Doc-Strings und Type-Hinting
This commit is contained in:
@@ -4,7 +4,17 @@ from panou import louville_constant, func_sigma_ell, gha1_ana
|
||||
import plotly.graph_objects as go
|
||||
import winkelumrechnungen as wu
|
||||
|
||||
def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray]:
|
||||
def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray]:
|
||||
"""
|
||||
Berechung einer Näherungslösung der ersten Hauptaufgabe
|
||||
:param ell: Ellipsoid
|
||||
:param p0: Anfangspunkt
|
||||
:param alpha0: Azimut im Anfangspunkt
|
||||
:param s: Strecke bis zum Endpunkt
|
||||
:param ds: Länge einzelner Streckenelemente
|
||||
:param all_points: Ausgabe aller Punkte als Array?
|
||||
:return: Endpunkt, Azimut im Endpunkt, optional alle Punkte
|
||||
"""
|
||||
l0 = louville_constant(ell, p0, alpha0)
|
||||
points = [p0]
|
||||
alphas = [alpha0]
|
||||
@@ -17,7 +27,7 @@ def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: fl
|
||||
alpha1 = alphas[-1]
|
||||
sigma = func_sigma_ell(ell, p1, alpha1)
|
||||
p2 = p1 + ds_step * sigma
|
||||
p2 = ell.cartonell(p2)
|
||||
p2 = ell.point_onto_ellipsoid(p2)
|
||||
ds_step = np.linalg.norm(p2 - p1)
|
||||
|
||||
points.append(p2)
|
||||
@@ -33,7 +43,13 @@ def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: fl
|
||||
else:
|
||||
return points[-1], alphas[-1]
|
||||
|
||||
def show_points(points, p0, p1):
|
||||
def show_points(points: NDArray, p0: NDArray, p1: NDArray):
|
||||
"""
|
||||
Anzeigen der Punkte
|
||||
:param points: Array aller approximierten Punkte
|
||||
:param p0: Startpunkt
|
||||
:param p1: wahrer Endpunkt
|
||||
"""
|
||||
fig = go.Figure()
|
||||
|
||||
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
|
||||
@@ -59,6 +75,6 @@ if __name__ == '__main__':
|
||||
alpha0 = wu.deg2rad(90)
|
||||
s = 1000000
|
||||
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=60, maxPartCircum=32)
|
||||
P1_app, alpha1_app, points = gha1(ell, P0, alpha0, s, ds=5000, all_points=True)
|
||||
P1_app, alpha1_app, points = gha1_approx(ell, P0, alpha0, s, ds=5000, all_points=True)
|
||||
show_points(points, P0, P1_ana)
|
||||
print(np.linalg.norm(P1_app - P1_ana))
|
||||
|
||||
Reference in New Issue
Block a user