Funktioniert jetzt mit allen Panou
This commit is contained in:
@@ -30,6 +30,22 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
|||||||
def arccot(x):
|
def arccot(x):
|
||||||
return np.arctan2(1.0, x)
|
return np.arctan2(1.0, x)
|
||||||
|
|
||||||
|
def cot(a):
|
||||||
|
return np.cos(a) / np.sin(a)
|
||||||
|
|
||||||
|
def wrap_to_pi(x):
|
||||||
|
return (x + np.pi) % (2 * np.pi) - np.pi
|
||||||
|
|
||||||
|
def sph_azimuth(beta1, lam1, beta2, lam2):
|
||||||
|
# sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß)
|
||||||
|
dlam = wrap_to_pi(lam2 - lam1)
|
||||||
|
y = np.sin(dlam) * np.cos(beta2)
|
||||||
|
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
|
||||||
|
a = np.arctan2(y, x) # (-pi, pi]
|
||||||
|
if a < 0:
|
||||||
|
a += 2 * np.pi
|
||||||
|
return a
|
||||||
|
|
||||||
def BETA_LAMBDA(beta, lamb):
|
def BETA_LAMBDA(beta, lamb):
|
||||||
|
|
||||||
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
|
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
|
||||||
@@ -158,11 +174,13 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
|||||||
N = n
|
N = n
|
||||||
|
|
||||||
dlamb = lamb_2 - lamb_1
|
dlamb = lamb_2 - lamb_1
|
||||||
|
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
||||||
|
|
||||||
if abs(dlamb) < 1e-15:
|
if abs(dlamb) < 1e-15:
|
||||||
beta_0 = 0.0
|
beta_0 = 0.0
|
||||||
else:
|
else:
|
||||||
beta_0 = (beta_2 - beta_1) / (lamb_2 - lamb_1)
|
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||||
|
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
||||||
|
|
||||||
converged = False
|
converged = False
|
||||||
iterations = 0
|
iterations = 0
|
||||||
@@ -170,40 +188,76 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
|||||||
# funcs = functions()
|
# funcs = functions()
|
||||||
ode_lamb = buildODElamb()
|
ode_lamb = buildODElamb()
|
||||||
|
|
||||||
for i in range(iter_max):
|
def solve_newton(beta_p0_init: float):
|
||||||
iterations = i + 1
|
beta_p0 = float(beta_p0_init)
|
||||||
|
|
||||||
# startwerte = [lamb_1, beta_1, beta_0, 0.0, 1.0]
|
for _ in range(iter_max):
|
||||||
startwerte = np.array([beta_1, beta_0, 0.0, 1.0])
|
startwerte = np.array([beta_1, beta_p0, 0.0, 1.0], dtype=float)
|
||||||
|
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
|
||||||
|
|
||||||
# werte = rk.verfahren(funcs, startwerte, dlamb, N)
|
beta_end, beta_p_end, X3_end, X4_end = states[-1]
|
||||||
lamb_list, werte = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
|
delta = beta_end - beta_2
|
||||||
# lamb_end, beta_end, beta_p_end, X3_end, X4_end = werte[-1]
|
|
||||||
lamb_end = lamb_list[-1]
|
|
||||||
beta_end, beta_p_end, X3_end, X4_end = werte[-1]
|
|
||||||
|
|
||||||
d_beta_end_d_beta0 = X3_end
|
if abs(delta) < epsilon:
|
||||||
delta = beta_end - beta_2
|
return True, beta_p0, lamb_list, states
|
||||||
|
|
||||||
if abs(delta) < epsilon:
|
d_beta_end_d_beta0 = X3_end
|
||||||
converged = True
|
if abs(d_beta_end_d_beta0) < 1e-20:
|
||||||
break
|
return False, None, None, None
|
||||||
|
|
||||||
if abs(d_beta_end_d_beta0) < 1e-20:
|
step = delta / d_beta_end_d_beta0
|
||||||
raise RuntimeError("Abbruch.")
|
max_step = 0.5
|
||||||
|
if abs(step) > max_step:
|
||||||
|
step = np.sign(step) * max_step
|
||||||
|
|
||||||
max_step = 0.5
|
beta_p0 = beta_p0 - step
|
||||||
step = delta / d_beta_end_d_beta0
|
|
||||||
if abs(step) > max_step:
|
|
||||||
step = np.sign(step) * max_step
|
|
||||||
beta_0 = beta_0 - step
|
|
||||||
|
|
||||||
if not converged:
|
return False, None, None, None
|
||||||
raise RuntimeError("konvergiert nicht.")
|
|
||||||
|
|
||||||
# Z
|
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
||||||
# werte = rk.verfahren(funcs, [lamb_1, beta_1, beta_0, 0.0, 1.0], dlamb, N, False)
|
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||||
lamb_list, werte = rk.rk4(ode_lamb, lamb_1, np.array([beta_1, beta_0, 0.0, 1.0]), dlamb, N, False)
|
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
||||||
|
|
||||||
|
guesses = [
|
||||||
|
beta_p0_sph,
|
||||||
|
0.5 * beta_p0_sph,
|
||||||
|
2.0 * beta_p0_sph,
|
||||||
|
-beta_p0_sph,
|
||||||
|
-0.5 * beta_p0_sph,
|
||||||
|
]
|
||||||
|
|
||||||
|
best = None
|
||||||
|
|
||||||
|
for g in guesses:
|
||||||
|
ok, beta_p0_sol, lamb_list_cand, states_cand = solve_newton(g)
|
||||||
|
if not ok:
|
||||||
|
continue
|
||||||
|
|
||||||
|
beta_arr_c = np.array([st[0] for st in states_cand], dtype=float)
|
||||||
|
beta_p_arr_c = np.array([st[1] for st in states_cand], dtype=float)
|
||||||
|
lamb_arr_c = np.array(lamb_list_cand, dtype=float)
|
||||||
|
|
||||||
|
integrand = np.zeros(N + 1)
|
||||||
|
for i in range(N + 1):
|
||||||
|
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr_c[i], lamb_arr_c[i])
|
||||||
|
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi)
|
||||||
|
|
||||||
|
h = abs(dlamb) / N
|
||||||
|
if N % 2 == 0:
|
||||||
|
S = integrand[0] + integrand[-1] \
|
||||||
|
+ 4.0 * np.sum(integrand[1:-1:2]) \
|
||||||
|
+ 2.0 * np.sum(integrand[2:-1:2])
|
||||||
|
s_cand = h / 3.0 * S
|
||||||
|
else:
|
||||||
|
s_cand = np.trapz(integrand, dx=h)
|
||||||
|
|
||||||
|
if (best is None) or (s_cand < best[0]):
|
||||||
|
best = (s_cand, beta_p0_sol, lamb_list_cand, states_cand)
|
||||||
|
|
||||||
|
if best is None:
|
||||||
|
raise RuntimeError("Keine Multi-Start-Variante konvergiert.")
|
||||||
|
|
||||||
|
s_best, beta_0, lamb_list, werte = best
|
||||||
|
|
||||||
beta_arr = np.zeros(N + 1)
|
beta_arr = np.zeros(N + 1)
|
||||||
# lamb_arr = np.zeros(N + 1)
|
# lamb_arr = np.zeros(N + 1)
|
||||||
|
|||||||
Reference in New Issue
Block a user