2. GHA mit CMA-ES

This commit is contained in:
2026-01-12 15:18:39 +01:00
parent 6cc7245b0f
commit bded05a231
5 changed files with 302 additions and 32 deletions

View File

@@ -1,27 +1,13 @@
import numpy as np
from numpy import arctan2
from ellipsoide import EllipsoidTriaxial
from panou import pq_ell
from panou_2013_2GHA_num import gha2_num
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
import plotly.graph_objects as go
import winkelumrechnungen as wu
from numpy.typing import NDArray
from typing import Tuple
def sigma2alpha(sigma: NDArray, point: NDArray) -> float:
"""
Berechnung des Richtungswinkels an einem Punkt anhand der Ableitung zu den kartesischen Koordinaten
:param sigma: Ableitungsvektor ver kartesischen Koordinaten
:param point: Punkt
:return: Richtungswinkel
"""
""
p, q = pq_ell(ell, point)
P = float(p @ sigma)
Q = float(q @ sigma)
from utils import sigma2alpha
alpha = arctan2(P, Q)
return alpha
def gha2(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]:
"""
@@ -55,11 +41,11 @@ def gha2(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points
p0i = ell.cartonell(p0 + ds/100 * (points[1] - p0) / np.linalg.norm(points[1] - p0))
sigma0 = (p0i - p0) / np.linalg.norm(p0i - p0)
alpha0 = sigma2alpha(sigma0, p0)
alpha0 = sigma2alpha(ell, sigma0, p0)
p1i = ell.cartonell(p1 - ds/100 * (p1 - points[-2]) / np.linalg.norm(p1 - points[-2]))
sigma1 = (p1 - p1i) / np.linalg.norm(p1 - p1i)
alpha1 = sigma2alpha(sigma1, p1)
alpha1 = sigma2alpha(ell, sigma1, p1)
s = np.sum(np.array([np.linalg.norm(points[i] - points[i+1]) for i in range(len(points)-1)]))