 * beta)
G_lamb = LAMBDA_ * (
ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) + LAMBDA * ell.Ee ** 2 * np.sin(
2 * lamb)
G_beta = -LAMBDA * ell.Ey ** 2 * np.sin(2 * beta)
G_lamb = (
LAMBDA_ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
+ LAMBDA * ell.Ee ** 2 * np.sin(2 * lamb)
)
# Zweite Ableitungen von E und G
E_beta_beta = BETA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(
lamb) ** 2) - 2 * BETA_ * ell.Ey ** 2 * np.sin(2 * beta) - 2 * BETA * ell.Ey ** 2 * np.cos(2 * beta)
E_beta_beta = (
BETA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
- 2 * BETA_ * ell.Ey ** 2 * np.sin(2 * beta)
- 2 * BETA * ell.Ey ** 2 * np.cos(2 * beta)
)
E_beta_lamb = BETA_ * ell.Ee ** 2 * np.sin(2 * lamb)
E_lamb_lamb = 2 * BETA * ell.Ee ** 2 * np.cos(2 * lamb)
G_beta_beta = - 2 * LAMBDA * ell.Ey ** 2 * np.cos(2 * beta)
G_beta_lamb = - LAMBDA_ * ell.Ey ** 2 * np.sin(2 * beta)
G_lamb_lamb = LAMBDA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(
lamb) ** 2) + 2 * LAMBDA_ * ell.Ee ** 2 * np.sin(2 * lamb) + 2 * LAMBDA * ell.Ee ** 2 * np.cos(2 * lamb)
G_beta_beta = -2 * LAMBDA * ell.Ey ** 2 * np.cos(2 * beta)
G_beta_lamb = -LAMBDA_ * ell.Ey ** 2 * np.sin(2 * beta)
G_lamb_lamb = (
LAMBDA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
+ 2 * LAMBDA_ * ell.Ee ** 2 * np.sin(2 * lamb)
+ 2 * LAMBDA * ell.Ee ** 2 * np.cos(2 * lamb)
)
return (BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb)
return (
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
)
def p_coef(beta, lamb):
(
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
) = BETA_LAMBDA(beta, lamb)
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
p_3 = - 0.5 * (E_lamb / G)
p_3 = -0.5 * (E_lamb / G)
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
p_0 = 0.5 * (G_beta / E)
p_33 = - 0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G ** 2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G ** 2)) - 0.5 * ((E * E_beta_beta - E_beta * E_beta) / (E ** 2))
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2)) - ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2))
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E ** 2))
p_33 = -0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G**2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G**2)) - 0.5 * (
(E * E_beta_beta - E_beta * E_beta) / (E**2)
)
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G**2)) - (
(E * E_beta_lamb - E_beta * E_lamb) / (E**2)
)
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E**2))
return (BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00)
def buildODElamb():
def ODE(lamb, v):
beta, beta_p, X3, X4 = v
(BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
return np.array([dbeta, dbeta_p, dX3, dX4])
return ODE
return (BETA, LAMBDA, E, G, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00)
def q_coef(beta, lamb):
(
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
) = BETA_LAMBDA(beta, lamb)
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
q_3 = - 0.5 * (G_beta / E)
q_3 = -0.5 * (G_beta / E)
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
q_0 = 0.5 * (E_lamb / G)
q_33 = - 0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E ** 2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E ** 2)) - 0.5 * ((G * G_lamb_lamb - G_lamb * G_lamb) / (G ** 2))
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2)) - ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2))
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G ** 2))
q_33 = -0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E**2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E**2)) - 0.5 * (
(G * G_lamb_lamb - G_lamb * G_lamb) / (G**2)
)
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E**2)) - (
(G * G_beta_lamb - G_beta * G_lamb) / (G**2)
)
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G**2))
return (BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00)
return (BETA, LAMBDA, E, G, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00)
def buildODEbeta():
def ODE(beta, v):
lamb, lamb_p, Y3, Y4 = v
def rk4_last(f, t0, y0, dt, N):
h = dt / N
t = t0
y = np.array(y0, dtype=float, copy=True)
for _ in range(N):
k1 = f(t, y)
k2 = f(t + 0.5 * h, y + 0.5 * h * k1)
k3 = f(t + 0.5 * h, y + 0.5 * h * k2)
k4 = f(t + h, y + h * k3)
y = y + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
t = t + h
return t, y
(BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
def rk4_last_with_integral(f, t0, y0, dt, N, integrand_at):
dlamb = lamb_p
dlamb_p = q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
h = dt / N
habs = abs(h)
t = t0
y = np.array(y0, dtype=float, copy=True)
return np.array([dlamb, dlamb_p, dY3, dY4])
if N % 2 == 0:
# Simpson streaming
f0 = integrand_at(t, y)
odd_sum = 0.0
even_sum = 0.0
return ODE
for i in range(1, N + 1):
k1 = f(t, y)
k2 = f(t + 0.5 * h, y + 0.5 * h * k1)
k3 = f(t + 0.5 * h, y + 0.5 * h * k2)
k4 = f(t + h, y + h * k3)
y = y + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
t = t + h
fi = integrand_at(t, y)
if i == N:
fN = fi
elif i % 2 == 1:
odd_sum += fi
else:
even_sum += fi
S = f0 + fN + 4.0 * odd_sum + 2.0 * even_sum
s = (habs / 3.0) * S
return t, y, s
# Trapez streaming
f_prev = integrand_at(t, y)
acc = 0.0
for _ in range(N):
k1 = f(t, y)
k2 = f(t + 0.5 * h, y + 0.5 * h * k1)
k3 = f(t + 0.5 * h, y + 0.5 * h * k2)
k4 = f(t + h, y + h * k3)
y = y + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
t = t + h
f_cur = integrand_at(t, y)
acc += 0.5 * (f_prev + f_cur)
f_prev = f_cur
s = habs * acc
return t, y, s
def integrand_lambda(lamb, y):
beta = y[0]
beta_p = y[1]
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
return np.sqrt(E * beta_p**2 + G)
def integrand_beta(beta, y):
lamb = y[0]
lamb_p = y[1]
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
return np.sqrt(E + G * lamb_p**2)
if lamb_1 != lamb_2:
N = n
dlamb = lamb_2 - lamb_1
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
if abs(dlamb) < 1e-15:
beta_0 = 0.0
else:
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
def buildODElamb():
def ODE(lamb, v):
beta, beta_p, X3, X4 = v
(_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
) * X4
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
return ODE
ode_lamb = buildODElamb()
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph) if abs(dlamb) >= 1e-15 else 0.0
N_newton = min(N, 4000)
def solve_newton(beta_p0_init: float):
beta_p0 = float(beta_p0_init)
for _ in range(iter_max):
startwerte = np.array([beta_1, beta_p0, 0.0, 1.0], dtype=float)
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
_, y_end = rk4_last(ode_lamb, lamb_1, startwerte, dlamb, N_newton)
beta_end, _, X3_end, _ = y_end
beta_end, beta_p_end, X3_end, X4_end = states[-1]
delta = beta_end - beta_2
if abs(delta) < epsilon:
return True, beta_p0, lamb_list, states
return True, beta_p0
d_beta_end_d_beta0 = X3_end
if abs(d_beta_end_d_beta0) < 1e-20:
return False, None, None, None
if abs(X3_end) < 1e-20:
return False, None
step = delta / d_beta_end_d_beta0
step = delta / X3_end
max_step = 0.5
if abs(step) > max_step:
step = np.sign(step) * max_step
beta_p0 = beta_p0 - step
return False, None, None, None
return False, None
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
ok, beta_p0_sol = solve_newton(beta_p0_sph)
guesses = [
beta_p0_sph,
0.5 * beta_p0_sph,
2.0 * beta_p0_sph,
-beta_p0_sph,
-0.5 * beta_p0_sph,
]
if not ok:
best = None
candidates = [-beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
N_quick = min(N, 2000)
best = None
for g in guesses:
ok, beta_p0_sol, lamb_list_cand, states_cand = solve_newton(g)
if not ok:
continue
for g in candidates:
ok_g, beta_p0_sol_g = solve_newton(g)
if not ok_g:
continue
beta_arr_c = np.array([st[0] for st in states_cand], dtype=float)
beta_p_arr_c = np.array([st[1] for st in states_cand], dtype=float)
lamb_arr_c = np.array(lamb_list_cand, dtype=float)
startwerte_g = np.array([beta_1, beta_p0_sol_g, 0.0, 1.0], dtype=float)
_, _, s_quick = rk4_last_with_integral(
ode_lamb, lamb_1, startwerte_g, dlamb, N_quick, integrand_lambda
)
integrand = np.zeros(N + 1)
if (best is None) or (s_quick < best[0]):
best = (s_quick, beta_p0_sol_g)
if best is None:
raise RuntimeError("Keine Startwert-Variante konvergiert.")
beta_p0_sol = best[1]
beta_0 = beta_p0_sol
startwerte_final = np.array([beta_1, beta_0, 0.0, 1.0], dtype=float)
if all_points:
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte_final, dlamb, N, False)
lamb_arr = np.array(lamb_list, dtype=float)
beta_arr = np.array([st[0] for st in states], dtype=float)
beta_p_arr = np.array([st[1] for st in states], dtype=float)
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E2, G2, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
# Distanz s aus Arrays (Simpson/Trapz)
integrand = np.zeros(N + 1, dtype=float)
for i in range(N + 1):
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr_c[i], lamb_arr_c[i])
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi)
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
h = abs(dlamb) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s_cand = h / 3.0 * S
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
else:
s_cand = np.trapz(integrand, dx=h)
s = np.trapz(integrand, dx=h)
if (best is None) or (s_cand < best[0]):
best = (s_cand, beta_p0_sol, lamb_list_cand, states_cand)
if best is None:
raise RuntimeError("Keine Multi-Start-Variante konvergiert.")
s_best, beta_0, lamb_list, werte = best
beta_arr = np.zeros(N + 1)
# lamb_arr = np.zeros(N + 1)
lamb_arr = np.array(lamb_list)
beta_p_arr = np.zeros(N + 1)
for i, state in enumerate(werte):
# lamb_arr[i] = state[0]
# beta_arr[i] = state[1]
# beta_p_arr[i] = state[2]
beta_arr[i] = state[0]
beta_p_arr[i] = state[1]
(_, _, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
h = abs(dlamb) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
beta0 = beta_arr[0]
lamb0 = lamb_arr[0]
c = np.sqrt(
(np.cos(beta0) ** 2 + (ell.Ee**2 / ell.Ex**2) * np.sin(beta0) ** 2) * np.sin(alpha_1) ** 2
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
)
if all_points:
return alpha_1, alpha_2, s, beta_arr, lamb_arr
else:
return alpha_1, alpha_2, s
else: # lamb_1 == lamb_2
N = n
dbeta = beta_2 - beta_1
_, y_end, s = rk4_last_with_integral(ode_lamb, lamb_1, startwerte_final, dlamb, N, integrand_lambda)
beta_end, beta_p_end, _, _ = y_end
if abs(dbeta) < 1e-15:
if all_points:
return 0, 0, 0, np.array([]), np.array([])
else:
return 0, 0, 0
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
(_, _, E2, G2, *_) = BETA_LAMBDA(beta_2, lamb_2)
lamb_0 = 0
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_0)
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_end)
ode_beta = buildODEbeta()
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
for i in range(iter_max):
startwerte = [lamb_1, lamb_0, 0.0, 1.0]
return alpha_1, alpha_2, s
beta_list, werte = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False)
N = n
dbeta = beta_2 - beta_1
beta_end = beta_list[-1]
lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
if abs(dbeta) < 1e-15:
if all_points:
return 0.0, 0.0, 0.0, np.array([]), np.array([])
return 0.0, 0.0, 0.0
d_lamb_end_d_lambda0 = Y3_end
delta = lamb_end - lamb_2
# ODE-System (lambda, lambda', Y3, Y4) in Abhängigkeit von beta
def buildODEbeta():
def ODE(beta, v):
lamb, lamb_p, Y3, Y4 = v
(_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
if abs(delta) < epsilon:
break
dlamb = lamb_p
dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
) * Y4
if abs(d_lamb_end_d_lambda0) < 1e-20:
raise RuntimeError("Abbruch (Ableitung ~ 0).")
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
max_step = 1.0
step = delta / d_lamb_end_d_lambda0
if abs(step) > max_step:
step = np.sign(step) * max_step
return ODE
lamb_0 = lamb_0 - step
ode_beta = buildODEbeta()
beta_list, werte = rk.rk4(ode_beta, beta_1, np.array([lamb_1, lamb_0, 0.0, 1.0]), dbeta, N, False)
# Newton auf lambda'_0
lamb_0 = 0.0
for _ in range(iter_max):
startwerte = np.array([lamb_1, lamb_0, 0.0, 1.0], dtype=float)
beta_list, states = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False)
# beta_arr = np.zeros(N + 1)
beta_arr = np.array(beta_list)
lamb_arr = np.zeros(N + 1)
lambda_p_arr = np.zeros(N + 1)
lamb_end, lamb_p_end, Y3_end, _ = states[-1]
delta = lamb_end - lamb_2
for i, state in enumerate(werte):
# beta_arr[i] = state[0]
# lamb_arr[i] = state[1]
# lambda_p_arr[i] = state[2]
lamb_arr[i] = state[0]
lambda_p_arr[i] = state[1]
if abs(delta) < epsilon:
break
if abs(Y3_end) < 1e-20:
raise RuntimeError("Abbruch (Ableitung ~ 0).")
step = delta / Y3_end
max_step = 1.0
if abs(step) > max_step:
step = np.sign(step) * max_step
lamb_0 = lamb_0 - step
startwerte_final = np.array([lamb_1, lamb_0, 0.0, 1.0], dtype=float)
if all_points:
beta_list, states = rk.rk4(ode_beta, beta_1, startwerte_final, dbeta, N, False)
beta_arr = np.array(beta_list, dtype=float)
lamb_arr = np.array([st[0] for st in states], dtype=float)
lamb_p_arr = np.array([st[1] for st in states], dtype=float)
# Azimute
(BETA1, LAMBDA1, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(BETA2, LAMBDA2, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
(BETA1, LAMBDA1, _, _, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(BETA2, LAMBDA2, _, _, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0])
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1])
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lamb_p_arr[0])
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lamb_p_arr[-1])
integrand = np.zeros(N + 1)
# optionaler Quadrantenfix (robust)
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
# Distanz
integrand = np.zeros(N + 1, dtype=float)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei + Gi * lamb_p_arr[i] ** 2)
h = abs(dbeta) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
if all_points:
return alpha_1, alpha_2, s, beta_arr, lamb_arr
else:
return alpha_1, alpha_2, s
return alpha_1, alpha_2, s, beta_arr, lamb_arr
# all_points == False: streaming Integral
_, y_end, s = rk4_last_with_integral(ode_beta, beta_1, startwerte_final, dbeta, N, integrand_beta)
lamb_end, lamb_p_end, _, _ = y_end
(BETA1, LAMBDA1, _, _, *_) = BETA_LAMBDA(beta_1, lamb_1)
(BETA2, LAMBDA2, _, _, *_) = BETA_LAMBDA(beta_2, lamb_2)
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lamb_0)
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lamb_p_end)
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
return alpha_1, alpha_2, s
if __name__ == "__main__":
# ell = EllipsoidTriaxial.init_name("Fiction")
# # beta1 = np.deg2rad(75)
# # lamb1 = np.deg2rad(-90)
# # beta2 = np.deg2rad(75)
# # lamb2 = np.deg2rad(66)
# # a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2)
# # print(aus.gms("a1", a1, 4))
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
beta1 = np.deg2rad(75)
lamb1 = np.deg2rad(-90)
beta2 = np.deg2rad(75)
lamb2 = np.deg2rad(66)
a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
print(aus.gms("a1", a1, 4))
# # print(aus.gms("a2", a2, 4))
# # print(s)
# cart1 = ell.para2cart(0, 0)

View File

@@ -1,4 +1,4 @@
from dash import Dash, html, dcc, Input, Output, State, no_update
from dash import Dash, dash, html, dcc, Input, Output, State, no_update, ctx
import plotly.graph_objects as go
import numpy as np
import dash_bootstrap_components as dbc
@@ -12,6 +12,7 @@ import ausgaben as aus
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.gha1_num import gha1_num
from GHA_triaxial.gha1_ES import gha1_ES
from GHA_triaxial.gha1_approx import gha1_approx
from GHA_triaxial.gha2_num import gha2_num
@@ -23,6 +24,7 @@ app = Dash(__name__, suppress_callback_exceptions=True, external_stylesheets=[db
app.title = "Geodätische Hauptaufgaben"
# Erzeugen der Eingabefelder
def inputfeld(left_text, input_id, right_text="", width=200, min=None, max=None):
return html.Div(
children=[
@@ -42,6 +44,7 @@ def inputfeld(left_text, input_id, right_text="", width=200, min=None, max=None)
style={"display": "flex", "alignItems": "center", "marginBottom": "10px"},
)
# Erzeugen der Checklisten inkl. Eingabefelder
def method_row(label, cb_id, input_id=None, value="", info=""):
base_row_style = {
"display": "flex",
@@ -102,8 +105,6 @@ def method_row(label, cb_id, input_id=None, value="", info=""):
return html.Div(children, style=base_row_style)
def ellipsoid_figure(ell: EllipsoidTriaxial, title="Dreiachsiges Ellipsoid"):
fig = go.Figure()
@@ -228,11 +229,12 @@ def figure_points(fig, points):
))
return fig
def figure_lines(fig, line, color):
def figure_lines(fig, line, name, color):
"""
:param fig: plotly.graph_objects.Figure
:param line: Punktliste [[x1,y1,z1], [x2,y2,z2]]
:param name: Name
:param color: Farbe
:return: plotly.graph_objects.Figure
"""
@@ -242,10 +244,12 @@ def figure_lines(fig, line, color):
x=points[:, 0], y=points[:, 1], z=points[:, 2],
mode="lines",
line=dict(width=4, color=color),
name="Strecke", showlegend=False
name=name, showlegend=False
))
return fig
# HTML der beiden Tabs
# Tab 1
pane_gha1 = html.Div(
[
inputfeld("β₀", "input-GHA1-beta0", "°", min=-90, max=90),
@@ -255,6 +259,7 @@ pane_gha1 = html.Div(
method_row("Analytisch", "cb-ana-1", "input-ana-1", ""),
method_row("Numerisch", "cb-num-1", "input-num-n-1", "2000", info="Anzahl Schritte"),
method_row("Stochastisch (ES)", "cb-stoch-1", "input-stoch-n-1", "1000", info="Info"),
method_row("Approximiert", "cb-approx-1", "input-approx-ds-1", "1000", info="Länge Streckensegment [m]"),
@@ -287,6 +292,7 @@ pane_gha1 = html.Div(
style={"display": "block"},
)
# Tab2
pane_gha2 = html.Div(
[
inputfeld("β₀", "input-GHA2-beta0", "°", min=-90, max=90),
@@ -295,7 +301,7 @@ pane_gha2 = html.Div(
inputfeld("λ₁", "input-GHA2-lamb1", "°", min=-180, max=180),
method_row("Numerisch", "cb-num-2", "input-num-n-2", "2000", info="Anzahl Schritte"),
method_row("Stochastisch", "cb-stoch-2", "input-stoch-2", ""),
method_row("Stochastisch", "cb-stoch-2", "input-stoch-n-2", "1000", info="Info"),
method_row("Approximiert", "cb-approx-2", "input-approx-ds-2", "1000", info="Länge Streckensegment [m]"),
html.Div(
@@ -326,7 +332,7 @@ pane_gha2 = html.Div(
)
# HTML-Elemente
# HTML-Gerüst
app.layout = html.Div(
style={"fontFamily": "Arial", "padding": "10px", "width": "95%", "margin": "0 auto"},
children=[
@@ -342,6 +348,7 @@ app.layout = html.Div(
},
children=[
# Linker Bereich
html.Div(
style={"flex": "1 1 420px", "maxWidth": "640px"},
children=[
@@ -387,6 +394,7 @@ app.layout = html.Div(
],
),
# Rechter Bereich
html.Div(
style={
"flex": "1 1 750px",
@@ -452,6 +460,21 @@ def switch_tabs(tab):
show2 = {"display": "block"} if tab == "tab-GHA2" else {"display": "none"}
return show1, show2
# Funktionen zum Aktivieren der Eingabefelder innerhalb der Checklisten
@app.callback(
Output("input-num-n-1", "disabled"),
Input("cb-num-1", "value"),
)
def toggle_ds(v):
return "on" not in (v or [])
@app.callback(
Output("input-stoch-n-1", "disabled"),
Input("cb-stoch-1", "value"),
)
def toggle_ds(v):
return "on" not in (v or [])
@app.callback(
Output("input-approx-ds-1", "disabled"),
Input("cb-approx-1", "value"),
@@ -459,9 +482,17 @@ def switch_tabs(tab):
def toggle_ds(v):
return "on" not in (v or [])
@app.callback(
Output("input-num-n-1", "disabled"),
Input("cb-num-1", "value"),
Output("input-num-n-2", "disabled"),
Input("cb-num-2", "value"),
)
def toggle_ds(v):
return "on" not in (v or [])
@app.callback(
Output("input-stoch-n-2", "disabled"),
Input("cb-stoch-2", "value"),
)
def toggle_ds(v):
return "on" not in (v or [])
@@ -473,21 +504,9 @@ def toggle_ds(v):
def toggle_ds(v):
return "on" not in (v or [])
@app.callback(
Output("input-num-n-2", "disabled"),
Input("cb-num-2", "value"),
)
def toggle_ds(v):
return "on" not in (v or [])
@app.callback(
Output("input-stoch-2", "disabled"),
Input("cb-stoch-2", "value"),
)
def toggle_ds(v):
return "on" not in (v or [])
# Abfrage ob Berechnungsverfahren gewählt
@app.callback(
Output("tabs-GHA1-out", "children"),
Input("button-calc-gha1", "n_clicks"),
@@ -528,8 +547,7 @@ def compute_gha1_ana(n1, cb_ana, beta0, lamb0, s, a0, ax, ay, b):
#if not method1:
#return html.Span("Bitte Berechnungsverfahren wählen.", style={"color": "red"}), None
if "on" not in (cb_ana or []):
return out, no_update
return "", None
ell = EllipsoidTriaxial(ax, ay, b)
beta_rad = wu.deg2rad(float(beta0))
@@ -576,8 +594,8 @@ def compute_gha1_ana(n1, cb_ana, beta0, lamb0, s, a0, ax, ay, b):
def compute_gha1_num(n1, cb_num, n_in, beta0, lamb0, s, a0, ax, ay, b):
if not n1:
return no_update, no_update
if not n1 or "on" not in (cb_num or []):
return no_update, no_update
if "on" not in (cb_num or []):
return "", None
n_in = int(n_in) if n_in else 2000
@@ -614,6 +632,8 @@ def compute_gha1_num(n1, cb_num, n_in, beta0, lamb0, s, a0, ax, ay, b):
Output("output-gha1-stoch", "children"),
Output("store-gha1-stoch", "data"),
Input("button-calc-gha1", "n_clicks"),
State("cb-stoch-1", "value"),
State("input-stoch-n-1", "value"),
State("input-GHA1-beta0", "value"),
State("input-GHA1-lamb0", "value"),
State("input-GHA1-s", "value"),
@@ -624,11 +644,13 @@ def compute_gha1_num(n1, cb_num, n_in, beta0, lamb0, s, a0, ax, ay, b):
State("method-checklist-1", "value"),
prevent_initial_call=True,
)
def compute_gha1_stoch(n1, beta0, lamb0, s, a0, ax, ay, b, method1):
def compute_gha1_stoch(n1, cb_stoch, n_in, beta0, lamb0, s, a0, ax, ay, b, method1):
if not n1:
return no_update, no_update
if "stochastisch" not in (method1 or []):
return no_update, no_update
if "on" not in (cb_stoch or []):
return "", None
n_in = int(n_in) if n_in else 100
ell = EllipsoidTriaxial(ax, ay, b)
beta_rad = wu.deg2rad(float(beta0))
@@ -636,7 +658,7 @@ def compute_gha1_stoch(n1, beta0, lamb0, s, a0, ax, ay, b, method1):
alpha_rad = wu.deg2rad(float(a0))
s_val = float(s)
betas, lambs, alphas, S_real = gha1_es(
betas, lambs, alphas, S_real = gha1_ES(
beta_rad, lamb_rad, alpha_rad,
s_val,
10000,
@@ -682,7 +704,7 @@ def compute_gha1_approx(n1, cb_approx, ds_in, beta0, lamb0, s, a0, ax, ay, b):
if not n1:
return no_update, no_update
if not n1 or "on" not in (cb_approx or []):
return no_update, no_update
return "", None
ds_in = int(ds_in) if ds_in else 1000
@@ -740,7 +762,7 @@ def compute_gha2_num(n2, cb_num, n_in, beta0, lamb0, beta1, lamb1, ax, ay, b):
if None in (beta0, lamb0, beta1, lamb1):
return html.Span("Bitte β₀, λ₀, β₁ und λ₁ eingeben.", style={"color": "red"}), None
if "on" not in (cb_num or []):
return no_update, no_update
return "", None
n_in = int(n_in) if n_in else 2000
@@ -770,6 +792,7 @@ def compute_gha2_num(n2, cb_num, n_in, beta0, lamb0, beta1, lamb1, ax, ay, b):
store = {
"points": [("P0", P0, "black"), ("P1", P1, "black")],
"polyline": polyline,
"name": "numerisch",
"color": "#ff8c00",
}
return out, store
@@ -779,7 +802,7 @@ def compute_gha2_num(n2, cb_num, n_in, beta0, lamb0, beta1, lamb1, ax, ay, b):
Output("store-gha2-stoch", "data"),
Input("button-calc-gha2", "n_clicks"),
State("cb-stoch-2", "value"),
State("input-stoch-2", "value"),
State("input-stoch-n-2", "value"),
State("input-GHA2-beta0", "value"),
State("input-GHA2-lamb0", "value"),
State("input-GHA2-beta1", "value"),
@@ -789,11 +812,13 @@ def compute_gha2_num(n2, cb_num, n_in, beta0, lamb0, beta1, lamb1, ax, ay, b):
State("input-b", "value"),
prevent_initial_call=True,
)
def compute_gha2_stoch(n2, cb_stoch, n_stoch, beta0, lamb0, beta1, lamb1, ax, ay, b):
def compute_gha2_stoch(n2, cb_stoch, n_in, beta0, lamb0, beta1, lamb1, ax, ay, b):
if not n2:
return no_update, no_update
if "on" not in (cb_stoch or []):
return no_update, no_update
return "", None
n_in = int(n_in) if n_in else 1000
ell = EllipsoidTriaxial(ax, ay, b)
@@ -812,8 +837,14 @@ def compute_gha2_stoch(n2, cb_stoch, n_stoch, beta0, lamb0, beta1, lamb1, ax, ay
html.Span(f"{aus.gms('α₀', a0_stoch, 4)}, α₁ = {a1_stoch}, s = {s_stoch:.4f} m"),
])
store = {
"points": [("P0", P0, "black"), ("P1", P1, "black")],
"polyline": points,
"name": "stochastisch (ES)",
"color": "#d62728",
}
return out, {"points": None, "polyline": None, "color": "#d62728"}
return out, store
@app.callback(
Output("output-gha2-approx", "children"),
@@ -834,7 +865,7 @@ def compute_gha2_approx(n2, cb_approx, ds_in, beta0, lamb0, beta1, lamb1, ax, ay
if not n2:
return no_update, no_update
if "on" not in (cb_approx or []):
return no_update, no_update
return "", None
ds_in = int(ds_in) if ds_in else 1000
@@ -858,6 +889,7 @@ def compute_gha2_approx(n2, cb_approx, ds_in, beta0, lamb0, beta1, lamb1, ax, ay
store = {
"points": [("P0", P0, "black"), ("P1", P1, "black")],
"polyline": points,
"name": "aproximiert",
"color": "#00c2fc",
}
@@ -870,6 +902,8 @@ def compute_gha2_approx(n2, cb_approx, ds_in, beta0, lamb0, beta1, lamb1, ax, ay
Input("input-ay", "value"),
Input("input-b", "value"),
Input("dropdown-coors-type", "value"),
Input("button-calc-gha1", "n_clicks"),
Input("button-calc-gha2", "n_clicks"),
Input("store-gha1-ana", "data"),
Input("store-gha1-num", "data"),
Input("store-gha1-stoch", "data"),
@@ -878,34 +912,48 @@ def compute_gha2_approx(n2, cb_approx, ds_in, beta0, lamb0, beta1, lamb1, ax, ay
Input("store-gha2-stoch", "data"),
Input("store-gha2-approx", "data"),
)
def render_all(ax, ay, b, coords_type, store_gha1_ana, store_gha1_num, store_gha1_stoch, store_gha1_approx, store_gha2_num, store_gha2_stoch, store_gha2_approx):
def render_all(ax, ay, b, coords_type,
n_clicks_gha1, n_clicks_gha2,
store_gha1_ana, store_gha1_num, store_gha1_stoch, store_gha1_approx,
store_gha2_num, store_gha2_stoch, store_gha2_approx):
if None in (ax, ay, b):
return go.Figure()
n1 = n_clicks_gha1 or 0
n2 = n_clicks_gha2 or 0
ell = EllipsoidTriaxial(ax, ay, b)
fig = ellipsoid_figure(ell, title="")
fig = figure_constant_lines(fig, ell, coords_type)
def add_from_store(fig, store):
def add_from_store(fig, store, expected_calc_id):
if not store:
return fig
if store.get("calc_id") != expected_calc_id:
return fig
pts = store.get("points") or []
if pts:
fig = figure_points(fig, pts)
line = store.get("polyline")
name = store.get("name", "")
if line:
fig = figure_lines(fig, line, store.get("color", "#ff8c00"))
fig = figure_lines(fig, line, name, store.get("color", "#ff8c00"))
return fig
for st in (store_gha1_ana, store_gha1_num, store_gha1_stoch, store_gha1_approx, store_gha2_num, store_gha2_stoch, store_gha2_approx):
fig = add_from_store(fig, st)
for st in (store_gha1_ana, store_gha1_num, store_gha1_stoch, store_gha1_approx):
fig = add_from_store(fig, st, n1)
for st in (store_gha2_num, store_gha2_stoch, store_gha2_approx):
fig = add_from_store(fig, st, n2)
return fig
if __name__ == "__main__":
# Automatisiertes Öffnen der Seite im Browser
HOST = "127.0.0.1"
PORT = 8050
#Timer(1.0, webbrowser.open_new_tab(f"http://{HOST}:{PORT}/")).start
app.run(host=HOST, port=PORT, debug=False)