Compare commits

...

2 Commits

Author SHA1 Message Date
Tammo.Weber
cf756e3d9a Ausgabe der Zwischenpunkte GHA1_num 2026-01-06 15:12:21 +01:00
Tammo.Weber
fcae02a0d9 Liniendarstellung GHA1 2026-01-06 15:11:42 +01:00
2 changed files with 16 additions and 4 deletions

View File

@@ -65,7 +65,7 @@ def gha1_num(ell, point, alpha0, s, num):
werte = rk.rk_chat(F, v_init, s, num)
x1, _, y1, _, z1, _ = werte[-1]
return x1, y1, z1
return x1, y1, z1, werte
def checkLiouville(ell: ellipsoide.EllipsoidTriaxial, points):
@@ -181,11 +181,14 @@ if __name__ == "__main__":
re = ellipsoide.EllipsoidBiaxial.init_name("Bessel")
# Panou 2013, 7, Table 1, beta0=60°
beta0, lamb0, beta1, lamb1, c, alpha0, alpha1, s = nep.get_example(table=1, example=5)
beta0, lamb0, beta1, lamb1, c, alpha0, alpha1, s = nep.get_example(table=1, example=3)
P0 = ell.ell2cart(beta0, lamb0)
P1 = ell.ell2cart(beta1, lamb1)
# P1_num = gha1_num(ell, P0, alpha0, s, 1000)
P1_num = gha1_num(ell, P0, alpha0, s, 10000)
P1_ana = gha1_ana(ell, P0, alpha0, s, 30)
beta, lamb = ellipsoide.EllipsoidTriaxial.cart2ell(ell, P1_num)
pass

View File

@@ -429,7 +429,8 @@ def calc_and_plot(n1, n2,
if "numerisch" in method1:
# num
p2_num = gha1_num(ell, p1, alpha_rad, s_val, 10000)
x1, y1, z1, werte = gha1_num(ell, p1, alpha_rad, s_val, 10000)
p2_num = x1, y1, z1
beta2_num, lamb2_num = ell.cart2ell(p2_num)
out1.append(
@@ -442,6 +443,11 @@ def calc_and_plot(n1, n2,
])
)
geo_line_num1 = []
for x1, _, y1, _, z1, _ in werte:
geo_line_num1.append([x1, y1, z1])
if "stochastisch" in method1:
# stoch
p2_stoch = "noch nicht implementiert.."
@@ -460,7 +466,10 @@ def calc_and_plot(n1, n2,
#fig = figure_constant_lines(fig, ell, "geod")
fig = figure_constant_lines(fig, ell, "ell")
#fig = figure_constant_lines(fig, ell, "para")
fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2_ana, "red")])
if "analytisch" in method1:
fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2_ana, "red")])
if "numerisch" in method1:
fig = figure_lines(fig, geo_line_num1, "#ff8c00")
#out1 = f"kartesisch: x₂={p2[0]:.5f} m, y₂={p2[1]:.5f} m, z₂={p2[2]:.5f} m; ellipsoidisch: {aus.gms("β₂", beta2, 5)}, {aus.gms("λ₂", lamb2, 5)}, {p2_num}"
return out1, "", fig