GHA triaxial nach Panou Korakitis 2019 läuft
bei ax=ay Fehler irgendwas bei gha1 biaxial noch falsch, evtl Umrechnung
This commit is contained in:
17
GHA/rk.py
Normal file
17
GHA/rk.py
Normal file
@@ -0,0 +1,17 @@
|
||||
import Numerische_Integration.num_int_runge_kutta as rk
|
||||
from numpy import sin, cos, tan
|
||||
import winkelumrechnungen as wu
|
||||
from ellipsoide import EllipsoidBiaxial
|
||||
|
||||
def gha1(re, x0, y0, z0, A0, s, num):
|
||||
phi0, lamb0, h0 = re.cart2ell(0.001, wu.gms2rad([0, 0, 0.001]), x0, y0, z0)
|
||||
|
||||
f_phi = lambda s, phi, lam, A: cos(A) * re.V(phi) ** 3 / re.c
|
||||
f_lam = lambda s, phi, lam, A: sin(A) * re.V(phi) / (cos(phi) * re.c)
|
||||
f_A = lambda s, phi, lam, A: tan(phi) * sin(A) * re.V(phi) / re.c
|
||||
|
||||
funktionswerte = rk.verfahren([f_phi, f_lam, f_A],
|
||||
[0, phi0, lamb0, A0],
|
||||
s, num)
|
||||
coords = re.ell2cart(funktionswerte[-1][1], funktionswerte[-1][2], h0)
|
||||
return coords
|
||||
0
GHA_triaxial/__init__.py
Normal file
0
GHA_triaxial/__init__.py
Normal file
62
GHA_triaxial/panou.py
Normal file
62
GHA_triaxial/panou.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import numpy as np
|
||||
import ellipsoide
|
||||
import Numerische_Integration.num_int_runge_kutta as rk
|
||||
import winkelumrechnungen as wu
|
||||
import ausgaben as aus
|
||||
import GHA.rk as ghark
|
||||
|
||||
# Panou, Korakitits 2019
|
||||
|
||||
def gha1(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, num):
|
||||
H = x**2 + y**2 / (1-ell.ee**2)**2 + z**2/(1-ell.ex**2)**2
|
||||
|
||||
n = np.array([x/np.sqrt(H), y/((1-ell.ee**2)*np.sqrt(H)), z/((1-ell.ex**2)*np.sqrt(H))])
|
||||
|
||||
beta, lamb, u = ell.cart2ell(x, y, z)
|
||||
B = ell.Ex**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(beta)**2
|
||||
L = ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2
|
||||
|
||||
c1 = x**2 + y**2 + z**2 - (ell.ax**2 + ell.ay**2 + ell.b**2)
|
||||
c0 = (ell.ax**2*ell.ay**2 + ell.ax**2*ell.b**2+ell.ay**2*ell.b**2 -
|
||||
(ell.ay**2+ell.b**2)*x**2 - (ell.ax**2+ell.b**2)*y**2 - (ell.ax**2+ell.ay**2)*z**2)
|
||||
t2 = (-c1 + np.sqrt(c1**2 - 4*c0)) / 2
|
||||
t1 = c0 / t2
|
||||
|
||||
F = ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2
|
||||
p1 = -np.sqrt(L/(F*t2)) * ell.ax/ell.Ex * np.sqrt(B) * np.sin(lamb)
|
||||
p2 = np.sqrt(L/(F*t2)) * ell.ay * np.cos(beta) * np.cos(lamb)
|
||||
p3 = 1 / np.sqrt(F*t2) * (ell.b*ell.Ee**2)/(2*ell.Ex) * np.sin(beta) * np.sin(2*lamb)
|
||||
p = np.array([p1, p2, p3])
|
||||
q = np.cross(n, p)
|
||||
|
||||
dxds0 = p[0] * np.sin(alpha0) + q[0] * np.cos(alpha0)
|
||||
dyds0 = p[1] * np.sin(alpha0) + q[1] * np.cos(alpha0)
|
||||
dzds0 = p[2] * np.sin(alpha0) + q[2] * np.cos(alpha0)
|
||||
|
||||
h = lambda dxds, dyds, dzds: dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
|
||||
|
||||
f1 = lambda s, x, dxds, y, dyds, z, dzds: dxds
|
||||
f2 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * x
|
||||
f3 = lambda s, x, dxds, y, dyds, z, dzds: dyds
|
||||
f4 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * y/(1-ell.ee**2)
|
||||
f5 = lambda s, x, dxds, y, dyds, z, dzds: dzds
|
||||
f6 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * z/(1-ell.ex**2)
|
||||
|
||||
funktionswerte = rk.verfahren([f1, f2, f3, f4, f5, f6], [0, x, dxds0, y, dyds0, z, dzds0], s, num)
|
||||
return funktionswerte
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978")
|
||||
ellbi = ellipsoide.EllipsoidTriaxial.init_name("Bessel-biaxial")
|
||||
re = ellipsoide.EllipsoidBiaxial.init_name("Bessel")
|
||||
x0 = 5672455.1954766
|
||||
y0 = 2698193.7242382686
|
||||
z0 = 1103177.6450055107
|
||||
alpha0 = wu.gms2rad([20, 0, 0])
|
||||
s = 10000
|
||||
num = 10000
|
||||
werteTri = gha1(ellbi, x0, y0, z0, alpha0, s, num)
|
||||
print(aus.xyz(werteTri[-1][1], werteTri[-1][3], werteTri[-1][5], 8))
|
||||
werteBi = ghark.gha1(re, x0, y0, z0, alpha0, s, num)
|
||||
print(aus.xyz(werteBi[0], werteBi[1], werteBi[2], 8))
|
||||
@@ -54,9 +54,9 @@ class EllipsoidBiaxial:
|
||||
|
||||
phi2p = lambda self, phi: self.N(phi) * np.cos(phi)
|
||||
|
||||
def ellipsoidische_Koords (self, Eh, Ephi, x, y, z):
|
||||
def cart2ell(self, Eh, Ephi, x, y, z):
|
||||
p = np.sqrt(x**2+y**2)
|
||||
print(f"p = {round(p, 5)} m")
|
||||
# print(f"p = {round(p, 5)} m")
|
||||
|
||||
lamb = np.arctan(y/x)
|
||||
|
||||
@@ -80,9 +80,18 @@ class EllipsoidBiaxial:
|
||||
if dphi < Ephi:
|
||||
break
|
||||
for i in range(len(phii)):
|
||||
print(f"P3[{i}]: {aus.gms('phi', phii[i], 5)}\th = {round(hi[i], 5)} m")
|
||||
# print(f"P3[{i}]: {aus.gms('phi', phii[i], 5)}\th = {round(hi[i], 5)} m")
|
||||
pass
|
||||
return phi, lamb, h
|
||||
|
||||
def ell2cart(self, phi, lamb, h):
|
||||
W = np.sqrt(1 - self.e**2 * np.sin(phi)**2)
|
||||
N = self.a / W
|
||||
x = (N+h) * np.cos(phi) * np.cos(lamb)
|
||||
y = (N+h) * np.cos(phi) * np.sin(lamb)
|
||||
z = (N * (1-self.e**2) + h) * np.sin(lamb)
|
||||
return x, y, z
|
||||
|
||||
class EllipsoidTriaxial:
|
||||
def __init__(self, ax: float, ay: float, b: float):
|
||||
self.ax = ax
|
||||
@@ -94,6 +103,9 @@ class EllipsoidTriaxial:
|
||||
self.ex_ = np.sqrt((self.ax**2 - self.b**2) / self.b**2)
|
||||
self.ey_ = np.sqrt((self.ay**2 - self.b**2) / self.b**2)
|
||||
self.ee_ = np.sqrt((self.ax**2 - self.ay**2) / self.ay**2)
|
||||
self.Ex = np.sqrt(self.ax**2 - self.b**2)
|
||||
self.Ey = np.sqrt(self.ay**2 - self.b**2)
|
||||
self.Ee = np.sqrt(self.ax**2 - self.ay**2)
|
||||
|
||||
@classmethod
|
||||
def init_name(cls, name: str):
|
||||
@@ -122,6 +134,11 @@ class EllipsoidTriaxial:
|
||||
ay = 6378105
|
||||
b = 6356754
|
||||
return cls(ax, ay, b)
|
||||
elif name == "Bessel-biaxial":
|
||||
ax = 6377397.155085
|
||||
ay = 6377397.15508
|
||||
b = 6356078.96290
|
||||
return cls(ax, ay, b)
|
||||
|
||||
def ell2cart(self, beta, lamb, u):
|
||||
"""
|
||||
@@ -233,9 +250,9 @@ if __name__ == "__main__":
|
||||
stellen = 20
|
||||
geod1 = ellips.cart2geod("ligas1", 5712200, 2663400, 1106000)
|
||||
print(aus.gms("phi", geod1[0], stellen), aus.gms("lambda", geod1[1], stellen), "h =", geod1[2])
|
||||
geod2 = ellips.cart2geod("ligas2", 5712216.95426783, 2663487.024865021, 1106098.8415910944)
|
||||
geod2 = ellips.cart2geod("ligas2", 5712200, 2663400, 1106000)
|
||||
print(aus.gms("phi", geod2[0], stellen), aus.gms("lambda", geod2[1], stellen), "h =", geod2[2])
|
||||
geod3 = ellips.cart2geod("ligas3", 5712216.95426783, 2663487.024865021, 1106098.8415910944)
|
||||
geod3 = ellips.cart2geod("ligas3", 5712200, 2663400, 1106000)
|
||||
print(aus.gms("phi", geod3[0], stellen), aus.gms("lambda", geod3[1], stellen), "h =", geod3[2])
|
||||
cart1 = ellips.geod2cart(geod1[0], geod1[1], geod1[2])
|
||||
print(aus.xyz(cart1[0], cart1[1], cart1[2], 10))
|
||||
@@ -243,4 +260,7 @@ if __name__ == "__main__":
|
||||
print(aus.xyz(cart2[0], cart2[1], cart2[2], 10))
|
||||
cart3 = ellips.geod2cart(geod3[0], geod3[1], geod3[2])
|
||||
print(aus.xyz(cart3[0], cart3[1], cart3[2], 10))
|
||||
|
||||
test_cart = ellips.geod2cart(0.175, 0.444, 100)
|
||||
print(aus.xyz(test_cart[0], test_cart[1], test_cart[2], 10))
|
||||
pass
|
||||
|
||||
@@ -74,5 +74,5 @@ print("\n\nAufgabe 4")
|
||||
x = float("4308"+m3+"94.556")
|
||||
y = float("1214"+m2+"88.242")
|
||||
z = float("4529"+m4+"03.878")
|
||||
phi_p3, lambda_p3, h_p3 = re.ellipsoidische_Koords(0.001, wu.gms2rad([0, 0, 0.001]), x, y, z)
|
||||
phi_p3, lambda_p3, h_p3 = re.cart2ell(0.001, wu.gms2rad([0, 0, 0.001]), x, y, z)
|
||||
print(f"\nP3: {aus.gms('phi', phi_p3, nks)}, {aus.gms('lambda', lambda_p3, 5)}, h = {round(h_p3,nks)} m")
|
||||
|
||||
Reference in New Issue
Block a user