This commit is contained in:
2026-02-05 21:29:20 +01:00
parent f75672ec36
commit e894c7089a

View File

@@ -117,26 +117,27 @@ def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_
return wrap_to_pi(float(np.arctan2(sE, sN))) return wrap_to_pi(float(np.arctan2(sE, sN)))
def optimize_next_point(beta_i: float, omega_i: float, alpha_target: float, ds: float, gamma0: float, def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float, gamma0: float,
ell: EllipsoidTriaxial, maxSegLen: float = 1000.0, sigma0: float = None) -> Tuple[float, float, NDArray, float]: ell: EllipsoidTriaxial, maxSegLen: float = 1000.0, sigma0: float = None) -> Tuple[float, float, NDArray, float]:
""" """
Berechnung der 1. GHA mithilfe der CMA-ES.
:param beta_i: Die CMA-ES optimiert sukzessive einen Punkt, der maxSegLen vom vorherigen Punkt entfernt und zusätzlich auf der
:param omega_i: geodätischen Linien liegt. Somit entsteht ein Geodäten ähnlicher Polygonzug auf der Oberfläche des dreiachsigen Ellipsoids.
:param alpha_target: :param beta_i: Beta Koordinate am Punkt i
:param ds: :param omega_i: Omega Koordinate am Punkt i
:param gamma0: :param alpha_i: Azimut am Punkt i
:param ell: :param ds: Gesamtlänge
:param maxSegLen: :param gamma0: Jacobi-Konstante am Startpunkt
:param ell: Ellipsoid
:param maxSegLen: maximale Segmentlänge
:param sigma0: :param sigma0:
:return: :return:
""" """
# Startbasis (für Predictor + optionales alpha_start) # Startbasis
E_i, N_i, U_i, En_i, Nn_i, P_i = ENU_beta_omega(beta_i, omega_i, ell) E_i, N_i, U_i, En_i, Nn_i, P_i = ENU_beta_omega(beta_i, omega_i, ell)
# Predictor: dβ ≈ ds cosα / |N|, dω ≈ ds sinα / |E| # Prediktor: dβ ≈ ds cosα / |N|, dω ≈ ds sinα / |E|
d_beta = ds * float(np.cos(alpha_target)) / Nn_i d_beta = ds * float(np.cos(alpha_i)) / Nn_i
d_omega = ds * float(np.sin(alpha_target)) / En_i d_omega = ds * float(np.sin(alpha_i)) / En_i
beta_pred = beta_i + d_beta beta_pred = beta_i + d_beta
omega_pred = wrap_to_pi(omega_i + d_omega) omega_pred = wrap_to_pi(omega_i + d_omega)
@@ -144,36 +145,44 @@ def optimize_next_point(beta_i: float, omega_i: float, alpha_target: float, ds:
if sigma0 is None: if sigma0 is None:
R0 = (ell.ax + ell.ay + ell.b) / 3 R0 = (ell.ax + ell.ay + ell.b) / 3
sigma0 = 1e-3 * (ds / R0) sigma0 = 1e-5 * (ds / R0)
def fitness(x: NDArray) -> float: def fitness(x: NDArray) -> float:
"""
Fitnessfunktion: Fitnesscheck erfolgt anhand der Segmentlänge und der Jacobi-Konstante.
Die Segmentlänge muss möglichst gut zum Sollwert passen. Die Jacobi-Konstante am Punkt x muss zur
Jacobi-Konstanten am Startpunkt passen, damit der Polygonzug auf derselben geodätischen Linie bleibt.
:param x: Koordinate in beta, lambda aus der CMA-ES
:return: Fitnesswert (f)
"""
beta = x[0] beta = x[0]
omega = wrap_to_pi(x[1]) omega = wrap_to_pi(x[1])
P = ell.ell2cart(beta, omega) P = ell.ell2cart(beta, omega) # in kartesischer Koordinaten
d = float(np.linalg.norm(P - P_i)) d = float(np.linalg.norm(P - P_i)) # Distanz zwischen
# length penalty # maxSegLen einhalten
J_len = ((d - ds) / ds) ** 2 J_len = ((d - ds) / ds) ** 2
if d > maxSegLen * 1.02:
J_len += 1e3 * ((d / maxSegLen) - 1.02) ** 2
w_len = 1.0 w_len = 1.0
# alpha at end, computed using previous point (for Jacobi gamma) # Azimut für Jacobi-Konstante
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta, omega, ell) E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta, omega, ell)
alpha_end = azimuth_at_ESpoint(P_i, P, E_j, N_j, U_j) alpha_end = azimuth_at_ESpoint(P_i, P, E_j, N_j, U_j)
# Jacobi gamma at candidate/end # Jacobi-Konstante
g_end = jacobi_konstante(beta, omega, alpha_end, ell) g_end = jacobi_konstante(beta, omega, alpha_end, ell)
J_gamma = (g_end - gamma0) ** 2 J_gamma = (g_end - gamma0) ** 2
w_gamma = 10 w_gamma = 10
return float(w_len * J_len + w_gamma * J_gamma) f = float(w_len * J_len + w_gamma * J_gamma)
return f
xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0) # Aufruf CMA-ES xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0) # Aufruf CMA-ES
beta_best = float(np.clip(float(xb[0]), -0.499999 * np.pi, 0.499999 * np.pi)) beta_best = xb[0]
omega_best = wrap_to_pi(float(xb[1])) omega_best = wrap_to_pi(xb[1])
P_best = ell.ell2cart(beta_best, omega_best) P_best = ell.ell2cart(beta_best, omega_best)
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta_best, omega_best, ell) E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta_best, omega_best, ell)
alpha_end = azimuth_at_ESpoint(P_i, P_best, E_j, N_j, U_j) alpha_end = azimuth_at_ESpoint(P_i, P_best, E_j, N_j, U_j)
@@ -181,17 +190,16 @@ def optimize_next_point(beta_i: float, omega_i: float, alpha_target: float, ds:
return beta_best, omega_best, P_best, alpha_end return beta_best, omega_best, P_best, alpha_end
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000): def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000):
""" """
Aufruf der 1. GHA mittels CMA-ES
:param ell: :param ell: Ellipsoid
:param beta0: :param beta0: Beta Startkoordinate
:param omega0: :param omega0: Omega Startkoordinate
:param alpha0: :param alpha0: Azimut Startkoordinate
:param s_total: :param s_total: Gesamtstrecke
:param maxSegLen: :param maxSegLen: maximale Segmentlänge
:return: :return: Zielpunkt Pk und Azimut am Zielpunkt
""" """
beta = float(beta0) beta = float(beta0)
omega = wrap_to_pi(float(omega0)) omega = wrap_to_pi(float(omega0))
@@ -205,14 +213,12 @@ def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float,
s_acc = 0.0 s_acc = 0.0
step = 0 step = 0
nsteps_est = int(np.ceil(s_total / maxSegLen)) nsteps_est = int(np.ceil(s_total / maxSegLen))
while s_acc < s_total - 1e-9: while s_acc < s_total - 1e-9:
step += 1 step += 1
ds = min(maxSegLen, s_total - s_acc) ds = min(maxSegLen, s_total - s_acc)
print(f"[GHA1-ES] Step {step}/{nsteps_est} ds={ds:.3f} m s_acc={s_acc:.3f} m beta={beta:.6f} omega={omega:.6f} alpha={alpha:.6f}") print(f"[GHA1-ES] Step {step}/{nsteps_est} ds={ds:.3f} m s_acc={s_acc:.3f} m beta={beta:.6f} omega={omega:.6f} alpha={alpha:.6f}")
beta, omega, P, alpha = optimize_next_point(beta_i=beta, omega_i=omega, alpha_target=alpha, ds=ds, gamma0=gamma0, beta, omega, P, alpha = optimize_next_point(beta_i=beta, omega_i=omega, alpha_i=alpha, ds=ds, gamma0=gamma0,
ell=ell, maxSegLen=maxSegLen) ell=ell, maxSegLen=maxSegLen)
s_acc += ds s_acc += ds
points.append(P) points.append(P)
@@ -225,7 +231,6 @@ def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float,
return Pk, alpha1 return Pk, alpha1
if __name__ == "__main__": if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round") ell = EllipsoidTriaxial.init_name("BursaSima1980round")
s = 188891.650873 s = 188891.650873