This commit is contained in:
Tammo.Weber
2026-02-05 21:40:39 +01:00
parent 19c1625a11
commit 9f0554039c

View File

@@ -1,382 +1,510 @@
import numpy as np import numpy as np
from ellipsoide import EllipsoidTriaxial from ellipsoide import EllipsoidTriaxial
import runge_kutta as rk import runge_kutta as rk
import GHA_triaxial.numeric_examples_karney as ne_karney
import GHA_triaxial.numeric_examples_panou as ne_panou
import winkelumrechnungen as wu
from typing import Tuple from typing import Tuple
from numpy.typing import NDArray from numpy.typing import NDArray
import ausgaben as aus
from utils_angle import cot, wrap_to_pi
from utils_angle import arccot, cot, wrap_to_pi
def arccot(x):
x = np.asarray(x)
a = np.arctan2(1.0, x)
return np.where(x < 0.0, a - np.pi, a)
def normalize_alpha_0_pi(alpha):
if alpha < 0.0:
alpha += np.pi
return alpha
def sph_azimuth(beta1, lam1, beta2, lam2): def sph_azimuth(beta1, lam1, beta2, lam2):
# sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß)
dlam = wrap_to_pi(lam2 - lam1) dlam = wrap_to_pi(lam2 - lam1)
y = np.sin(dlam) * np.cos(beta2) y = np.sin(dlam) * np.cos(beta2)
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam) x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
a = np.arctan2(y, x) # (-pi, pi] a = np.arctan2(y, x)
if a < 0: if a < 0:
a += 2 * np.pi a += 2 * np.pi
return a return a
def BETA_LAMBDA(beta, lamb):
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
LAMBDA = (ell.ax**2 * np.sin(lamb)**2 + ell.ay**2 * np.cos(lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)
# Erste Ableitungen von ΒETA und LAMBDA
BETA_ = (ell.ax**2 * ell.Ey**2 * np.sin(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2
LAMBDA_ = - (ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2
# Zweite Ableitungen von ΒETA und LAMBDA
BETA__ = ((2 * ell.ax**2 * ell.Ey**4 * np.sin(2*beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**3) + ((2 * ell.ax**2 * ell.Ey**2 * np.cos(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2)
LAMBDA__ = (((2 * ell.b**2 * ell.Ee**4 * np.sin(2*lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**3) -
((2 * ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2))
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
F = 0
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
# Erste Ableitungen von E und G
E_beta = BETA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - BETA * ell.Ey**2 * np.sin(2*beta)
E_lamb = BETA * ell.Ee**2 * np.sin(2*lamb)
G_beta = - LAMBDA * ell.Ey**2 * np.sin(2*beta)
G_lamb = LAMBDA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + LAMBDA * ell.Ee**2 * np.sin(2*lamb)
# Zweite Ableitungen von E und G
E_beta_beta = BETA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - 2 * BETA_ * ell.Ey**2 * np.sin(2*beta) - 2 * BETA * ell.Ey**2 * np.cos(2*beta)
E_beta_lamb = BETA_ * ell.Ee**2 * np.sin(2*lamb)
E_lamb_lamb = 2 * BETA * ell.Ee**2 * np.cos(2*lamb)
G_beta_beta = - 2 * LAMBDA * ell.Ey**2 * np.cos(2*beta)
G_beta_lamb = - LAMBDA_ * ell.Ey**2 * np.sin(2*beta)
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
return (BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb)
def p_coef(beta, lamb):
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
p_3 = - 0.5 * (E_lamb / G)
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
p_0 = 0.5 * (G_beta / E)
p_33 = - 0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G ** 2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G ** 2)) - 0.5 * ((E * E_beta_beta - E_beta * E_beta) / (E ** 2))
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2)) - ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2))
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E ** 2))
return (BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00)
def buildODElamb():
def ODE(lamb, v):
beta, beta_p, X3, X4 = v
(BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
return np.array([dbeta, dbeta_p, dX3, dX4])
return ODE
def q_coef(beta, lamb):
(BETA, LAMBDA, E, G,
BETA_, LAMBDA_, BETA__, LAMBDA__,
E_beta, E_lamb, G_beta, G_lamb,
E_beta_beta, E_beta_lamb, E_lamb_lamb,
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
q_3 = - 0.5 * (G_beta / E)
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
q_0 = 0.5 * (E_lamb / G)
q_33 = - 0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E ** 2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E ** 2)) - 0.5 * ((G * G_lamb_lamb - G_lamb * G_lamb) / (G ** 2))
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2)) - ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2))
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G ** 2))
return (BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00)
def buildODEbeta():
def ODE(beta, v):
lamb, lamb_p, Y3, Y4 = v
(BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
dlamb = lamb_p
dlamb_p = q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4])
return ODE
# Panou 2013 # Panou 2013
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float, def gha2_num(
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False ell: EllipsoidTriaxial,
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]: beta_1: float,
""" lamb_1: float,
beta_2: float,
lamb_2: float,
n: int = 16000,
epsilon: float = 10 ** -12,
iter_max: int = 30,
all_points: bool = False,
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
:param ell: triaxiales Ellipsoid
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
:param lamb_1: elllipsoidische Länge Punkt 1
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
:param lamb_2: elllipsoidische Länge Punkt 2
:param n: Anzahl Schritte
:param epsilon:
:param iter_max: Maximale Anzhal Iterationen
:param all_points:
:return:
"""
# h_x, h_y, h_e entsprechen E_x, E_y, E_e def BETA_LAMBDA(beta, lamb):
BETA = (ell.ay ** 2 * np.sin(beta) ** 2 + ell.b ** 2 * np.cos(beta) ** 2) / (
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2
)
LAMBDA = (ell.ax ** 2 * np.sin(lamb) ** 2 + ell.ay ** 2 * np.cos(lamb) ** 2) / (
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2
)
BETA_ = (ell.ax ** 2 * ell.Ey ** 2 * np.sin(2 * beta)) / (
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2
) ** 2
LAMBDA_ = -(ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2
) ** 2
BETA__ = (
(2 * ell.ax ** 2 * ell.Ey ** 4 * np.sin(2 * beta) ** 2)
/ (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 3
+ (2 * ell.ax ** 2 * ell.Ey ** 2 * np.cos(2 * beta))
/ (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2
)
LAMBDA__ = (
(2 * ell.b ** 2 * ell.Ee ** 4 * np.sin(2 * lamb) ** 2)
/ (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 3
- (2 * ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb))
/ (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2
)
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
E_beta = (
BETA_ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
- BETA * ell.Ey ** 2 * np.sin(2 * beta)
)
E_lamb = BETA * ell.Ee ** 2 * np.sin(2 * lamb)
G_beta = -LAMBDA * ell.Ey ** 2 * np.sin(2 * beta)
G_lamb = (
LAMBDA_ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
+ LAMBDA * ell.Ee ** 2 * np.sin(2 * lamb)
)
E_beta_beta = (
BETA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
- 2 * BETA_ * ell.Ey ** 2 * np.sin(2 * beta)
- 2 * BETA * ell.Ey ** 2 * np.cos(2 * beta)
)
E_beta_lamb = BETA_ * ell.Ee ** 2 * np.sin(2 * lamb)
E_lamb_lamb = 2 * BETA * ell.Ee ** 2 * np.cos(2 * lamb)
G_beta_beta = -2 * LAMBDA * ell.Ey ** 2 * np.cos(2 * beta)
G_beta_lamb = -LAMBDA_ * ell.Ey ** 2 * np.sin(2 * beta)
G_lamb_lamb = (
LAMBDA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
+ 2 * LAMBDA_ * ell.Ee ** 2 * np.sin(2 * lamb)
+ 2 * LAMBDA * ell.Ee ** 2 * np.cos(2 * lamb)
)
return (
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
)
def p_coef(beta, lamb):
(
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
) = BETA_LAMBDA(beta, lamb)
p_3 = -0.5 * (E_lamb / G)
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
p_0 = 0.5 * (G_beta / E)
p_33 = -0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G**2))
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G**2)) - 0.5 * (
(E * E_beta_beta - E_beta * E_beta) / (E**2)
)
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G**2)) - (
(E * E_beta_lamb - E_beta * E_lamb) / (E**2)
)
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E**2))
return (BETA, LAMBDA, E, G, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00)
def q_coef(beta, lamb):
(
BETA,
LAMBDA,
E,
G,
BETA_,
LAMBDA_,
BETA__,
LAMBDA__,
E_beta,
E_lamb,
G_beta,
G_lamb,
E_beta_beta,
E_beta_lamb,
E_lamb_lamb,
G_beta_beta,
G_beta_lamb,
G_lamb_lamb,
) = BETA_LAMBDA(beta, lamb)
q_3 = -0.5 * (G_beta / E)
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
q_0 = 0.5 * (E_lamb / G)
q_33 = -0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E**2))
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E**2)) - 0.5 * (
(G * G_lamb_lamb - G_lamb * G_lamb) / (G**2)
)
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E**2)) - (
(G * G_beta_lamb - G_beta * G_lamb) / (G**2)
)
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G**2))
return (BETA, LAMBDA, E, G, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00)
def rk4_last(f, t0, y0, dt, N):
h = dt / N
t = t0
y = np.array(y0, dtype=float, copy=True)
for _ in range(N):
k1 = f(t, y)
k2 = f(t + 0.5 * h, y + 0.5 * h * k1)
k3 = f(t + 0.5 * h, y + 0.5 * h * k2)
k4 = f(t + h, y + h * k3)
y = y + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
t = t + h
return t, y
def rk4_last_with_integral(f, t0, y0, dt, N, integrand_at):
h = dt / N
habs = abs(h)
t = t0
y = np.array(y0, dtype=float, copy=True)
if N % 2 == 0:
# Simpson streaming
f0 = integrand_at(t, y)
odd_sum = 0.0
even_sum = 0.0
for i in range(1, N + 1):
k1 = f(t, y)
k2 = f(t + 0.5 * h, y + 0.5 * h * k1)
k3 = f(t + 0.5 * h, y + 0.5 * h * k2)
k4 = f(t + h, y + h * k3)
y = y + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
t = t + h
fi = integrand_at(t, y)
if i == N:
fN = fi
elif i % 2 == 1:
odd_sum += fi
else:
even_sum += fi
S = f0 + fN + 4.0 * odd_sum + 2.0 * even_sum
s = (habs / 3.0) * S
return t, y, s
# Trapez streaming
f_prev = integrand_at(t, y)
acc = 0.0
for _ in range(N):
k1 = f(t, y)
k2 = f(t + 0.5 * h, y + 0.5 * h * k1)
k3 = f(t + 0.5 * h, y + 0.5 * h * k2)
k4 = f(t + h, y + h * k3)
y = y + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
t = t + h
f_cur = integrand_at(t, y)
acc += 0.5 * (f_prev + f_cur)
f_prev = f_cur
s = habs * acc
return t, y, s
def integrand_lambda(lamb, y):
beta = y[0]
beta_p = y[1]
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
return np.sqrt(E * beta_p**2 + G)
def integrand_beta(beta, y):
lamb = y[0]
lamb_p = y[1]
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
return np.sqrt(E + G * lamb_p**2)
if lamb_1 != lamb_2: if lamb_1 != lamb_2:
N = n N = n
dlamb = lamb_2 - lamb_1 dlamb = lamb_2 - lamb_1
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
if abs(dlamb) < 1e-15: def buildODElamb():
beta_0 = 0.0 def ODE(lamb, v):
else: beta, beta_p, X3, X4 = v
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1) (_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
dbeta = beta_p
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
) * X4
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
return ODE
ode_lamb = buildODElamb() ode_lamb = buildODElamb()
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph) if abs(dlamb) >= 1e-15 else 0.0
N_newton = min(N, 4000)
def solve_newton(beta_p0_init: float): def solve_newton(beta_p0_init: float):
beta_p0 = float(beta_p0_init) beta_p0 = float(beta_p0_init)
for _ in range(iter_max): for _ in range(iter_max):
startwerte = np.array([beta_1, beta_p0, 0.0, 1.0], dtype=float) startwerte = np.array([beta_1, beta_p0, 0.0, 1.0], dtype=float)
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False) _, y_end = rk4_last(ode_lamb, lamb_1, startwerte, dlamb, N_newton)
beta_end, _, X3_end, _ = y_end
beta_end, beta_p_end, X3_end, X4_end = states[-1]
delta = beta_end - beta_2 delta = beta_end - beta_2
if abs(delta) < epsilon: if abs(delta) < epsilon:
return True, beta_p0, lamb_list, states return True, beta_p0
d_beta_end_d_beta0 = X3_end if abs(X3_end) < 1e-20:
if abs(d_beta_end_d_beta0) < 1e-20: return False, None
return False, None, None, None
step = delta / d_beta_end_d_beta0 step = delta / X3_end
max_step = 0.5 max_step = 0.5
if abs(step) > max_step: if abs(step) > max_step:
step = np.sign(step) * max_step step = np.sign(step) * max_step
beta_p0 = beta_p0 - step beta_p0 = beta_p0 - step
return False, None, None, None return False, None
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2) ok, beta_p0_sol = solve_newton(beta_p0_sph)
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
guesses = [ if not ok:
beta_p0_sph,
0.5 * beta_p0_sph,
2.0 * beta_p0_sph,
-beta_p0_sph,
-0.5 * beta_p0_sph,
]
best = None candidates = [-beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
N_quick = min(N, 2000)
best = None
for g in guesses: for g in candidates:
ok, beta_p0_sol, lamb_list_cand, states_cand = solve_newton(g) ok_g, beta_p0_sol_g = solve_newton(g)
if not ok: if not ok_g:
continue continue
beta_arr_c = np.array([st[0] for st in states_cand], dtype=float) startwerte_g = np.array([beta_1, beta_p0_sol_g, 0.0, 1.0], dtype=float)
beta_p_arr_c = np.array([st[1] for st in states_cand], dtype=float) _, _, s_quick = rk4_last_with_integral(
lamb_arr_c = np.array(lamb_list_cand, dtype=float) ode_lamb, lamb_1, startwerte_g, dlamb, N_quick, integrand_lambda
)
integrand = np.zeros(N + 1) if (best is None) or (s_quick < best[0]):
best = (s_quick, beta_p0_sol_g)
if best is None:
raise RuntimeError("Keine Startwert-Variante konvergiert.")
beta_p0_sol = best[1]
beta_0 = beta_p0_sol
startwerte_final = np.array([beta_1, beta_0, 0.0, 1.0], dtype=float)
if all_points:
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte_final, dlamb, N, False)
lamb_arr = np.array(lamb_list, dtype=float)
beta_arr = np.array([st[0] for st in states], dtype=float)
beta_p_arr = np.array([st[1] for st in states], dtype=float)
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E2, G2, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
# Distanz s aus Arrays (Simpson/Trapz)
integrand = np.zeros(N + 1, dtype=float)
for i in range(N + 1): for i in range(N + 1):
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr_c[i], lamb_arr_c[i]) (_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi) integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
h = abs(dlamb) / N h = abs(dlamb) / N
if N % 2 == 0: if N % 2 == 0:
S = integrand[0] + integrand[-1] \ S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(integrand[2:-1:2])
+ 4.0 * np.sum(integrand[1:-1:2]) \ s = h / 3.0 * S
+ 2.0 * np.sum(integrand[2:-1:2])
s_cand = h / 3.0 * S
else: else:
s_cand = np.trapz(integrand, dx=h) s = np.trapz(integrand, dx=h)
if (best is None) or (s_cand < best[0]):
best = (s_cand, beta_p0_sol, lamb_list_cand, states_cand)
if best is None:
raise RuntimeError("Keine Multi-Start-Variante konvergiert.")
s_best, beta_0, lamb_list, werte = best
beta_arr = np.zeros(N + 1)
# lamb_arr = np.zeros(N + 1)
lamb_arr = np.array(lamb_list)
beta_p_arr = np.zeros(N + 1)
for i, state in enumerate(werte):
# lamb_arr[i] = state[0]
# beta_arr[i] = state[1]
# beta_p_arr[i] = state[2]
beta_arr[i] = state[0]
beta_p_arr[i] = state[1]
(_, _, E1, G1,
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
(_, _, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi,
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
h = abs(dlamb) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S
else:
s = np.trapz(integrand, dx=h)
beta0 = beta_arr[0]
lamb0 = lamb_arr[0]
c = np.sqrt(
(np.cos(beta0) ** 2 + (ell.Ee**2 / ell.Ex**2) * np.sin(beta0) ** 2) * np.sin(alpha_1) ** 2
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
)
if all_points:
return alpha_1, alpha_2, s, beta_arr, lamb_arr return alpha_1, alpha_2, s, beta_arr, lamb_arr
else:
return alpha_1, alpha_2, s
else: # lamb_1 == lamb_2 # all_points == False (schnell)
N = n _, y_end, s = rk4_last_with_integral(ode_lamb, lamb_1, startwerte_final, dlamb, N, integrand_lambda)
dbeta = beta_2 - beta_1 beta_end, beta_p_end, _, _ = y_end
if abs(dbeta) < 1e-15: (_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
if all_points: (_, _, E2, G2, *_) = BETA_LAMBDA(beta_2, lamb_2)
return 0, 0, 0, np.array([]), np.array([])
else:
return 0, 0, 0
lamb_0 = 0 alpha_1 = arccot(np.sqrt(E1 / G1) * beta_0)
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_end)
ode_beta = buildODEbeta() alpha_1 = normalize_alpha_0_pi(float(alpha_1))
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
for i in range(iter_max): return alpha_1, alpha_2, s
startwerte = [lamb_1, lamb_0, 0.0, 1.0]
beta_list, werte = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False) N = n
dbeta = beta_2 - beta_1
beta_end = beta_list[-1] if abs(dbeta) < 1e-15:
lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1] if all_points:
return 0.0, 0.0, 0.0, np.array([]), np.array([])
return 0.0, 0.0, 0.0
d_lamb_end_d_lambda0 = Y3_end # ODE-System (lambda, lambda', Y3, Y4) in Abhängigkeit von beta
delta = lamb_end - lamb_2 def buildODEbeta():
def ODE(beta, v):
lamb, lamb_p, Y3, Y4 = v
(_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
if abs(delta) < epsilon: dlamb = lamb_p
break dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
) * Y4
if abs(d_lamb_end_d_lambda0) < 1e-20: return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
raise RuntimeError("Abbruch (Ableitung ~ 0).")
max_step = 1.0 return ODE
step = delta / d_lamb_end_d_lambda0
if abs(step) > max_step:
step = np.sign(step) * max_step
lamb_0 = lamb_0 - step ode_beta = buildODEbeta()
beta_list, werte = rk.rk4(ode_beta, beta_1, np.array([lamb_1, lamb_0, 0.0, 1.0]), dbeta, N, False) # Newton auf lambda'_0
lamb_0 = 0.0
for _ in range(iter_max):
startwerte = np.array([lamb_1, lamb_0, 0.0, 1.0], dtype=float)
beta_list, states = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False)
# beta_arr = np.zeros(N + 1) lamb_end, lamb_p_end, Y3_end, _ = states[-1]
beta_arr = np.array(beta_list) delta = lamb_end - lamb_2
lamb_arr = np.zeros(N + 1)
lambda_p_arr = np.zeros(N + 1)
for i, state in enumerate(werte): if abs(delta) < epsilon:
# beta_arr[i] = state[0] break
# lamb_arr[i] = state[1]
# lambda_p_arr[i] = state[2] if abs(Y3_end) < 1e-20:
lamb_arr[i] = state[0] raise RuntimeError("Abbruch (Ableitung ~ 0).")
lambda_p_arr[i] = state[1]
step = delta / Y3_end
max_step = 1.0
if abs(step) > max_step:
step = np.sign(step) * max_step
lamb_0 = lamb_0 - step
startwerte_final = np.array([lamb_1, lamb_0, 0.0, 1.0], dtype=float)
if all_points:
beta_list, states = rk.rk4(ode_beta, beta_1, startwerte_final, dbeta, N, False)
beta_arr = np.array(beta_list, dtype=float)
lamb_arr = np.array([st[0] for st in states], dtype=float)
lamb_p_arr = np.array([st[1] for st in states], dtype=float)
# Azimute # Azimute
(BETA1, LAMBDA1, E1, G1, (BETA1, LAMBDA1, _, _, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0]) (BETA2, LAMBDA2, _, _, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
(BETA2, LAMBDA2, E2, G2,
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0]) alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lamb_p_arr[0])
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1]) alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lamb_p_arr[-1])
integrand = np.zeros(N + 1) # optionaler Quadrantenfix (robust)
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
# Distanz
integrand = np.zeros(N + 1, dtype=float)
for i in range(N + 1): for i in range(N + 1):
(_, _, Ei, Gi, (_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i]) integrand[i] = np.sqrt(Ei + Gi * lamb_p_arr[i] ** 2)
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
h = abs(dbeta) / N h = abs(dbeta) / N
if N % 2 == 0: if N % 2 == 0:
S = integrand[0] + integrand[-1] \ S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(integrand[2:-1:2])
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s = h / 3.0 * S s = h / 3.0 * S
else: else:
s = np.trapz(integrand, dx=h) s = np.trapz(integrand, dx=h)
if all_points: return alpha_1, alpha_2, s, beta_arr, lamb_arr
return alpha_1, alpha_2, s, beta_arr, lamb_arr
else: # all_points == False: streaming Integral
return alpha_1, alpha_2, s _, y_end, s = rk4_last_with_integral(ode_beta, beta_1, startwerte_final, dbeta, N, integrand_beta)
lamb_end, lamb_p_end, _, _ = y_end
(BETA1, LAMBDA1, _, _, *_) = BETA_LAMBDA(beta_1, lamb_1)
(BETA2, LAMBDA2, _, _, *_) = BETA_LAMBDA(beta_2, lamb_2)
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lamb_0)
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lamb_p_end)
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
return alpha_1, alpha_2, s
if __name__ == "__main__": if __name__ == "__main__":
# ell = EllipsoidTriaxial.init_name("Fiction") ell = EllipsoidTriaxial.init_name("BursaSima1980round")
# # beta1 = np.deg2rad(75) beta1 = np.deg2rad(75)
# # lamb1 = np.deg2rad(-90) lamb1 = np.deg2rad(-90)
# # beta2 = np.deg2rad(75) beta2 = np.deg2rad(75)
# # lamb2 = np.deg2rad(66) lamb2 = np.deg2rad(66)
# # a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2) a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
# # print(aus.gms("a1", a1, 4)) print(aus.gms("a1", a1, 4))
# # print(aus.gms("a2", a2, 4)) # # print(aus.gms("a2", a2, 4))
# # print(s) # # print(s)
# cart1 = ell.para2cart(0, 0) # cart1 = ell.para2cart(0, 0)