Code-Verschönerung Dashboard
This commit is contained in:
232
dashboard.py
232
dashboard.py
@@ -16,67 +16,11 @@ app.title = "Geodätische Hauptaufgaben"
|
||||
def abplattung(a, b):
|
||||
return (a - b) / a
|
||||
|
||||
def ellipsoid_figure(ax, ay, b, pts=None, lines=None, title="Dreiachsiges Ellipsoid"):
|
||||
u = np.linspace(-np.pi/2, np.pi/2, 80)
|
||||
v = np.linspace(-np.pi, np.pi, 160)
|
||||
U, V = np.meshgrid(u, v)
|
||||
ell = EllipsoidTriaxial(ax, ay, b)
|
||||
X, Y, Z = ell.para2cart(U, V)
|
||||
|
||||
def ellipsoid_figure(ell: EllipsoidTriaxial, title="Dreiachsiges Ellipsoid"):
|
||||
fig = go.Figure()
|
||||
fig.add_trace(go.Surface(
|
||||
x=X, y=Y, z=Z, showscale=False, opacity=0.7,
|
||||
surfacecolor=np.zeros_like(X),
|
||||
colorscale=[[0, "rgb(200,220,255)"], [1, "rgb(200,220,255)"]],
|
||||
name="Ellipsoid"
|
||||
))
|
||||
|
||||
meridians_deg = np.arange(0, 360, 15)
|
||||
lat_line = np.linspace(-np.pi/2, np.pi/2, 240)
|
||||
for lon_deg in meridians_deg:
|
||||
um = np.deg2rad(lon_deg)
|
||||
vm = lat_line
|
||||
xm, ym, zm = ell.para2cart(um, vm)
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=xm, y=ym, z=zm, mode="lines",
|
||||
line=dict(width=1, color="black"),
|
||||
showlegend=False
|
||||
))
|
||||
parallels_deg = np.arange(-75, 90, 15)
|
||||
lon_line = np.linspace(0, 2*np.pi, 360)
|
||||
for lat_deg in parallels_deg:
|
||||
vp = np.deg2rad(lat_deg)
|
||||
up = lon_line
|
||||
xp, yp, zp = ell.para2cart(up, vp)
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=xp, y=yp, z=zp, mode="lines",
|
||||
line=dict(width=1, color="black"),
|
||||
showlegend=False
|
||||
))
|
||||
|
||||
if pts:
|
||||
for name, (px, py, pz), color in pts:
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=[px], y=[py], z=[pz],
|
||||
mode="markers+text",
|
||||
marker=dict(size=6, color=color),
|
||||
text=[name], textposition="top center",
|
||||
name=name, showlegend=False
|
||||
))
|
||||
|
||||
if lines:
|
||||
for (p1, p2, color) in lines:
|
||||
xline = [p1[0], p2[0]]
|
||||
yline = [p1[1], p2[1]]
|
||||
zline = [p1[2], p2[2]]
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=xline, y=yline, z=zline,
|
||||
mode="lines",
|
||||
line=dict(width=4, color=color),
|
||||
showlegend=False
|
||||
))
|
||||
|
||||
rx, ry, rz = 1.05*ax, 1.05*ay, 1.05*b
|
||||
# Darstellung
|
||||
rx, ry, rz = 1.05*ell.ax, 1.05*ell.ay, 1.05*ell.b
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
scene=dict(
|
||||
@@ -87,6 +31,121 @@ def ellipsoid_figure(ax, ay, b, pts=None, lines=None, title="Dreiachsiges Ellips
|
||||
),
|
||||
margin=dict(l=0, r=0, t=40, b=0),
|
||||
)
|
||||
|
||||
# Ellipsoid
|
||||
u = np.linspace(-np.pi/2, np.pi/2, 80)
|
||||
v = np.linspace(-np.pi, np.pi, 160)
|
||||
U, V = np.meshgrid(u, v)
|
||||
X, Y, Z = ell.para2cart(U, V)
|
||||
fig.add_trace(go.Surface(
|
||||
x=X, y=Y, z=Z, showscale=False, opacity=0.7,
|
||||
surfacecolor=np.zeros_like(X),
|
||||
colorscale=[[0, "rgb(200,220,255)"], [1, "rgb(200,220,255)"]],
|
||||
name="Ellipsoid"
|
||||
))
|
||||
|
||||
return fig
|
||||
|
||||
def figure_constant_lines(fig, ell: EllipsoidTriaxial, coordsystem: str = "para"):
|
||||
if coordsystem == "para":
|
||||
constants_u = wu.deg2rad(np.arange(0, 360, 15))
|
||||
all_v = np.linspace(-np.pi / 2, np.pi / 2, 361)
|
||||
for u in constants_u:
|
||||
xm, ym, zm = ell.para2cart(u, all_v)
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=xm, y=ym, z=zm, mode="lines",
|
||||
line=dict(width=1, color="black"),
|
||||
showlegend=False
|
||||
))
|
||||
|
||||
all_u = np.linspace(0, 2 * np.pi, 361)
|
||||
constants_v = wu.deg2rad(np.arange(-75, 90, 15))
|
||||
for v in constants_v:
|
||||
x, y, z = ell.para2cart(all_u, v)
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=x, y=y, z=z, mode="lines",
|
||||
line=dict(width=1, color="black"),
|
||||
showlegend=False
|
||||
))
|
||||
|
||||
elif coordsystem == "ell":
|
||||
constants_beta = wu.deg2rad(np.arange(-75, 90, 15))
|
||||
all_lamb = np.linspace(0, 2 * np.pi, 361)
|
||||
for beta in constants_beta:
|
||||
xyz = ell.ell2cart(beta, all_lamb)
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=xyz[:, 0], y=xyz[:, 1], z=xyz[:, 2], mode="lines",
|
||||
line=dict(width=1, color="black"),
|
||||
showlegend=False
|
||||
))
|
||||
|
||||
all_beta = np.linspace(-np.pi / 2, np.pi / 2, 361)
|
||||
constants_lamb = wu.deg2rad(np.arange(0, 360, 15))
|
||||
for lamb in constants_lamb:
|
||||
xyz = ell.ell2cart(all_beta, lamb)
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=xyz[:, 0], y=xyz[:, 1], z=xyz[:, 2], mode="lines",
|
||||
line=dict(width=1, color="black"),
|
||||
showlegend=False
|
||||
))
|
||||
|
||||
elif coordsystem == "geod":
|
||||
constants_phi = wu.deg2rad(np.arange(-75, 90, 15))
|
||||
all_lamb = np.linspace(0, 2 * np.pi, 361)
|
||||
for phi in constants_phi:
|
||||
x, y, z = ell.geod2cart(phi, all_lamb, 0)
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=x, y=y, z=z, mode="lines",
|
||||
line=dict(width=1, color="black"),
|
||||
showlegend=False
|
||||
))
|
||||
|
||||
all_phi = np.linspace(-np.pi / 2, np.pi / 2, 361)
|
||||
constants_lamb = wu.deg2rad(np.arange(0, 360, 15))
|
||||
for lamb in constants_lamb:
|
||||
x, y, z = ell.geod2cart(all_phi, lamb, 0)
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=x, y=y, z=z, mode="lines",
|
||||
line=dict(width=1, color="black"),
|
||||
showlegend=False
|
||||
))
|
||||
|
||||
return fig
|
||||
|
||||
def figure_points(fig, points):
|
||||
"""
|
||||
|
||||
:param fig: plotly.graph_objects.Figure
|
||||
:param points: Punktliste [(name, (x,y,z), color)]
|
||||
:return: plotly.graph_objects.Figure
|
||||
"""
|
||||
for name, (px, py, pz), color in points:
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=[px], y=[py], z=[pz],
|
||||
mode="markers+text",
|
||||
marker=dict(size=6, color=color),
|
||||
text=[name], textposition="top center",
|
||||
name=name, showlegend=False
|
||||
))
|
||||
return fig
|
||||
|
||||
def figure_lines(fig, lines):
|
||||
"""
|
||||
|
||||
:param fig: plotly.graph_objects.Figure
|
||||
:param lines: Linienliste [((x1,y1,z1), (x2,y2,z2), color)]
|
||||
:return: plotly.graph_objects.Figure
|
||||
"""
|
||||
for (p1, p2, color) in lines:
|
||||
xline = [p1[0], p2[0]]
|
||||
yline = [p1[1], p2[1]]
|
||||
zline = [p1[2], p2[2]]
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=xline, y=yline, z=zline,
|
||||
mode="lines",
|
||||
line=dict(width=4, color=color),
|
||||
showlegend=False
|
||||
))
|
||||
return fig
|
||||
|
||||
|
||||
@@ -98,7 +157,7 @@ app.layout = html.Div(
|
||||
|
||||
html.Label("Ellipsoid wählen:"),
|
||||
dcc.Dropdown(
|
||||
id="my-dropdown",
|
||||
id="dropdown_ellispoid",
|
||||
options=[
|
||||
{"label": "BursaFialova1993", "value": "BursaFialova1993"},
|
||||
{"label": "BursaSima1980", "value": "BursaSima1980"},
|
||||
@@ -107,7 +166,8 @@ app.layout = html.Div(
|
||||
{"label": "Bursa1972", "value": "Bursa1972"},
|
||||
{"label": "Bursa1970", "value": "Bursa1970"},
|
||||
{"label": "Bessel-biaxial", "value": "Bessel-biaxial"},
|
||||
#{"label": "Ei", "value": "Ei"},
|
||||
{"label": "Fiction", "value": "Fiction"},
|
||||
# {"label": "Ei", "value": "Ei"},
|
||||
],
|
||||
value="",
|
||||
style={"width": "300px", "marginBottom": "20px"},
|
||||
@@ -115,21 +175,21 @@ app.layout = html.Div(
|
||||
|
||||
html.Label("Halbachsen:"),
|
||||
dcc.Input(
|
||||
id="input-1",
|
||||
id="input_ax",
|
||||
type="number",
|
||||
placeholder="ax...",
|
||||
placeholder="ax...[m]",
|
||||
style={"marginBottom": "10px", "display": "block", "width": "300px"},
|
||||
),
|
||||
dcc.Input(
|
||||
id="input-2",
|
||||
id="input_ay",
|
||||
type="number",
|
||||
placeholder="ay...",
|
||||
placeholder="ay...[m]",
|
||||
style={"marginBottom": "10px", "display": "block", "width": "300px"},
|
||||
),
|
||||
dcc.Input(
|
||||
id="input-3",
|
||||
id="input_b",
|
||||
type="number",
|
||||
placeholder="b...",
|
||||
placeholder="b...[m]",
|
||||
style={"marginBottom": "20px", "display": "block", "width": "300px"},
|
||||
),
|
||||
|
||||
@@ -181,16 +241,15 @@ app.layout = html.Div(
|
||||
|
||||
|
||||
@app.callback(
|
||||
Output("input-1", "value"),
|
||||
Output("input-2", "value"),
|
||||
Output("input-3", "value"),
|
||||
Input("my-dropdown", "value"),
|
||||
Output("input_ax", "value"),
|
||||
Output("input_ay", "value"),
|
||||
Output("input_b", "value"),
|
||||
Input("dropdown_ellispoid", "value"),
|
||||
)
|
||||
def fill_inputs_from_dropdown(selected_ell):
|
||||
if not selected_ell:
|
||||
return None, None, None
|
||||
|
||||
|
||||
ell = EllipsoidTriaxial.init_name(selected_ell)
|
||||
ax = ell.ax
|
||||
ay = ell.ay
|
||||
@@ -201,8 +260,8 @@ def fill_inputs_from_dropdown(selected_ell):
|
||||
@app.callback(
|
||||
Output("output-area", "children"),
|
||||
Input("calc-ell", "n_clicks"),
|
||||
State("input-1", "value"),
|
||||
State("input-3", "value"),
|
||||
State("input_ax", "value"),
|
||||
State("input_b", "value"),
|
||||
)
|
||||
def update_output(n_clicks, ax, b):
|
||||
if not n_clicks or ax is None or b is None:
|
||||
@@ -310,7 +369,7 @@ def render_content(tab):
|
||||
State("input-GHA2-lamb1", "value"),
|
||||
State("input-GHA2-beta2", "value"),
|
||||
State("input-GHA2-lamb2", "value"),
|
||||
State("my-dropdown", "value"),
|
||||
State("dropdown_ellispoid", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def calc_and_plot(n1, n2,
|
||||
@@ -340,12 +399,12 @@ def calc_and_plot(n1, n2,
|
||||
x2, y2, z2 = gha1_ana(ell, p1, alpha_rad, s_val, 70)
|
||||
p2 = (float(x2), float(y2), float(z2))
|
||||
|
||||
fig = ellipsoid_figure(
|
||||
ell.ax, ell.ay, ell.b,
|
||||
pts=[("P1", p1, "black"), ("P2", p2, "red")],
|
||||
lines=[(p1, p2, "red")],
|
||||
title="Erste Hauptaufgabe - analystisch"
|
||||
)
|
||||
fig = ellipsoid_figure(ell, title="Erste Hauptaufgabe - analystisch")
|
||||
fig = figure_constant_lines(fig, ell, "geod")
|
||||
fig = figure_constant_lines(fig, ell, "ell")
|
||||
fig = figure_constant_lines(fig, ell, "para")
|
||||
fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2, "red")])
|
||||
fig = figure_lines(fig, [(p1, p2, "red")])
|
||||
|
||||
out1 = f"x₂={p2[0]:.3f}, y₂={p2[1]:.3f}, z₂={p2[2]:.3f}"
|
||||
return out1, "", fig
|
||||
@@ -363,12 +422,11 @@ def calc_and_plot(n1, n2,
|
||||
p1 = tuple(ell.ell2cart(np.deg2rad(float(beta1)), np.deg2rad(float(lamb1))))
|
||||
p2 = tuple(ell.ell2cart(np.deg2rad(float(beta2)), np.deg2rad(float(lamb2))))
|
||||
|
||||
fig = ellipsoid_figure(
|
||||
ell.ax, ell.ay, ell.b,
|
||||
pts=[("P1", p1, "black"), ("P2", p2, "red")],
|
||||
lines=[(p1, p2, "red")],
|
||||
title=f"Zweite Hauptaufgabe - numerisch"
|
||||
)
|
||||
fig = ellipsoid_figure(ell, title="Zweite Hauptaufgabe - numerisch")
|
||||
fig = figure_constant_lines(fig, ell, "para")
|
||||
fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2, "red")])
|
||||
fig = figure_lines(fig, [(p1, p2, "red")])
|
||||
|
||||
out2 = f"a₁₂={np.rad2deg(alpha_1):.6f}°, a₂₁={np.rad2deg(alpha_2):.6f}°, s={s12:.4f} m"
|
||||
return "", out2, fig
|
||||
|
||||
|
||||
@@ -202,32 +202,41 @@ class EllipsoidTriaxial:
|
||||
|
||||
return np.array([x, y, z])
|
||||
|
||||
def ell2cart(self, beta: float, lamb: float) -> np.ndarray:
|
||||
def ell2cart(self, beta: float | np.ndarray, lamb: float | np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Panou, Korakitis 2019 2
|
||||
:param beta: elliptische Breite [rad]
|
||||
:param lamb: elliptische Länge [rad]
|
||||
:return: Punkt in kartesischen Koordinaten
|
||||
"""
|
||||
if beta == -np.pi/2:
|
||||
return np.array([0, 0, -self.b])
|
||||
elif beta == np.pi/2:
|
||||
return np.array([0, 0, self.b])
|
||||
elif beta == 0 and lamb == -np.pi/2:
|
||||
return np.array([0, -self.ay, 0])
|
||||
elif beta == 0 and lamb == np.pi/2:
|
||||
return np.array([0, self.ay, 0])
|
||||
elif beta == 0 and lamb == 0:
|
||||
return np.array([self.ax, 0, 0])
|
||||
elif beta == 0 and lamb == np.pi:
|
||||
return np.array([-self.ax, 0, 0])
|
||||
else:
|
||||
B = self.Ex**2 * np.cos(beta)**2 + self.Ee**2 * np.sin(beta)**2
|
||||
L = self.Ex**2 - self.Ee**2 * np.cos(lamb)**2
|
||||
beta = np.asarray(beta, dtype=float)
|
||||
lamb = np.asarray(lamb, dtype=float)
|
||||
|
||||
beta, lamb = np.broadcast_arrays(beta, lamb)
|
||||
|
||||
B = self.Ex ** 2 * np.cos(beta) ** 2 + self.Ee ** 2 * np.sin(beta) ** 2
|
||||
L = self.Ex ** 2 - self.Ee ** 2 * np.cos(lamb) ** 2
|
||||
|
||||
x = self.ax / self.Ex * np.sqrt(B) * np.cos(lamb)
|
||||
y = self.ay * np.cos(beta) * np.sin(lamb)
|
||||
z = self.b / self.Ex * np.sin(beta) * np.sqrt(L)
|
||||
return np.array([x, y, z])
|
||||
|
||||
xyz = np.stack((x, y, z), axis=-1)
|
||||
|
||||
# Pole
|
||||
mask_south = beta == -np.pi / 2
|
||||
mask_north = beta == np.pi / 2
|
||||
xyz[mask_south] = np.array([0, 0, -self.b])
|
||||
xyz[mask_north] = np.array([0, 0, self.b])
|
||||
|
||||
# Äquator
|
||||
mask_eq = beta == 0
|
||||
xyz[mask_eq & (lamb == -np.pi / 2)] = np.array([0, -self.ay, 0])
|
||||
xyz[mask_eq & (lamb == np.pi / 2)] = np.array([0, self.ay, 0])
|
||||
xyz[mask_eq & (lamb == 0)] = np.array([self.ax, 0, 0])
|
||||
xyz[mask_eq & (lamb == np.pi)] = np.array([-self.ax, 0, 0])
|
||||
|
||||
return xyz
|
||||
|
||||
def cart2ellu(self, point: np.ndarray) -> tuple[float, float, float]:
|
||||
"""
|
||||
@@ -390,7 +399,7 @@ class EllipsoidTriaxial:
|
||||
|
||||
return phi, lamb, h
|
||||
|
||||
def geod2cart(self, phi: float, lamb: float, h: float) -> np.ndarray:
|
||||
def geod2cart(self, phi: float | np.ndarray, lamb: float | np.ndarray, h: float) -> np.ndarray:
|
||||
"""
|
||||
Ligas 2012, 250
|
||||
:param phi: geodätische Breite [rad]
|
||||
@@ -425,7 +434,7 @@ class EllipsoidTriaxial:
|
||||
pointH = self. geod2cart(phi, lamb, h)
|
||||
return pointH
|
||||
|
||||
def para2cart(self, u: float, v: float) -> np.ndarray:
|
||||
def para2cart(self, u: float | np.ndarray, v: float | np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Panou, Korakitits 2020, 4
|
||||
:param u: Parameter u
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from numpy import *
|
||||
import numpy as np
|
||||
|
||||
|
||||
def deg2gms(deg: float) -> list:
|
||||
@@ -10,13 +11,13 @@ def deg2gms(deg: float) -> list:
|
||||
:rtype: list
|
||||
"""
|
||||
gra = deg // 1
|
||||
min = gra % 1
|
||||
minu = gra % 1
|
||||
gra = gra // 1
|
||||
min *= 60
|
||||
sek = min % 1
|
||||
min = min // 1
|
||||
minu *= 60
|
||||
sek = minu % 1
|
||||
minu = minu // 1
|
||||
sek *= 60
|
||||
return [gra, min, sek]
|
||||
return [gra, minu, sek]
|
||||
|
||||
|
||||
def deg2gra(deg: float) -> float:
|
||||
@@ -30,13 +31,13 @@ def deg2gra(deg: float) -> float:
|
||||
return deg * 10/9
|
||||
|
||||
|
||||
def deg2rad(deg: float) -> float:
|
||||
def deg2rad(deg: float | np.ndarray) -> float | np.ndarray:
|
||||
"""
|
||||
Umrechnung von Grad in Radiant
|
||||
:param deg: Winkel in Grad
|
||||
:type deg: float
|
||||
:type deg: float or np.ndarray
|
||||
:return: Winkel in Radiant
|
||||
:rtype: float
|
||||
:rtype: float or np.ndarray
|
||||
"""
|
||||
return deg * pi / 180
|
||||
|
||||
@@ -51,13 +52,13 @@ def gra2gms(gra: float) -> list:
|
||||
"""
|
||||
deg = gra2deg(gra)
|
||||
gra = deg // 1
|
||||
min = gra % 1
|
||||
minu = gra % 1
|
||||
gra = gra // 1
|
||||
min *= 60
|
||||
sek = min % 1
|
||||
min = min // 1
|
||||
minu *= 60
|
||||
sek = minu % 1
|
||||
minu = minu // 1
|
||||
sek *= 60
|
||||
return [gra, min, sek]
|
||||
return [gra, minu, sek]
|
||||
|
||||
|
||||
def gra2rad(gra: float) -> float:
|
||||
@@ -113,13 +114,13 @@ def rad2gms(rad: float) -> list:
|
||||
:rtype: list
|
||||
"""
|
||||
deg = rad2deg(rad)
|
||||
min = deg % 1
|
||||
minu = deg % 1
|
||||
gra = deg // 1
|
||||
min *= 60
|
||||
sek = min % 1
|
||||
min = min // 1
|
||||
minu *= 60
|
||||
sek = minu % 1
|
||||
minu = minu // 1
|
||||
sek *= 60
|
||||
return [gra, min, sek]
|
||||
return [gra, minu, sek]
|
||||
|
||||
|
||||
def gms2rad(gms: list) -> float:
|
||||
|
||||
Reference in New Issue
Block a user