This commit is contained in:
2026-02-05 21:01:06 +01:00
parent 82444208d7
commit e11edd2a43

View File

@@ -1,8 +1,6 @@
from __future__ import annotations
from typing import List, Optional, Tuple
import numpy as np
from GHA_triaxial.utils import pq_ell
from ellipsoide import EllipsoidTriaxial
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.gha1_approx import gha1_approx
@@ -10,8 +8,6 @@ from Hansen_ES_CMA import escma
from utils_angle import wrap_to_pi
from numpy.typing import NDArray
ell: EllipsoidTriaxial = None
def ellipsoid_formparameter(ell: EllipsoidTriaxial):
"""
@@ -23,51 +19,43 @@ def ellipsoid_formparameter(ell: EllipsoidTriaxial):
k = np.sqrt(max(ell.ay * ell.ay - ell.b * ell.b, 0.0)) / nenner
k_ = np.sqrt(max(ell.ax * ell.ax - ell.ay * ell.ay, 0.0)) / nenner
e = np.sqrt(max(ell.ax * ell.ax - ell.b * ell.b, 0.0)) / ell.ay
return e, k, k_
def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
-> Tuple[NDArray, NDArray, NDArray, float, float, NDArray]:
"""
Analytische ENU-Basis in ellipsoidalen Koordinaten (β, ω) nach Karney.
R(β, ω) gemäß Karney (2025), Eq. (4). :contentReference[oaicite:2]{index=2}
Die Ableitungen E=∂R/∂ω und N=∂R/∂β ergeben sich durch direktes Ableiten.
Rückgabe:
E_hat, N_hat, U_hat, En=||E||, Nn=||N||, R (XYZ)
Analytische ENU-Basis in ellipsoidische Koordinaten (β, ω) nach Karney (2025), S. 2
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param ell: Ellipsoid
:return: E_hat = Einheitsrichtung entlang wachsendem ω (East)
N_hat = Einheitsrichtung entlang wachsendem β (North)
U_hat = Einheitsnormale (Up)
En & Nn = Längen der unnormierten Ableitungen
R (XYZ) = Punkt in XYZ
"""
# Berechnungshilfen
omega = wrap_to_pi(omega)
cb = np.cos(beta)
sb = np.sin(beta)
co = np.cos(omega)
so = np.sin(omega)
# D = sqrt(a^2 - c^2)
D2 = ell.ax*ell.ax - ell.b*ell.b
if D2 <= 0:
raise ValueError("Degenerierter Fall a^2 - c^2 <= 0 (nahe Kugel).")
D = np.sqrt(D2)
D = np.sqrt(ell.ax*ell.ax - ell.b*ell.b)
# Sx = sqrt(a^2 - b^2 sin^2β - c^2 cos^2β)
Sx2 = ell.ax*ell.ax - ell.ay*ell.ay*(sb*sb) - ell.b*ell.b*(cb*cb)
if Sx2 < 0: # numerische Schutzklemme
Sx2 = 0.0
Sx = np.sqrt(Sx2)
Sx = np.sqrt(ell.ax*ell.ax - ell.ay*ell.ay*(sb*sb) - ell.b*ell.b*(cb*cb))
# Sz = sqrt(a^2 sin^2ω + b^2 cos^2ω - c^2)
Sz2 = ell.ax*ell.ax*(so*so) + ell.ay*ell.ay*(co*co) - ell.b*ell.b
if Sz2 < 0:
Sz2 = 0.0
Sz = np.sqrt(Sz2)
Sz = np.sqrt(ell.ax*ell.ax*(so*so) + ell.ay*ell.ay*(co*co) - ell.b*ell.b)
# Karney Eq. (4)
# Karney Gl. (4)
X = ell.ax * co * Sx / D
Y = ell.ay * cb * so
Z = ell.b * sb * Sz / D
R = np.array([X, Y, Z], dtype=float)
# --- Ableitungen ---
# --- Ableitungen - Karney Gl. (5a,b,c)---
# E = ∂R/∂ω
dX_dw = -ell.ax * so * Sx / D
dY_dw = ell.ay * cb * co
@@ -80,7 +68,7 @@ def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
dZ_db = ell.b * cb * Sz / D
N = np.array([dX_db, dY_db, dZ_db], dtype=float)
# U ~ Grad(x^2/a^2 + y^2/b^2 + z^2/c^2 - 1)
# U = Grad(x^2/a^2 + y^2/b^2 + z^2/c^2 - 1)
U = np.array([X/(ell.ax*ell.ax), Y/(ell.ay*ell.ay), Z/(ell.b*ell.b)], dtype=float)
En = np.linalg.norm(E)
@@ -94,10 +82,9 @@ def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
return E_hat, N_hat, U_hat, En, Nn, R
def jacobi_konstante(beta: float, omega: float, alpha: float, ell: EllipsoidTriaxial) -> float:
"""
Jacobi-Konstante nach Karney (2025), Gl. (14): γ = k^2 cos^2β sin^2α k'^2 sin^2ω cos^2α
Jacobi-Konstante nach Karney (2025), Gl. (14)
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param alpha: Azimut alpha
@@ -105,28 +92,48 @@ def jacobi_konstante(beta: float, omega: float, alpha: float, ell: EllipsoidTria
:return: Jacobi-Konstante
"""
e, k, k_ = ellipsoid_formparameter(ell)
cb = np.cos(beta)
so = np.sin(omega)
sa = np.sin(alpha)
ca = np.cos(alpha)
return float((k ** 2) * (cb ** 2) * (sa ** 2) - (k_ ** 2) * (so ** 2) * (ca ** 2))
gamma_jacobi = float((k ** 2) * (np.cos(beta) ** 2) * (np.sin(alpha) ** 2) - (k_ ** 2) * (np.sin(omega) ** 2) * (np.cos(alpha) ** 2))
return gamma_jacobi
def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_hat_curr: NDArray, U_hat_curr: NDArray):
def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_hat_curr: NDArray, U_hat_curr: NDArray) -> float:
"""
Berechnet das Azimut in der lokalen Tangentialebene am aktuellen Punkt P_curr, gemessen
an der Bewegungsrichtung vom vorherigen Punkt P_prev nach P_curr.
:param P_prev: vorheriger Punkt
:param P_curr: aktueller Punkt
:param E_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param N_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param U_hat_curr: Einheitsnormalenvektor am Punkt P_curr
:return: Azimut in Radiant
"""
v = (P_curr - P_prev).astype(float)
vT = v - float(np.dot(v, U_hat_curr)) * U_hat_curr
vT_hat = vT / np.linalg.norm(vT)
sE = float(np.dot(vT_hat, E_hat_curr))
sN = float(np.dot(vT_hat, N_hat_curr))
return wrap_to_pi(float(np.arctan2(sE, sN)))
def optimize_next_point(beta_i: float, omega_i: float, alpha_target: float, ds: float, gamma0: float,
ell: EllipsoidTriaxial, maxSegLen: float = 10000.0, sigma0: float = None):
def optimize_next_point(beta_i: float, omega_i: float, alpha_target: float, ds: float, gamma0: float,
ell: EllipsoidTriaxial, maxSegLen: float = 10000.0, sigma0: float = None) -> Tuple[float, float, NDArray, float]:
"""
:param beta_i:
:param omega_i:
:param alpha_target:
:param ds:
:param gamma0:
:param ell:
:param maxSegLen:
:param sigma0:
:return:
"""
# Startbasis (für Predictor + optionales alpha_start)
E_i, N_i, U_i, En_i, Nn_i, P_i = ENU_beta_omega(beta_i, omega_i, ell)
# Predictor: dβ ≈ ds cosα / |N|, dω ≈ ds sinα / |E|
d_beta = ds * float(np.cos(alpha_target)) / Nn_i
d_omega = ds * float(np.sin(alpha_target)) / En_i
@@ -164,8 +171,7 @@ def optimize_next_point(beta_i: float, omega_i: float, alpha_target: float, ds:
return float(w_len * J_len + w_gamma * J_gamma)
# Aufruf CMA-ES
xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0)
xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0) # Aufruf CMA-ES
beta_best = float(np.clip(float(xb[0]), -0.499999 * np.pi, 0.499999 * np.pi))
omega_best = wrap_to_pi(float(xb[1]))
@@ -176,6 +182,7 @@ def optimize_next_point(beta_i: float, omega_i: float, alpha_target: float, ds:
return beta_best, omega_best, P_best, alpha_end
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float):
beta = float(beta0)
@@ -185,6 +192,7 @@ def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float,
gamma0 = jacobi_konstante(beta, omega, alpha, ell) # Referenz-γ0
points: List[NDArray] = [ell.ell2cart(beta, omega)]
alpha_end: List[float] = [alpha]
s_acc = 0.0
step = 0
@@ -198,31 +206,32 @@ def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float,
beta, omega, P, alpha = optimize_next_point(beta_i=beta, omega_i=omega, alpha_target=alpha, ds=ds, gamma0=gamma0,
ell=ell, maxSegLen=maxSegLen)
s_acc += ds
points.append(P)
alpha_end.append(alpha)
if step > nsteps_est + 50:
raise RuntimeError("Zu viele Schritte vermutlich Konvergenzproblem / falsche Azimut-Konvention.")
Pk = points[-1]
alpha1 = alpha_end[-1]
return Pk, alpha1
return Pk
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
s = 1888916.50873
s = 188891.650873
alpha0 = 70/(180/np.pi)
P0 = ell.ell2cart(5/(180/np.pi), -90/(180/np.pi))
point1, alpha1 = gha1_ana(ell, P0, alpha0=alpha0, s=s, maxM=100, maxPartCircum=32)
point1app, alpha1app = gha1_approx(ell, P0, alpha0=alpha0, s=s, ds=1000)
res = gha1_ES(ell, beta0=5/(180/np.pi), omega0=-90/(180/np.pi), alpha0=alpha0, s_total=s, maxSegLen=1000.0)
res, alpha = gha1_ES(ell, beta0=5/(180/np.pi), omega0=-90/(180/np.pi), alpha0=alpha0, s_total=s, maxSegLen=1000.0)
print(point1)
print(res)
print(alpha)
# print("alpha1 (am Endpunkt):", res.alpha1)
print(res - point1)
print(point1app - point1, "approx")