Compare commits

...

3 Commits

Author SHA1 Message Date
Tammo.Weber
7addf7f13e Merge remote-tracking branch 'origin/main' 2026-01-13 15:56:33 +01:00
Tammo.Weber
35c1f413ef Layout und Eingaben 2026-01-13 15:56:22 +01:00
Tammo.Weber
e4b7b08517 Plot repariert 2026-01-13 14:09:36 +01:00

View File

@@ -10,16 +10,26 @@ import ausgaben as aus
from GHA_triaxial.panou import gha1_ana
from GHA_triaxial.panou import gha1_num
from es_cma_gha1 import gha1_es
from GHA_triaxial.ES_gha2 import gha2_ES
from GHA_triaxial.approx_gha1 import gha1_approx
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
from GHA_triaxial.ES_gha2 import gha2_ES
from GHA_triaxial.approx_gha2 import gha2_approx
app = Dash(__name__, suppress_callback_exceptions=True)
app.title = "Geodätische Hauptaufgaben"
def abplattung(a, b):
return (a - b) / a
def inputfeld(left_text, input_id, right_text="", width=200, min=None, max=None):
return html.Div(
[
html.Span(f"{left_text} =", style={"minWidth": 36, "textAlign": "right", "marginRight": 5}),
dcc.Input(id=input_id, type="number", placeholder=f"{left_text}...[{right_text}]", min=min, max=max, style={"width": width, "display": "block",}),
html.Span(right_text, style={"marginLeft": 5}) if right_text else html.Span()
],
style={"display": "flex", "alignItems": "center", "marginBottom": "10px"}
)
def ellipsoid_figure(ell: EllipsoidTriaxial, title="Dreiachsiges Ellipsoid"):
fig = go.Figure()
@@ -34,7 +44,7 @@ def ellipsoid_figure(ell: EllipsoidTriaxial, title="Dreiachsiges Ellipsoid"):
zaxis=dict(range=[-rz, rz], title="Z [m]"),
aspectmode="data"
),
margin=dict(l=0, r=0, t=40, b=0),
margin=dict(l=0, r=0, t=10, b=0),
)
# Ellipsoid
@@ -156,13 +166,24 @@ def figure_lines(fig, line, color):
# HTML-Elemente
app.layout = html.Div(
style={"fontFamily": "Arial", "padding": "5px", "width": "70%", "margin-left": "auto"},
style={"fontFamily": "Arial", "padding": "10px", "width": "95%", "margin": "0 auto"},
children=[
html.H1("Geodätische Hauptaufgaben"),
html.H2("für dreiachsige Ellipsoide"),
html.Div(
style={
"display": "flex",
"alignItems": "flex-start",
"gap": "24px",
"flexWrap": "nowrap"
},
children=[
html.Div(
style={"flex": "1 1 420px", "maxWidth": "640px"},
children=[
# Dropdown und Eingabefelder Ellipsoid
html.Label("Ellipsoid wählen:"),
dcc.Dropdown(
id="dropdown-ellipsoid",
@@ -175,91 +196,62 @@ app.layout = html.Div(
{"label": "Bursa1970", "value": "Bursa1970"},
{"label": "BesselBiaxial", "value": "BesselBiaxial"},
{"label": "Fiction", "value": "Fiction"},
#{"label": "Ei", "value": "Ei"},
],
value="",
style={"width": "300px", "marginBottom": "20px"},
style={"width": "300px", "marginBottom": "16px"},
),
html.Label("Halbachsen:"),
dcc.Input(
id="input-ax",
type="number",
min=0,
placeholder="ax...[m]",
style={"marginBottom": "10px", "display": "block", "width": "300px"},
),
dcc.Input(
id="input-ay",
type="number",
min=0,
placeholder="ay...[m]",
style={"marginBottom": "10px", "display": "block", "width": "300px"},
),
dcc.Input(
id="input-b",
type="number",
min=0,
placeholder="b...[m]",
style={"marginBottom": "20px", "display": "block", "width": "300px"},
),
html.P("Halbachsen:", style={"marginBottom": "10px"}),
inputfeld("aₓ", "input-ax", "m", min=0),
inputfeld("aᵧ", "input-ay", "m", min=0),
inputfeld("b", "input-b", "m", min=0),
html.Button(
"Ellipsoid berechnen",
id="calc-ell",
n_clicks=0,
style={"marginRight": "10px", "marginBottom": "20px"},
),
# Ausgabebereich für Ellipsoid-Berechnung
html.Div(id="output-area", style={"marginBottom": "20px"}),
# Tabs für beide Hauptaufgaben - Inhalt wird per Funktion generiert s.u.
dcc.Tabs(
id="tabs-GHA",
value="tab-GHA1",
style={"marginRight": "10px", "marginBottom": "20px", "width": "50%"},
style={"margin": "20px 0 15px", "width": "100%"},
children=[
dcc.Tab(label="Erste Hauptaufgabe", value="tab-GHA1"),
dcc.Tab(label="Zweite Hauptaufgabe", value="tab-GHA2"),
],
),
html.Div(
id="tabs-GHA-out",
style={"marginRight": "10px", "marginBottom": "20px", "width": "50%"},
),
html.Div(id="tabs-GHA-out", style={"marginBottom": "10px"}),
dcc.Loading(html.Div(id="output-gha1-ana")),
dcc.Loading(html.Div(id="output-gha1-num")),
dcc.Loading(html.Div(id="output-gha1-stoch")),
dcc.Loading(html.Div(id="output-gha2-num")),
dcc.Loading(html.Div(id="output-gha2-stoch")),
dcc.Store(id="store-gha1-ana"),
dcc.Store(id="store-gha1-num"),
dcc.Store(id="store-gha1-stoch"),
dcc.Loading(html.Div(id="output-gha2-num")),
dcc.Loading(html.Div(id="output-gha2-stoch")),
dcc.Store(id="store-gha2-num"),
dcc.Store(id="store-gha2-stoch"),
],
),
# Ausgabebereich für den Plot
html.Div(
style={
"flex": "1 1 750px",
"minWidth": "520px",
"position": "sticky",
"top": "0",
"marginTop": "-150px",
},
children=[
dcc.Graph(
id="ellipsoid-plot",
style={"height": "500px", "width": "700px"},
style={"height": "90vh", "width": "100%"},
config={"responsive": True}
)
],
),
],
),
# Fussleiste
html.P(
"© 2025",
style={
"fontSize": "12px",
"color": "gray",
"textAlign": "center",
},
),
html.P("© 2026", style={"fontSize": "10px", "color": "gray", "textAlign": "center", "marginTop": "16px"}),
],
)
@@ -281,31 +273,6 @@ def fill_inputs_from_dropdown(selected_ell):
b = ell.b
return ax, ay, b
# Funktion zur Berechnung der Ellipsoid-Parameter
@app.callback(
Output("output-area", "children"),
Input("calc-ell", "n_clicks"),
State("input-ax", "value"),
State("input-ay", "value"),
State("input-b", "value"),
)
def update_output(n_clicks, ax, ay, b):
if not n_clicks:
return ""
if n_clicks and ax is None or ay is None or b is None:
return html.Span("Bitte Ellipsoid auswählen!", style={"color": "red"})
if ay >= ax or b >= ay or ax <= 0 or ay <= 0 or b <= 0:
return html.Span("Eingabe inkorrekt.", style={"color": "red"})
ell = EllipsoidTriaxial(ax, ay, b)
out_ell = []
out_ell.append(
html.Div([
html.P(f"eₓ = {round(ell.ex, 6)}, eᵧ = {round(ell.ey, 6)}, eₑ = {round(ell.ee, 6)}"),
#html.Br(),
html.P(f"Eₓ = {round(ell.Ex, 3)}, Eᵧ = {round(ell.Ey, 3)}, Eₑ = {round(ell.Ee, 3)}"),
]))
return out_ell
# Funktion zur Generierung der Tab-Inhalte
@app.callback(
Output("tabs-GHA-out", "children"),
@@ -317,14 +284,10 @@ def render_content(tab):
pane_gha1 = html.Div(
[
dcc.Input(id="input-GHA1-beta1", type="number", min=-90, max=90, placeholder="β1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA1-lamb1", type="number", min=-180, max=180, placeholder="λ1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA1-s", type="number", min=0, placeholder="s...[m]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA1-a", type="number", min=0, max=360, placeholder="α...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
inputfeld("β₀", "input-GHA1-beta1", "°", min=-90, max=90),
inputfeld("λ₀", "input-GHA1-lamb1", "°", min=-180, max=180),
inputfeld("s", "input-GHA1-s", "m", min=0),
inputfeld("α₀", "input-GHA1-a", "°", min=0, max=360),
dcc.Checklist(
id="method-checklist-1",
@@ -332,9 +295,10 @@ def render_content(tab):
{"label": "Analytisch", "value": "analytisch"},
{"label": "Numerisch", "value": "numerisch"},
{"label": "Stochastisch (ES)", "value": "stochastisch"},
{"label": "Approximiert", "value": "approx"},
],
value=[],
style={"marginBottom": "20px"},
style={"marginBottom": "10px", "marginLeft": "10px"},
),
html.Div(
[
@@ -342,12 +306,11 @@ def render_content(tab):
"Berechnen",
id="button-calc-gha1",
n_clicks=0,
style={"marginRight": "10px"},
style={"marginRight": "10px", "marginLeft": "10px"},
),
],
style={"marginBottom": "20px"},
),
html.H4("Erste Hauptaufgabe"),
],
id="pane-gha1",
style=show1,
@@ -355,23 +318,20 @@ def render_content(tab):
pane_gha2 = html.Div(
[
dcc.Input(id="input-GHA2-beta1", type="number", min=-90, max=90, placeholder="β1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA2-lamb1", type="number", min=-180, max=180, placeholder="λ1...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA2-beta2", type="number", min=-90, max=90, placeholder="β2...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
dcc.Input(id="input-GHA2-lamb2", type="number", min=-180, max=180, placeholder="λ2...[°]",
style={"marginBottom": "20px", "display": "block", "width": "300px"}),
inputfeld("β₀", "input-GHA2-beta1", "°", min=-90, max=90),
inputfeld("λ₀", "input-GHA2-lamb1", "°", min=-180, max=180),
inputfeld("β₁", "input-GHA2-beta2", "°", min=-90, max=90),
inputfeld("λ₁", "input-GHA2-lamb2", "°", min=-180, max=180),
dcc.Checklist(
id="method-checklist-2",
options=[
{"label": "Numerisch", "value": "numerisch"},
{"label": "Stochastisch (ES)", "value": "stochastisch"},
{"label": "Approximiert", "value": "approx"},
],
value=[],
style={"marginBottom": "20px"},
style={"marginBottom": "10px", "marginLeft": "10px"},
),
html.Div(
[
@@ -379,12 +339,11 @@ def render_content(tab):
"Berechnen",
id="button-calc-gha2",
n_clicks=0,
style={"marginRight": "10px"},
style={"marginRight": "10px", "marginLeft": "10px"},
),
],
style={"marginBottom": "20px"},
),
html.H4("Zweite Hauptaufgabe"),
],
id="pane-gha2",
style=show2,
@@ -392,173 +351,6 @@ def render_content(tab):
return html.Div([pane_gha1, pane_gha2])
# Funktion zur Berechnung der Hauptaufgaben
# @app.callback(
# Output("output-gha1", "children"),
# Output("output-gha2", "children"),
# Output("ellipsoid-plot", "figure"),
# Input("button-calc-gha1", "n_clicks"),
# Input("button-calc-gha2", "n_clicks"),
# State("input-GHA1-beta1", "value"),
# State("input-GHA1-lamb1", "value"),
# State("input-GHA1-s", "value"),
# State("input-GHA1-a", "value"),
# State("input-GHA2-beta1", "value"),
# State("input-GHA2-lamb1", "value"),
# State("input-GHA2-beta2", "value"),
# State("input-GHA2-lamb2", "value"),
# State("input-ax", "value"),
# State("input-ay", "value"),
# State("input-b", "value"),
# State("method-checklist-1", "value"),
# State("method-checklist-2", "value"),
#
# prevent_initial_call=True,
# )
#
# def calc_and_plot(n1, n2,
# beta11, lamb11, s, a_deg,
# beta21, lamb21, beta22, lamb22,
# ax, ay, b, method1, method2):
#
# if not (n1 or n2):
# return no_update, no_update, no_update
#
# if not ax or not ay or not b:
# return html.Span("Bitte Ellipsoid auswählen!", style={"color": "red"}), "", go.Figure()
#
# ell = EllipsoidTriaxial(ax, ay, b)
#
# if dash.ctx.triggered_id == "button-calc-gha1":
# if None in (beta11, lamb11, s, a_deg):
#
# return html.Span("Bitte β₁, λ₁, s und α eingeben.", style={"color": "red"}), "", go.Figure()
#
# beta_rad = wu.deg2rad(float(beta11))
# lamb_rad = wu.deg2rad(float(lamb11))
# alpha_rad = wu.deg2rad(float(a_deg))
# s_val = float(s)
#
# p1 = tuple(map(float, ell.ell2cart(beta_rad, lamb_rad)))
# out1 = []
#
# if "analytisch" in method1:
# # ana
# x2, y2, z2 = gha1_ana(ell, p1, alpha_rad, s_val, 70)
# p2_ana = (float(x2), float(y2), float(z2))
# beta2, lamb2 = ell.cart2ell([x2, y2, z2])
#
# #out1 += f"kartesisch: x₂={p2[0]:.5f} m, y₂={p2[1]:.5f} m, z₂={p2[2]:.5f} m; ellipsoidisch: {aus.gms("β₂", beta2, 5)}, {aus.gms("λ₂", lamb2, 5)},"
# out1.append(
# html.Div([
# html.Strong("Analytisch: "),
# html.Br(),
# html.Span(f"kartesisch: x₂={x2:.4f} m, y₂={y2:.4f} m, z₂={z2:.4f} m"),
# html.Br(),
# html.Span(f"ellipsoidisch: {aus.gms('β₂', beta2, 4)}, {aus.gms('λ₂', lamb2, 4)}")
# ])
# )
#
# if "numerisch" in method1:
# # num
# x1, y1, z1, werte = gha1_num(ell, p1, alpha_rad, s_val, 10000)
# p2_num = x1, y1, z1
# beta2_num, lamb2_num = ell.cart2ell(p2_num)
#
# out1.append(
# html.Div([
# html.Strong("Numerisch: "),
# html.Br(),
# html.Span(f"kartesisch: x₂={p2_num[0]:.4f} m, y₂={p2_num[1]:.4f} m, z₂={p2_num[2]:.4f} m"),
# html.Br(),
# html.Span(f"ellipsoidisch: {aus.gms('β₂', beta2_num, 4)}, {aus.gms('λ₂', lamb2_num, 4)}")
# ])
# )
#
# geo_line_num1 = []
# for x1, _, y1, _, z1, _ in werte:
# geo_line_num1.append([x1, y1, z1])
#
#
# if "stochastisch" in method1:
# # stoch
# p2_stoch = "noch nicht implementiert.."
#
# out1.append(
# html.Div([
# html.Strong("Stochastisch (ES): "),
# html.Span(f"{p2_stoch}")
# ])
# )
#
# if not method1:
# return html.Span("Bitte Berechnungsverfahren auswählen!", style={"color": "red"}), "", go.Figure()
#
# fig = ellipsoid_figure(ell, title="Erste Hauptaufgabe - analytisch")
# #fig = figure_constant_lines(fig, ell, "geod")
# fig = figure_constant_lines(fig, ell, "ell")
# #fig = figure_constant_lines(fig, ell, "para")
# if "analytisch" in method1:
# fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2_ana, "red")])
# if "numerisch" in method1:
# fig = figure_lines(fig, geo_line_num1, "#ff8c00")
#
# #out1 = f"kartesisch: x₂={p2[0]:.5f} m, y₂={p2[1]:.5f} m, z₂={p2[2]:.5f} m; ellipsoidisch: {aus.gms("β₂", beta2, 5)}, {aus.gms("λ₂", lamb2, 5)}, {p2_num}"
# return out1, "", fig
#
# if dash.ctx.triggered_id == "button-calc-gha2":
# if None in (beta21, lamb21, beta22, lamb22):
# return html.Span("Bitte β₁, λ₁, β₂, λ₂ eingeben.", style={"color": "red"}), "", go.Figure()
#
# p1 = tuple(ell.ell2cart(np.deg2rad(float(beta21)), np.deg2rad(float(lamb21))))
# p2 = tuple(ell.ell2cart(np.deg2rad(float(beta22)), np.deg2rad(float(lamb22))))
#
# out2 = []
#
# if "numerisch" in method2:
# alpha_1, alpha_2, s12, beta_arr, lamb_arr = gha2_num(
# ell,
# np.deg2rad(float(beta21)), np.deg2rad(float(lamb21)),
# np.deg2rad(float(beta22)), np.deg2rad(float(lamb22))
# )
# geo_line_num = []
# for beta, lamb in zip(beta_arr, lamb_arr):
# point = ell.ell2cart(beta, lamb)
# geo_line_num.append(point)
#
# out2.append(
# html.Div([
# html.Strong("Numerisch: "),
# html.Span(f"{aus.gms('α₁₂', alpha_1, 4)}, {aus.gms('α₂₁', alpha_2, 4)}, s = {s12:.4f} m"),
# ])
# )
#
#
# if "stochastisch" in method2:
# # stoch
# a_stoch = "noch nicht implementiert.."
#
# out2.append(
# html.Div([
# html.Strong("Stochastisch (ES): "),
# html.Span(f"{a_stoch}")
# ])
# )
#
# if not method2:
# return html.Span("Bitte Berechnungsverfahren auswählen!", style={"color": "red"}), "", go.Figure()
#
# fig = ellipsoid_figure(ell, title="Zweite Hauptaufgabe")
# fig = figure_constant_lines(fig, ell, "ell")
# if "numerisch" in method2:
# fig = figure_lines(fig, geo_line_num, "#ff8c00")
# fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2, "red")])
#
#
#
# return "", out2, fig
#
# return no_update, no_update, no_update
# -- GHA 1 ---
@app.callback(
@@ -576,16 +368,19 @@ def render_content(tab):
prevent_initial_call=True,
)
def compute_gha1_ana(n1, beta11, lamb11, s, a_deg, ax, ay, b, method1):
out = html.Div([
html.H4("Erste Hauptaufgabe"),
])
if not n1:
return no_update, no_update
if None in (ax, ay, b):
return html.Span("Bitte Ellipsoid wählen.", style={"color": "red"}), None
if None in (beta11, lamb11, s, a_deg):
return html.Span("Bitte β, λ, s und α eingeben.", style={"color": "red"}), None
return html.Span("Bitte β, λ, s und α eingeben.", style={"color": "red"}), None
if not method1:
return html.Span("Bitte Berechnungsverfahren wählen.", style={"color": "red"}), None
if "analytisch" not in (method1 or []):
return no_update, no_update
return out, no_update
ell = EllipsoidTriaxial(ax, ay, b)
@@ -600,11 +395,12 @@ def compute_gha1_ana(n1, beta11, lamb11, s, a_deg, ax, ay, b, method1):
beta2, lamb2 = ell.cart2ell(p2_ana)
out = html.Div([
html.H4("Erste Hauptaufgabe"),
html.Strong("Analytisch: "),
html.Br(),
html.Span(f"kartesisch: x={x2:.4f} m, y={y2:.4f} m, z={z2:.4f} m"),
html.Span(f"kartesisch: x={x2:.4f} m, y={y2:.4f} m, z={z2:.4f} m"),
html.Br(),
html.Span(f"ellipsoidisch: {aus.gms('β', beta2, 4)}, {aus.gms('λ', lamb2, 4)}"),
html.Span(f"elliptisch: {aus.gms('β', beta2, 4)}, {aus.gms('λ', lamb2, 4)}"),
html.Br(),
])
@@ -649,9 +445,9 @@ def compute_gha1_num(n1, beta11, lamb11, s, a_deg, ax, ay, b, method1):
out = html.Div([
html.Strong("Numerisch: "),
html.Br(),
html.Span(f"kartesisch: x={p2_num[0]:.4f} m, y={p2_num[1]:.4f} m, z={p2_num[2]:.4f} m"),
html.Span(f"kartesisch: x={p2_num[0]:.4f} m, y={p2_num[1]:.4f} m, z={p2_num[2]:.4f} m"),
html.Br(),
html.Span(f"ellipsoidisch: {aus.gms('β', beta2_num, 4)}, {aus.gms('λ', lamb2_num, 4)}"),
html.Span(f"elliptisch: {aus.gms('β', beta2_num, 4)}, {aus.gms('λ', lamb2_num, 4)}"),
html.Br(),
])
@@ -694,8 +490,7 @@ def compute_gha1_stoch(n1, beta11, lamb11, s, a_deg, ax, ay, b, method1):
beta_rad, lamb_rad, alpha_rad,
s_val,
10000,
ell,
sigma0=1e-10
ell
)
beta2 = betas[-1]
lamb2 = lambs[-1]
@@ -708,9 +503,9 @@ def compute_gha1_stoch(n1, beta11, lamb11, s, a_deg, ax, ay, b, method1):
out = html.Div([
html.Strong("Stochastisch: "),
html.Br(),
html.Span(f"kartesisch: x={x2:.4f} m, y={y2:.4f} m, z={z2:.4f} m"),
html.Span(f"kartesisch: x={x2:.4f} m, y={y2:.4f} m, z={z2:.4f} m"),
html.Br(),
html.Span(f"ellipsoidisch: {aus.gms('β', beta2, 4)}, {aus.gms('λ', lamb2, 4)}"),
html.Span(f"elliptisch: {aus.gms('β', beta2, 4)}, {aus.gms('λ', lamb2, 4)}"),
])
store = {
@@ -737,16 +532,19 @@ def compute_gha1_stoch(n1, beta11, lamb11, s, a_deg, ax, ay, b, method1):
prevent_initial_call=True,
)
def compute_gha2_num(n2, beta1, lamb1, beta2, lamb2, ax, ay, b, method2):
out = html.Div([
html.H4("Zweite Hauptaufgabe"),
])
if not n2:
return no_update, no_update
if None in (ax, ay, b):
return html.Span("Bitte Ellipsoid wählen.", style={"color": "red"}), None
if None in (beta1, lamb1, beta2, lamb2):
return html.Span("Bitte β, λ, β und λ eingeben.", style={"color": "red"}), None
return html.Span("Bitte β, λ, β und λ eingeben.", style={"color": "red"}), None
if not method2:
return html.Span("Bitte Berechnungsverfahren wählen.", style={"color": "red"}), None
if "numerisch" not in (method2 or []):
return no_update, no_update
return out, no_update
ell = EllipsoidTriaxial(ax, ay, b)
@@ -758,15 +556,15 @@ def compute_gha2_num(n2, beta1, lamb1, beta2, lamb2, ax, ay, b, method2):
alpha_1, alpha_2, s12, beta_arr, lamb_arr = gha2_num(ell, b1, l1, b2, l2)
# Polyline der Geodäte: [[x,y,z], ...]
polyline = []
for b_rad, l_rad in zip(beta_arr, lamb_arr):
x, y, z = ell.ell2cart(b_rad, l_rad)
polyline.append([float(x), float(y), float(z)])
out = html.Div([
html.Strong("Zweite Hauptaufgabe Numerisch: "),
html.Span(f"{aus.gms('α₁₂', alpha_1, 4)}, {aus.gms('α₂₁', alpha_2, 4)}, s = {s12:.4f} m"),
html.H4("Zweite Hauptaufgabe"),
html.Strong("Numerisch: "),
html.Span(f"{aus.gms('α₀', alpha_1, 4)}, {aus.gms('α₁', alpha_2, 4)}, s = {s12:.4f} m"),
])
store = {
@@ -797,7 +595,7 @@ def compute_gha2_num(n2, beta1, lamb1, beta2, lamb2, ax, ay, b, method2):
# return no_update, no_update
#
# out = html.Div([
# html.Strong("Zweite Hauptaufgabe Stochastisch (ES): "),
# html.Strong("Stochastisch (ES): "),
# html.Span("noch nicht implementiert...")
# ])
#
@@ -821,10 +619,10 @@ def render_all(ax, ay, b, store_gha1_ana, store_gha1_num, store_gha2_num, store_
fig = ellipsoid_figure(ell, title="")
fig = figure_constant_lines(fig, ell, "ell")
def add_from_store(store):
def add_from_store(fig, store):
if not store:
return
pts = store.get("points")
return fig
pts = store.get("points") or []
if pts:
fig = figure_points(fig, pts)
line = store.get("polyline")
@@ -833,13 +631,9 @@ def render_all(ax, ay, b, store_gha1_ana, store_gha1_num, store_gha2_num, store_
return fig
for st in (store_gha1_ana, store_gha1_num, store_gha2_num, store_gha2_stoch):
res = add_from_store(st)
if res is not None:
fig = res
fig = add_from_store(fig, st)
return fig
if __name__ == "__main__":
app.run(debug=False)