Zweite GHA numerisch
This commit is contained in:
391
GHA_triaxial/panou_2013_2GHA_num.py
Normal file
391
GHA_triaxial/panou_2013_2GHA_num.py
Normal file
@@ -0,0 +1,391 @@
|
||||
import numpy as np
|
||||
#from ellipsoide import EllipsoidTriaxial
|
||||
import Numerische_Integration.num_int_runge_kutta as rk
|
||||
|
||||
|
||||
# Panou 2013
|
||||
|
||||
class EllipsoidTriaxial:
|
||||
def __init__(self, ax: float, ay: float, b: float):
|
||||
self.ax = ax
|
||||
self.ay = ay
|
||||
self.b = b
|
||||
self.ex = np.sqrt((self.ax**2 - self.b**2) / self.ax**2)
|
||||
self.ey = np.sqrt((self.ay**2 - self.b**2) / self.ay**2)
|
||||
self.ee = np.sqrt((self.ax**2 - self.ay**2) / self.ax**2)
|
||||
self.ex_ = np.sqrt((self.ax**2 - self.b**2) / self.b**2)
|
||||
self.ey_ = np.sqrt((self.ay**2 - self.b**2) / self.b**2)
|
||||
self.ee_ = np.sqrt((self.ax**2 - self.ay**2) / self.ay**2)
|
||||
self.Ex = np.sqrt(self.ax**2 - self.b**2)
|
||||
self.Ey = np.sqrt(self.ay**2 - self.b**2)
|
||||
self.Ee = np.sqrt(self.ax**2 - self.ay**2)
|
||||
|
||||
@classmethod
|
||||
def init_name(cls, name: str):
|
||||
if name == "BursaFialova1993":
|
||||
ax = 6378171.36
|
||||
ay = 6378101.61
|
||||
b = 6356751.84
|
||||
return cls(ax, ay, b)
|
||||
elif name == "BursaSima1980":
|
||||
ax = 6378172
|
||||
ay = 6378102.7
|
||||
b = 6356752.6
|
||||
return cls(ax, ay, b)
|
||||
elif name == "BursaSima1980round":
|
||||
# Panou 2013
|
||||
ax = 6378172
|
||||
ay = 6378103
|
||||
b = 6356753
|
||||
return cls(ax, ay, b)
|
||||
elif name == "Eitschberger1978":
|
||||
ax = 6378173.435
|
||||
ay = 6378103.9
|
||||
b = 6356754.4
|
||||
return cls(ax, ay, b)
|
||||
elif name == "Bursa1972":
|
||||
ax = 6378173
|
||||
ay = 6378104
|
||||
b = 6356754
|
||||
return cls(ax, ay, b)
|
||||
elif name == "Bursa1970":
|
||||
ax = 6378173
|
||||
ay = 6378105
|
||||
b = 6356754
|
||||
return cls(ax, ay, b)
|
||||
elif name == "Bessel-biaxial":
|
||||
ax = 6377397.15509
|
||||
ay = 6377397.15508
|
||||
b = 6356078.96290
|
||||
return cls(ax, ay, b)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, epsilon=10**-12, iter_max=30):
|
||||
"""
|
||||
|
||||
:param ell: triaxiales Ellipsoid
|
||||
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
|
||||
:param lamb_1: elllipsoidische Länge Punkt 1
|
||||
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
|
||||
:param lamb_2: elllipsoidische Länge Punkt 2
|
||||
:param n: Anzahl Schritte
|
||||
:param epsilon:
|
||||
:param iter_max: Maximale Anzhal Iterationen
|
||||
:return:
|
||||
"""
|
||||
|
||||
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
|
||||
|
||||
def arccot(x):
|
||||
return np.arctan2(1.0, x)
|
||||
|
||||
|
||||
def BETA_LAMBDA(beta, lamb):
|
||||
|
||||
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
|
||||
LAMBDA = (ell.ax**2 * np.sin(lamb)**2 + ell.ay**2 * np.cos(lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)
|
||||
|
||||
# Erste Ableitungen von ΒETA und LAMBDA
|
||||
BETA_ = (ell.ax**2 * ell.Ey**2 * np.sin(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2
|
||||
LAMBDA_ = - (ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2
|
||||
|
||||
# Zweite Ableitungen von ΒETA und LAMBDA
|
||||
BETA__ = ((2 * ell.ax**2 * ell.Ey**4 * np.sin(2*beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**3) + ((2 * ell.ax**2 * ell.Ey**2 * np.cos(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2)
|
||||
LAMBDA__ = (((2 * ell.b**2 * ell.Ee**4 * np.sin(2*lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**3) -
|
||||
((2 * ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2))
|
||||
|
||||
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
F = 0
|
||||
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
|
||||
# Erste Ableitungen von E und G
|
||||
E_beta = BETA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - BETA * ell.Ey**2 * np.sin(2*beta)
|
||||
E_lamb = BETA * ell.Ee**2 * np.sin(2*lamb)
|
||||
|
||||
G_beta = - LAMBDA * ell.Ey**2 * np.sin(2*beta)
|
||||
G_lamb = LAMBDA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + LAMBDA * ell.Ee**2 * np.sin(2*lamb)
|
||||
|
||||
# Zweite Ableitungen von E und G
|
||||
E_beta_beta = BETA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - 2 * BETA_ * ell.Ey**2 * np.sin(2*beta) - 2 * BETA * ell.Ey**2 * np.cos(2*beta)
|
||||
E_beta_lamb = BETA_ * ell.Ee**2 * np.sin(2*lamb)
|
||||
E_lamb_lamb = 2 * BETA * ell.Ee**2 * np.cos(2*lamb)
|
||||
|
||||
G_beta_beta = - 2 * LAMBDA * ell.Ey**2 * np.cos(2*beta)
|
||||
G_beta_lamb = - LAMBDA_ * ell.Ey**2 * np.sin(2*beta)
|
||||
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
|
||||
|
||||
|
||||
return (BETA, LAMBDA, E, G,
|
||||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||||
E_beta, E_lamb, G_beta, G_lamb,
|
||||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||||
G_beta_beta, G_beta_lamb, G_lamb_lamb)
|
||||
|
||||
def p_coef(beta, lamb):
|
||||
|
||||
(BETA, LAMBDA, E, G,
|
||||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||||
E_beta, E_lamb, G_beta, G_lamb,
|
||||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||||
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
|
||||
|
||||
p_3 = - 0.5 * (E_lamb / G)
|
||||
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
|
||||
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
|
||||
p_0 = 0.5 * (G_beta / E)
|
||||
|
||||
p_33 = - 0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G ** 2))
|
||||
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G ** 2)) - 0.5 * ((E * E_beta_beta - E_beta * E_beta) / (E ** 2))
|
||||
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2)) - ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2))
|
||||
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E ** 2))
|
||||
|
||||
return (BETA, LAMBDA, E, G,
|
||||
p_3, p_2, p_1, p_0,
|
||||
p_33, p_22, p_11, p_00)
|
||||
|
||||
def q_coef(beta, lamb):
|
||||
|
||||
(BETA, LAMBDA, E, G,
|
||||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||||
E_beta, E_lamb, G_beta, G_lamb,
|
||||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||||
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
|
||||
|
||||
q_3 = - 0.5 * (G_beta / E)
|
||||
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
|
||||
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
|
||||
q_0 = 0.5 * (E_lamb / G)
|
||||
|
||||
q_33 = - 0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E ** 2))
|
||||
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E ** 2)) - 0.5 * ((G * G_lamb_lamb - G_lamb * G_lamb) / (G ** 2))
|
||||
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2)) - ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2))
|
||||
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G ** 2))
|
||||
|
||||
return (BETA, LAMBDA, E, G,
|
||||
q_3, q_2, q_1, q_0,
|
||||
q_33, q_22, q_11, q_00)
|
||||
|
||||
if lamb_1 != lamb_2:
|
||||
def functions():
|
||||
def f_beta(lamb, beta, beta_p, X3, X4):
|
||||
return beta_p
|
||||
|
||||
def f_beta_p(lamb, beta, beta_p, X3, X4):
|
||||
(BETA, LAMBDA, E, G,
|
||||
p_3, p_2, p_1, p_0,
|
||||
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
|
||||
return p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
|
||||
|
||||
def f_X3(lamb, beta, beta_p, X3, X4):
|
||||
return X4
|
||||
|
||||
def f_X4(lamb, beta, beta_p, X3, X4):
|
||||
(BETA, LAMBDA, E, G,
|
||||
p_3, p_2, p_1, p_0,
|
||||
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
|
||||
return (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
|
||||
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
|
||||
|
||||
return [f_beta, f_beta_p, f_X3, f_X4]
|
||||
|
||||
N = n
|
||||
|
||||
dlamb = lamb_2 - lamb_1
|
||||
|
||||
if abs(dlamb) < 1e-15:
|
||||
beta_0 = 0.0
|
||||
else:
|
||||
beta_0 = (beta_2 - beta_1) / (lamb_2 - lamb_1)
|
||||
|
||||
converged = False
|
||||
iterations = 0
|
||||
|
||||
funcs = functions()
|
||||
|
||||
for i in range(iter_max):
|
||||
iterations = i + 1
|
||||
|
||||
startwerte = [lamb_1, beta_1, beta_0, 0.0, 1.0]
|
||||
|
||||
werte = rk.verfahren(funcs, startwerte, dlamb, N)
|
||||
lamb_end, beta_end, beta_p_end, X3_end, X4_end = werte[-1]
|
||||
|
||||
d_beta_end_d_beta0 = X3_end
|
||||
delta = beta_end - beta_2
|
||||
|
||||
if abs(delta) < epsilon:
|
||||
converged = True
|
||||
break
|
||||
|
||||
if abs(d_beta_end_d_beta0) < 1e-20:
|
||||
raise RuntimeError("Abbruch.")
|
||||
|
||||
max_step = 0.5
|
||||
step = delta / d_beta_end_d_beta0
|
||||
if abs(step) > max_step:
|
||||
step = np.sign(step) * max_step
|
||||
beta_0 = beta_0 - step
|
||||
|
||||
if not converged:
|
||||
raise RuntimeError("konvergiert nicht.")
|
||||
|
||||
# Z
|
||||
werte = rk.verfahren(funcs, [lamb_1, beta_1, beta_0, 0.0, 1.0], dlamb, N)
|
||||
|
||||
beta_arr = np.zeros(N + 1)
|
||||
lamb_arr = np.zeros(N + 1)
|
||||
beta_p_arr = np.zeros(N + 1)
|
||||
|
||||
for i, state in enumerate(werte):
|
||||
lamb_arr[i] = state[0]
|
||||
beta_arr[i] = state[1]
|
||||
beta_p_arr[i] = state[2]
|
||||
|
||||
(_, _, E1, G1,
|
||||
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||
(_, _, E2, G2,
|
||||
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||
|
||||
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
|
||||
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
|
||||
|
||||
integrand = np.zeros(N + 1)
|
||||
for i in range(N + 1):
|
||||
(_, _, Ei, Gi,
|
||||
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
||||
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
|
||||
|
||||
h = abs(dlamb) / N
|
||||
if N % 2 == 0:
|
||||
S = integrand[0] + integrand[-1] \
|
||||
+ 4.0 * np.sum(integrand[1:-1:2]) \
|
||||
+ 2.0 * np.sum(integrand[2:-1:2])
|
||||
s = h / 3.0 * S
|
||||
else:
|
||||
s = np.trapz(integrand, dx=h)
|
||||
|
||||
beta0 = beta_arr[0]
|
||||
lamb0 = lamb_arr[0]
|
||||
c = np.sqrt(
|
||||
(np.cos(beta0) ** 2 + (ell.Ee**2 / ell.Ex**2) * np.sin(beta0) ** 2) * np.sin(alpha_1) ** 2
|
||||
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
|
||||
)
|
||||
|
||||
return alpha_1, alpha_2, s
|
||||
|
||||
if lamb_1 == lamb_2:
|
||||
|
||||
N = n
|
||||
dbeta = beta_2 - beta_1
|
||||
|
||||
if abs(dbeta) < 10**-15:
|
||||
return 0, 0, 0
|
||||
|
||||
lamb_0 = 0
|
||||
|
||||
converged = False
|
||||
iterations = 0
|
||||
|
||||
def functions_beta():
|
||||
def g_lamb(beta, lamb, lamb_p, Y3, Y4):
|
||||
return lamb_p
|
||||
|
||||
def g_lamb_p(beta, lamb, lamb_p, Y3, Y4):
|
||||
(BETA, LAMBDA, E, G,
|
||||
q_3, q_2, q_1, q_0,
|
||||
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
|
||||
return q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
|
||||
|
||||
def g_Y3(beta, lamb, lamb_p, Y3, Y4):
|
||||
return Y4
|
||||
|
||||
def g_Y4(beta, lamb, lamb_p, Y3, Y4):
|
||||
(BETA, LAMBDA, E, G,
|
||||
q_3, q_2, q_1, q_0,
|
||||
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
|
||||
return (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
|
||||
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
|
||||
|
||||
return [g_lamb, g_lamb_p, g_Y3, g_Y4]
|
||||
|
||||
funcs_beta = functions_beta()
|
||||
|
||||
for i in range(iter_max):
|
||||
iterations = i + 1
|
||||
|
||||
startwerte = [beta_1, lamb_1, lamb_0, 0.0, 1.0]
|
||||
|
||||
werte = rk.verfahren(funcs_beta, startwerte, dbeta, N)
|
||||
beta_end, lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
|
||||
|
||||
d_lamb_end_d_lambda0 = Y3_end
|
||||
delta = lamb_end - lamb_2
|
||||
|
||||
if abs(delta) < epsilon:
|
||||
converged = True
|
||||
break
|
||||
|
||||
if abs(d_lamb_end_d_lambda0) < 1e-20:
|
||||
raise RuntimeError("Abbruch (Ableitung ~ 0).")
|
||||
|
||||
max_step = 1.0
|
||||
step = delta / d_lamb_end_d_lambda0
|
||||
if abs(step) > max_step:
|
||||
step = np.sign(step) * max_step
|
||||
|
||||
lamb_0 = lamb_0 - step
|
||||
|
||||
werte = rk.verfahren(funcs_beta, [beta_1, lamb_1, lamb_0, 0.0, 1.0], dbeta, N)
|
||||
|
||||
beta_arr = np.zeros(N + 1)
|
||||
lamb_arr = np.zeros(N + 1)
|
||||
lambda_p_arr = np.zeros(N + 1)
|
||||
|
||||
for i, state in enumerate(werte):
|
||||
beta_arr[i] = state[0]
|
||||
lamb_arr[i] = state[1]
|
||||
lambda_p_arr[i] = state[2]
|
||||
|
||||
# Azimute
|
||||
(BETA1, LAMBDA1, E1, G1,
|
||||
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||
(BETA2, LAMBDA2, E2, G2,
|
||||
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||
|
||||
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0])
|
||||
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1])
|
||||
|
||||
integrand = np.zeros(N + 1)
|
||||
for i in range(N + 1):
|
||||
(_, _, Ei, Gi,
|
||||
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
||||
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
|
||||
|
||||
h = abs(dbeta) / N
|
||||
if N % 2 == 0:
|
||||
S = integrand[0] + integrand[-1] \
|
||||
+ 4.0 * np.sum(integrand[1:-1:2]) \
|
||||
+ 2.0 * np.sum(integrand[2:-1:2])
|
||||
s = h / 3.0 * S
|
||||
else:
|
||||
s = np.trapz(integrand, dx=h)
|
||||
|
||||
return alpha_1, alpha_2, s
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||
beta1 = np.deg2rad(75)
|
||||
lamb1 = np.deg2rad(-90)
|
||||
beta2 = np.deg2rad(75)
|
||||
lamb2 = np.deg2rad(66)
|
||||
a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2)
|
||||
print(np.rad2deg(a1))
|
||||
print(np.rad2deg(a2))
|
||||
print(s)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user