Compare commits
3 Commits
19887e4ac5
...
b44c25928e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b44c25928e | ||
|
|
67248f9ca9 | ||
|
|
71c13c568a |
@@ -10,11 +10,17 @@ import ausgaben as aus
|
||||
from utils_angle import cot, arccot, wrap_to_pi
|
||||
|
||||
|
||||
def norm_a(a):
|
||||
if a < 0.0:
|
||||
a += np.pi
|
||||
def norm_a(a: float) -> float:
|
||||
a = float(a) % (2 * np.pi)
|
||||
return a
|
||||
|
||||
|
||||
def azimut(E: float, G: float, dbeta_du: float, dlamb_du: float) -> float:
|
||||
north = np.sqrt(E) * dbeta_du
|
||||
east = np.sqrt(G) * dlamb_du
|
||||
return norm_a(np.arctan2(east, north))
|
||||
|
||||
|
||||
def sph_azimuth(beta1, lam1, beta2, lam2):
|
||||
dlam = wrap_to_pi(lam2 - lam1)
|
||||
y = np.sin(dlam) * np.cos(beta2)
|
||||
@@ -24,6 +30,7 @@ def sph_azimuth(beta1, lam1, beta2, lam2):
|
||||
a += 2 * np.pi
|
||||
return a
|
||||
|
||||
|
||||
# Panou 2013
|
||||
def gha2_num(
|
||||
ell: EllipsoidTriaxial,
|
||||
@@ -51,62 +58,62 @@ def gha2_num(
|
||||
|
||||
# Berechnung Koeffizienten, Gaußschen Fundamentalgrößen 1. Ordnung sowie deren Ableitungen
|
||||
def BETA_LAMBDA(beta, lamb):
|
||||
BETA = (ell.ay ** 2 * np.sin(beta) ** 2 + ell.b ** 2 * np.cos(beta) ** 2) / (
|
||||
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2
|
||||
BETA = (ell.ay**2 * np.sin(beta) ** 2 + ell.b**2 * np.cos(beta) ** 2) / (
|
||||
ell.Ex**2 - ell.Ey**2 * np.sin(beta) ** 2
|
||||
)
|
||||
LAMBDA = (ell.ax ** 2 * np.sin(lamb) ** 2 + ell.ay ** 2 * np.cos(lamb) ** 2) / (
|
||||
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2
|
||||
LAMBDA = (ell.ax**2 * np.sin(lamb) ** 2 + ell.ay**2 * np.cos(lamb) ** 2) / (
|
||||
ell.Ex**2 - ell.Ee**2 * np.cos(lamb) ** 2
|
||||
)
|
||||
|
||||
BETA_ = (ell.ax ** 2 * ell.Ey ** 2 * np.sin(2 * beta)) / (
|
||||
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2
|
||||
BETA_ = (ell.ax**2 * ell.Ey**2 * np.sin(2 * beta)) / (
|
||||
ell.Ex**2 - ell.Ey**2 * np.sin(beta) ** 2
|
||||
) ** 2
|
||||
LAMBDA_ = -(ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (
|
||||
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2
|
||||
LAMBDA_ = -(ell.b**2 * ell.Ee**2 * np.sin(2 * lamb)) / (
|
||||
ell.Ex**2 - ell.Ee**2 * np.cos(lamb) ** 2
|
||||
) ** 2
|
||||
|
||||
BETA__ = (
|
||||
(2 * ell.ax ** 2 * ell.Ey ** 4 * np.sin(2 * beta) ** 2)
|
||||
/ (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 3
|
||||
+ (2 * ell.ax ** 2 * ell.Ey ** 2 * np.cos(2 * beta))
|
||||
/ (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2
|
||||
(2 * ell.ax**2 * ell.Ey**4 * np.sin(2 * beta) ** 2)
|
||||
/ (ell.Ex**2 - ell.Ey**2 * np.sin(beta) ** 2) ** 3
|
||||
+ (2 * ell.ax**2 * ell.Ey**2 * np.cos(2 * beta))
|
||||
/ (ell.Ex**2 - ell.Ey**2 * np.sin(beta) ** 2) ** 2
|
||||
)
|
||||
LAMBDA__ = (
|
||||
(2 * ell.b ** 2 * ell.Ee ** 4 * np.sin(2 * lamb) ** 2)
|
||||
/ (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 3
|
||||
- (2 * ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb))
|
||||
/ (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2
|
||||
(2 * ell.b**2 * ell.Ee**4 * np.sin(2 * lamb) ** 2)
|
||||
/ (ell.Ex**2 - ell.Ee**2 * np.cos(lamb) ** 2) ** 3
|
||||
- (2 * ell.b**2 * ell.Ee**2 * np.sin(2 * lamb))
|
||||
/ (ell.Ex**2 - ell.Ee**2 * np.cos(lamb) ** 2) ** 2
|
||||
)
|
||||
|
||||
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
E = BETA * (ell.Ey**2 * np.cos(beta) ** 2 + ell.Ee**2 * np.sin(lamb) ** 2)
|
||||
G = LAMBDA * (ell.Ey**2 * np.cos(beta) ** 2 + ell.Ee**2 * np.sin(lamb) ** 2)
|
||||
|
||||
E_beta = (
|
||||
BETA_ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
- BETA * ell.Ey ** 2 * np.sin(2 * beta)
|
||||
BETA_ * (ell.Ey**2 * np.cos(beta) ** 2 + ell.Ee**2 * np.sin(lamb) ** 2)
|
||||
- BETA * ell.Ey**2 * np.sin(2 * beta)
|
||||
)
|
||||
E_lamb = BETA * ell.Ee ** 2 * np.sin(2 * lamb)
|
||||
E_lamb = BETA * ell.Ee**2 * np.sin(2 * lamb)
|
||||
|
||||
G_beta = -LAMBDA * ell.Ey ** 2 * np.sin(2 * beta)
|
||||
G_beta = -LAMBDA * ell.Ey**2 * np.sin(2 * beta)
|
||||
G_lamb = (
|
||||
LAMBDA_ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
+ LAMBDA * ell.Ee ** 2 * np.sin(2 * lamb)
|
||||
LAMBDA_ * (ell.Ey**2 * np.cos(beta) ** 2 + ell.Ee**2 * np.sin(lamb) ** 2)
|
||||
+ LAMBDA * ell.Ee**2 * np.sin(2 * lamb)
|
||||
)
|
||||
|
||||
E_beta_beta = (
|
||||
BETA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
- 2 * BETA_ * ell.Ey ** 2 * np.sin(2 * beta)
|
||||
- 2 * BETA * ell.Ey ** 2 * np.cos(2 * beta)
|
||||
BETA__ * (ell.Ey**2 * np.cos(beta) ** 2 + ell.Ee**2 * np.sin(lamb) ** 2)
|
||||
- 2 * BETA_ * ell.Ey**2 * np.sin(2 * beta)
|
||||
- 2 * BETA * ell.Ey**2 * np.cos(2 * beta)
|
||||
)
|
||||
E_beta_lamb = BETA_ * ell.Ee ** 2 * np.sin(2 * lamb)
|
||||
E_lamb_lamb = 2 * BETA * ell.Ee ** 2 * np.cos(2 * lamb)
|
||||
E_beta_lamb = BETA_ * ell.Ee**2 * np.sin(2 * lamb)
|
||||
E_lamb_lamb = 2 * BETA * ell.Ee**2 * np.cos(2 * lamb)
|
||||
|
||||
G_beta_beta = -2 * LAMBDA * ell.Ey ** 2 * np.cos(2 * beta)
|
||||
G_beta_lamb = -LAMBDA_ * ell.Ey ** 2 * np.sin(2 * beta)
|
||||
G_beta_beta = -2 * LAMBDA * ell.Ey**2 * np.cos(2 * beta)
|
||||
G_beta_lamb = -LAMBDA_ * ell.Ey**2 * np.sin(2 * beta)
|
||||
G_lamb_lamb = (
|
||||
LAMBDA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
+ 2 * LAMBDA_ * ell.Ee ** 2 * np.sin(2 * lamb)
|
||||
+ 2 * LAMBDA * ell.Ee ** 2 * np.cos(2 * lamb)
|
||||
LAMBDA__ * (ell.Ey**2 * np.cos(beta) ** 2 + ell.Ee**2 * np.sin(lamb) ** 2)
|
||||
+ 2 * LAMBDA_ * ell.Ee**2 * np.sin(2 * lamb)
|
||||
+ 2 * LAMBDA * ell.Ee**2 * np.cos(2 * lamb)
|
||||
)
|
||||
|
||||
return (
|
||||
@@ -220,10 +227,14 @@ def gha2_num(
|
||||
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
|
||||
return np.sqrt(E + G * lamb_p**2)
|
||||
|
||||
lamb_0 = wrap_to_pi(lamb_0)
|
||||
lamb_1 = wrap_to_pi(lamb_1)
|
||||
|
||||
# Fall 1 (lambda_0 != lambda_1)
|
||||
if abs(lamb_1 - lamb_0) >= 1e-15:
|
||||
N = int(n)
|
||||
dlamb = float(lamb_1 - lamb_0)
|
||||
dlamb = wrap_to_pi(lamb_1 - lamb_0)
|
||||
sgn = 1.0 if dlamb >= 0.0 else -1.0
|
||||
|
||||
beta0 = float(beta_0)
|
||||
lamb0 = float(lamb_0)
|
||||
@@ -237,7 +248,9 @@ def gha2_num(
|
||||
dbeta = beta_p
|
||||
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
|
||||
dX3 = X4
|
||||
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (3*p_3*beta_p**2 + 2*p_2*beta_p + p_1) * X4
|
||||
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
|
||||
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
|
||||
) * X4
|
||||
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
|
||||
|
||||
alpha0_sph = sph_azimuth(beta0, lamb0, beta1, lamb1)
|
||||
@@ -297,34 +310,36 @@ def gha2_num(
|
||||
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||
|
||||
alpha_1 = norm_a(arccot(np.sqrt(E_start / G_start) * beta_p_arr[0]))
|
||||
alpha_2 = norm_a(arccot(np.sqrt(E_end / G_end) * beta_p_arr[-1]))
|
||||
alpha_0 = azimut(E_start, G_start, dbeta_du=beta_p_arr[0] * sgn, dlamb_du=1.0 * sgn)
|
||||
alpha_1 = azimut(E_end, G_end, dbeta_du=beta_p_arr[-1] * sgn, dlamb_du=1.0 * sgn)
|
||||
|
||||
# Distanz aus Arrays
|
||||
integrand = np.zeros(N + 1, dtype=float)
|
||||
for i in range(N + 1):
|
||||
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
||||
integrand[i] = np.sqrt(Ei * beta_p_arr[i]**2 + Gi)
|
||||
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
|
||||
|
||||
h = abs(dlamb) / N
|
||||
if N % 2 == 0:
|
||||
S = integrand[0] + integrand[-1] + 4.0*np.sum(integrand[1:-1:2]) + 2.0*np.sum(integrand[2:-1:2])
|
||||
s = h/3.0 * S
|
||||
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(
|
||||
integrand[2:-1:2]
|
||||
)
|
||||
s = h / 3.0 * S
|
||||
else:
|
||||
s = np.trapz(integrand, dx=h)
|
||||
|
||||
return float(alpha_1), float(alpha_2), float(s), beta_arr, lamb_arr
|
||||
return float(alpha_0), float(alpha_1), float(s), beta_arr, lamb_arr
|
||||
|
||||
_, y_end, s = rk4_integral(ode_lamb, lamb0, v0_final, dlamb, N, integrand_lambda)
|
||||
beta_end, beta_p_end, _, _ = y_end
|
||||
|
||||
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0)
|
||||
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta1, lamb1)
|
||||
alpha_0 = azimut(E_start, G_start, dbeta_du=beta_p0 * sgn, dlamb_du=1.0 * sgn)
|
||||
|
||||
alpha_1 = norm_a(arccot(np.sqrt(E_start / G_start) * beta_p0))
|
||||
alpha_2 = norm_a(arccot(np.sqrt(E_end / G_end) * beta_p_end))
|
||||
(_, _, E_end, G_end, *_) = BETA_LAMBDA(float(beta_end), lamb1)
|
||||
alpha_1 = azimut(E_end, G_end, dbeta_du=float(beta_p_end) * sgn, dlamb_du=1.0 * sgn)
|
||||
|
||||
return float(alpha_1), float(alpha_2), float(s)
|
||||
return float(alpha_0), float(alpha_1), float(s)
|
||||
|
||||
# Fall 2 (lambda_0 == lambda_1)
|
||||
N = int(n)
|
||||
@@ -339,15 +354,18 @@ def gha2_num(
|
||||
lamb0 = float(lamb_0)
|
||||
beta1 = float(beta_1)
|
||||
lamb1 = float(lamb_1)
|
||||
sgn = 1.0 if dbeta >= 0.0 else -1.0
|
||||
|
||||
def ode_beta(beta, v):
|
||||
lamb, lamb_p, Y3, Y4 = v
|
||||
(_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
|
||||
|
||||
dlamb = lamb_p
|
||||
dlamb_p = q_3*lamb_p**3 + q_2*lamb_p**2 + q_1*lamb_p + q_0
|
||||
dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
|
||||
dY3 = Y4
|
||||
dY4 = (q_33*lamb_p**3 + q_22*lamb_p**2 + q_11*lamb_p + q_00)*Y3 + (3*q_3*lamb_p**2 + 2*q_2*lamb_p + q_1)*Y4
|
||||
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
|
||||
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
|
||||
) * Y4
|
||||
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
|
||||
|
||||
lamb_p0 = 0.0
|
||||
@@ -376,36 +394,39 @@ def gha2_num(
|
||||
lamb_arr = np.array([st[0] for st in states], dtype=float)
|
||||
lamb_p_arr = np.array([st[1] for st in states], dtype=float)
|
||||
|
||||
(BETA_s, LAMBDA_s, _, _, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||
(BETA_e, LAMBDA_e, _, _, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||
|
||||
alpha_1 = norm_a((np.pi/2.0) - arccot(np.sqrt(LAMBDA_s / BETA_s) * lamb_p_arr[0]))
|
||||
alpha_2 = norm_a((np.pi/2.0) - arccot(np.sqrt(LAMBDA_e / BETA_e) * lamb_p_arr[-1]))
|
||||
alpha_0 = azimut(E_start, G_start, dbeta_du=1.0 * sgn, dlamb_du=lamb_p_arr[0] * sgn)
|
||||
alpha_1 = azimut(E_end, G_end, dbeta_du=1.0 * sgn, dlamb_du=lamb_p_arr[-1] * sgn)
|
||||
|
||||
integrand = np.zeros(N + 1, dtype=float)
|
||||
for i in range(N + 1):
|
||||
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
||||
integrand[i] = np.sqrt(Ei + Gi * lamb_p_arr[i]**2)
|
||||
integrand[i] = np.sqrt(Ei + Gi * lamb_p_arr[i] ** 2)
|
||||
|
||||
h = abs(dbeta) / N
|
||||
if N % 2 == 0:
|
||||
S = integrand[0] + integrand[-1] + 4.0*np.sum(integrand[1:-1:2]) + 2.0*np.sum(integrand[2:-1:2])
|
||||
s = h/3.0 * S
|
||||
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(
|
||||
integrand[2:-1:2]
|
||||
)
|
||||
s = h / 3.0 * S
|
||||
else:
|
||||
s = np.trapz(integrand, dx=h)
|
||||
|
||||
return float(alpha_1), float(alpha_2), float(s), beta_arr, lamb_arr
|
||||
return float(alpha_0), float(alpha_1), float(s), beta_arr, lamb_arr
|
||||
|
||||
_, y_end, s = rk4_integral(ode_beta, beta0, v0_final, dbeta, N, integrand_beta)
|
||||
lamb_end, lamb_p_end, _, _ = y_end
|
||||
|
||||
(BETA_s, LAMBDA_s, _, _, *_) = BETA_LAMBDA(beta0, lamb0)
|
||||
(BETA_e, LAMBDA_e, _, _, *_) = BETA_LAMBDA(beta1, lamb1)
|
||||
(_, _, E_start, G_start, *_) = BETA_LAMBDA(beta0, lamb0)
|
||||
alpha_0 = azimut(E_start, G_start, dbeta_du=1.0 * sgn, dlamb_du=lamb_p0 * sgn)
|
||||
|
||||
alpha_1 = norm_a((np.pi/2.0) - arccot(np.sqrt(LAMBDA_s / BETA_s) * lamb_p0))
|
||||
alpha_2 = norm_a((np.pi/2.0) - arccot(np.sqrt(LAMBDA_e / BETA_e) * lamb_p_end))
|
||||
(_, _, E_end, G_end, *_) = BETA_LAMBDA(beta1, float(lamb_end))
|
||||
alpha_1 = azimut(E_end, G_end, dbeta_du=1.0 * sgn, dlamb_du=float(lamb_p_end) * sgn)
|
||||
|
||||
return float(alpha_0), float(alpha_1), float(s)
|
||||
|
||||
return float(alpha_1), float(alpha_2), float(s)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||
|
||||
134
dashboard.py
134
dashboard.py
@@ -145,21 +145,57 @@ def method_failed(method_label: str, exc: Exception):
|
||||
], style={"marginTop": "6px"})
|
||||
])
|
||||
|
||||
def axes_valid(ax, ay, b) -> bool:
|
||||
if ax is None or ay is None or b is None:
|
||||
return False
|
||||
try:
|
||||
ax = float(ax); ay = float(ay); b = float(b)
|
||||
except (TypeError, ValueError):
|
||||
return False
|
||||
if ax <= 0 or ay <= 0 or b <= 0:
|
||||
return False
|
||||
return ax >= ay >= b
|
||||
|
||||
|
||||
def ellipsoid_figure(ell: EllipsoidTriaxial, title="Dreiachsiges Ellipsoid"):
|
||||
fig = go.Figure()
|
||||
|
||||
# Darstellung
|
||||
rx, ry, rz = 1.05*ell.ax, 1.05*ell.ay, 1.05*ell.b
|
||||
rx, ry, rz = 1.01*ell.ax, 1.01*ell.ay, 1.01*ell.b
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
scene=dict(
|
||||
xaxis=dict(range=[-rx, rx], title="X [m]"),
|
||||
yaxis=dict(range=[-ry, ry], title="Y [m]"),
|
||||
zaxis=dict(range=[-rz, rz], title="Z [m]"),
|
||||
aspectmode="data"
|
||||
xaxis=dict(
|
||||
range=[-rx, rx],
|
||||
#title="X [m]",
|
||||
title="",
|
||||
showgrid=False,
|
||||
zeroline=False,
|
||||
showbackground=False,
|
||||
showticklabels=False
|
||||
),
|
||||
margin=dict(l=0, r=0, t=10, b=0),
|
||||
yaxis=dict(
|
||||
range=[-ry, ry],
|
||||
#title="Y [m]",
|
||||
title="",
|
||||
showgrid=False,
|
||||
zeroline=False,
|
||||
showbackground=False,
|
||||
showticklabels=False
|
||||
),
|
||||
zaxis=dict(
|
||||
range=[-rz, rz],
|
||||
#title="Z [m]",
|
||||
title="",
|
||||
showgrid=False,
|
||||
zeroline=False,
|
||||
showbackground=False,
|
||||
showticklabels=False
|
||||
),
|
||||
aspectmode="data",
|
||||
),
|
||||
margin=dict(l=0, r=0, t=0, b=0),
|
||||
scene_camera=dict(eye=dict(x=1.05, y=1.05, z=0.85)),
|
||||
)
|
||||
|
||||
# Ellipsoid
|
||||
@@ -915,6 +951,7 @@ def compute_gha2_num(n2, cb_num, n_in, beta0, lamb0, beta1, lamb1, ax, ay, b):
|
||||
|
||||
out = html.Div([
|
||||
html.Strong("Numerisch: "),
|
||||
html.Br(),
|
||||
html.Span(f"{aus.gms('α₀', a0_num, 4)}, {aus.gms('α₁', a1_num, 4)}, s = {s_num:.4f} m"),
|
||||
])
|
||||
|
||||
@@ -967,6 +1004,7 @@ def compute_gha2_stoch(n2, cb_stoch, n_in, beta0, lamb0, beta1, lamb1, ax, ay, b
|
||||
|
||||
out = html.Div([
|
||||
html.Strong("Stochastisch (ES): "),
|
||||
html.Br(),
|
||||
html.Span(f"{aus.gms('α₀', a0_stoch, 4)}, {aus.gms('α₁', a1_stoch, 4)}, s = {s_stoch:.4f} m"),
|
||||
])
|
||||
|
||||
@@ -1020,6 +1058,7 @@ def compute_gha2_approx(n2, cb_approx, ds_in, beta0, lamb0, beta1, lamb1, ax, ay
|
||||
|
||||
out = html.Div([
|
||||
html.Strong("Approximiert: "),
|
||||
html.Br(),
|
||||
html.Span(f"{aus.gms('α₀', a0_app, 4)}, {aus.gms('α₁', a1_app, 4)}, s = {s_app:.4f} m"),
|
||||
])
|
||||
|
||||
@@ -1059,15 +1098,7 @@ def render_all(ax, ay, b, coords_type, tab, t1, t2,
|
||||
if None in (ax, ay, b):
|
||||
return go.Figure()
|
||||
|
||||
try:
|
||||
ax = float(ax); ay = float(ay); b = float(b)
|
||||
except (TypeError, ValueError):
|
||||
return go.Figure()
|
||||
|
||||
if ax <= 0 or ay <= 0 or b <= 0:
|
||||
return go.Figure()
|
||||
|
||||
if not (ax >= ay >= b):
|
||||
if not axes_valid(ax, ay, b):
|
||||
return go.Figure()
|
||||
|
||||
ell = EllipsoidTriaxial(ax, ay, b)
|
||||
@@ -1075,32 +1106,32 @@ def render_all(ax, ay, b, coords_type, tab, t1, t2,
|
||||
fig = ellipsoid_figure(ell, title="")
|
||||
fig = figure_constant_lines(fig, ell, coords_type)
|
||||
|
||||
legend_added = set()
|
||||
if tab == "tab-GHA1":
|
||||
stores = (s1a, s1n, s1s, s1p)
|
||||
else:
|
||||
stores = (s2n, s2s, s2p)
|
||||
|
||||
def add_legend_for_store(store):
|
||||
def add_method(store, fallback_name):
|
||||
nonlocal fig
|
||||
if not store:
|
||||
return
|
||||
name = store.get("name")
|
||||
color = store.get("color")
|
||||
if not name or not color:
|
||||
return
|
||||
|
||||
key = (name, color)
|
||||
if key in legend_added:
|
||||
return
|
||||
legend_added.add(key)
|
||||
name = store.get("name") or fallback_name
|
||||
color = store.get("color", "#ff8c00")
|
||||
group = name # legendgroup-ID
|
||||
|
||||
has_line = bool(store.get("polyline"))
|
||||
pts = store.get("points") or []
|
||||
line = store.get("polyline")
|
||||
|
||||
if has_line:
|
||||
if line:
|
||||
arr = np.asarray(line, dtype=float)
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=[None], y=[None], z=[None],
|
||||
x=arr[:, 0], y=arr[:, 1], z=arr[:, 2],
|
||||
mode="lines",
|
||||
line=dict(width=6, color=color),
|
||||
line=dict(width=4, color=color),
|
||||
name=name,
|
||||
legendgroup=group,
|
||||
showlegend=True,
|
||||
hoverinfo="skip",
|
||||
))
|
||||
else:
|
||||
fig.add_trace(go.Scatter3d(
|
||||
@@ -1108,36 +1139,25 @@ def render_all(ax, ay, b, coords_type, tab, t1, t2,
|
||||
mode="markers",
|
||||
marker=dict(size=8, color=color),
|
||||
name=name,
|
||||
legendgroup=group,
|
||||
showlegend=True,
|
||||
hoverinfo="skip",
|
||||
))
|
||||
|
||||
def add_from_store(store):
|
||||
nonlocal fig
|
||||
if not store:
|
||||
return
|
||||
for pname, (px, py, pz), pcolor in pts:
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=[px], y=[py], z=[pz],
|
||||
mode="markers+text",
|
||||
marker=dict(size=6, color=pcolor),
|
||||
text=[pname],
|
||||
textposition="top center",
|
||||
name=pname,
|
||||
showlegend=False,
|
||||
legendgroup=group,
|
||||
))
|
||||
|
||||
pts = store.get("points") or []
|
||||
if pts:
|
||||
fig = figure_points(fig, pts)
|
||||
|
||||
line = store.get("polyline")
|
||||
if line:
|
||||
fig = figure_lines(
|
||||
fig,
|
||||
line,
|
||||
store.get("name", ""),
|
||||
store.get("color", "#ff8c00"),
|
||||
)
|
||||
|
||||
if tab == "tab-GHA1":
|
||||
stores = (s1a, s1n, s1s, s1p)
|
||||
else:
|
||||
stores = (s2n, s2s, s2p)
|
||||
|
||||
for st in stores:
|
||||
add_legend_for_store(st)
|
||||
add_from_store(st)
|
||||
for i, st in enumerate(stores, start=1):
|
||||
add_method(st, f"Methode {i}")
|
||||
|
||||
fig.update_layout(
|
||||
showlegend=True,
|
||||
@@ -1147,9 +1167,11 @@ def render_all(ax, ay, b, coords_type, tab, t1, t2,
|
||||
y=1.02,
|
||||
xanchor="left",
|
||||
x=0.06,
|
||||
groupclick="togglegroup",
|
||||
itemclick="toggle",
|
||||
itemdoubleclick="toggleothers",
|
||||
),
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user