Punktliste

This commit is contained in:
2026-02-06 14:30:11 +01:00
parent 9591045ee2
commit a836d2d534

View File

@@ -1,4 +1,6 @@
from __future__ import annotations
from codeop import PyCF_ALLOW_INCOMPLETE_INPUT
from typing import List, Optional, Tuple
import numpy as np
from ellipsoide import EllipsoidTriaxial
@@ -7,6 +9,7 @@ from GHA_triaxial.gha1_approx import gha1_approx
from Hansen_ES_CMA import escma
from utils_angle import wrap_to_pi
from numpy.typing import NDArray
import winkelumrechnungen as wu
def ellipsoid_formparameter(ell: EllipsoidTriaxial):
@@ -78,6 +81,8 @@ def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
N_hat = N / Nn
E_hat = E / En
U_hat = U / Un
E_hat = E_hat - float(np.dot(E_hat, N_hat)) * N_hat
E_hat = E_hat / max(np.linalg.norm(E_hat), 1e-18)
return E_hat, N_hat, U_hat, En, Nn, R
@@ -110,7 +115,9 @@ def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_
"""
v = (P_curr - P_prev).astype(float)
vT = v - float(np.dot(v, U_hat_curr)) * U_hat_curr
vT_hat = vT / np.linalg.norm(vT)
vTn = max(np.linalg.norm(vT), 1e-18)
vT_hat = vT / vTn
#vT_hat = vT / np.linalg.norm(vT)
sE = float(np.dot(vT_hat, E_hat_curr))
sN = float(np.dot(vT_hat, N_hat_curr))
@@ -136,8 +143,20 @@ def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float
# Startbasis
E_i, N_i, U_i, En_i, Nn_i, P_i = ENU_beta_omega(beta_i, omega_i, ell)
# Prediktor: dβ ≈ ds cosα / |N|, dω ≈ ds sinα / |E|
d_beta = ds * float(np.cos(alpha_i)) / Nn_i
d_omega = ds * float(np.sin(alpha_i)) / En_i
En_eff = max(En_i, 1e-9)
Nn_eff = max(Nn_i, 1e-9)
d_beta = ds * np.cos(alpha_i) / Nn_eff
d_omega = ds * np.sin(alpha_i) / En_eff
# optional: harte Schritt-Clamps (verhindert wrap-chaos)
d_beta = float(np.clip(d_beta, -0.2, 0.2)) # rad
d_omega = float(np.clip(d_omega, -0.2, 0.2)) # rad
#d_beta = ds * float(np.cos(alpha_i)) / Nn_i
#d_omega = ds * float(np.sin(alpha_i)) / En_i
beta_pred = beta_i + d_beta
omega_pred = wrap_to_pi(omega_i + d_omega)
@@ -158,7 +177,7 @@ def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float
beta = x[0]
omega = wrap_to_pi(x[1])
P = ell.ell2cart(beta, omega) # in kartesischer Koordinaten
P = ell.ell2cart_karney(beta, omega) # in kartesischer Koordinaten
d = float(np.linalg.norm(P - P_i)) # Distanz zwischen
# maxSegLen einhalten
@@ -183,14 +202,15 @@ def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float
beta_best = xb[0]
omega_best = wrap_to_pi(xb[1])
P_best = ell.ell2cart(beta_best, omega_best)
P_best = ell.ell2cart_karney(beta_best, omega_best)
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta_best, omega_best, ell)
alpha_end = azimuth_at_ESpoint(P_i, P_best, E_j, N_j, U_j)
return beta_best, omega_best, P_best, alpha_end
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000):
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000)\
-> Tuple[NDArray, float, NDArray]:
"""
Aufruf der 1. GHA mittels CMA-ES
:param ell: Ellipsoid
@@ -199,7 +219,7 @@ def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float,
:param alpha0: Azimut Startkoordinate
:param s_total: Gesamtstrecke
:param maxSegLen: maximale Segmentlänge
:return: Zielpunkt Pk und Azimut am Zielpunkt
:return: Zielpunkt Pk, Azimut am Zielpunkt und Punktliste
"""
beta = float(beta0)
omega = wrap_to_pi(float(omega0))
@@ -207,7 +227,7 @@ def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float,
gamma0 = jacobi_konstante(beta, omega, alpha, ell) # Referenz-γ0
points: List[NDArray] = [ell.ell2cart(beta, omega)]
P_all: NDArray[NDArray] = np.array([ell.ell2cart_karney(beta, omega)])
alpha_end: List[float] = [alpha]
s_acc = 0.0
@@ -221,30 +241,33 @@ def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float,
beta, omega, P, alpha = optimize_next_point(beta_i=beta, omega_i=omega, alpha_i=alpha, ds=ds, gamma0=gamma0,
ell=ell, maxSegLen=maxSegLen)
s_acc += ds
points.append(P)
P_all.append(P)
alpha_end.append(alpha)
if step > nsteps_est + 50:
raise RuntimeError("Zu viele Schritte vermutlich Konvergenzproblem / falsche Azimut-Konvention.")
Pk = points[-1]
alpha1 = alpha_end[-1]
Pk = P_all[-1]
alpha1 = float(alpha_end[-1])
return Pk, alpha1
return Pk, alpha1, P_all
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
s = 188891.650873
alpha0 = 70/(180/np.pi)
P0 = ell.ell2cart(5/(180/np.pi), -90/(180/np.pi))
s = 18000
#alpha0 = 3
alpha0 = wu.gms2rad([5 ,0 ,0])
beta = 0
omega = 0
P0 = ell.ell2cart(beta, omega)
point1, alpha1 = gha1_ana(ell, P0, alpha0=alpha0, s=s, maxM=100, maxPartCircum=32)
point1app, alpha1app = gha1_approx(ell, P0, alpha0=alpha0, s=s, ds=1000)
res, alpha = gha1_ES(ell, beta0=5/(180/np.pi), omega0=-90/(180/np.pi), alpha0=alpha0, s_total=s, maxSegLen=1000)
res, alpha, points = gha1_ES(ell, beta0=beta, omega0=-omega, alpha0=alpha0, s_total=s, maxSegLen=1000)
print(point1)
print(res)
print(alpha)
#print(points)
#print("alpha1 (am Endpunkt):", res.alpha1)
print(res - point1)
print(point1app - point1, "approx")