merge
This commit is contained in:
@@ -1,382 +1,510 @@
|
||||
import numpy as np
|
||||
from ellipsoide import EllipsoidTriaxial
|
||||
import runge_kutta as rk
|
||||
import GHA_triaxial.numeric_examples_karney as ne_karney
|
||||
import GHA_triaxial.numeric_examples_panou as ne_panou
|
||||
import winkelumrechnungen as wu
|
||||
from typing import Tuple
|
||||
from numpy.typing import NDArray
|
||||
import ausgaben as aus
|
||||
from utils_angle import cot, wrap_to_pi
|
||||
|
||||
from utils_angle import arccot, cot, wrap_to_pi
|
||||
|
||||
def arccot(x):
|
||||
x = np.asarray(x)
|
||||
a = np.arctan2(1.0, x)
|
||||
return np.where(x < 0.0, a - np.pi, a)
|
||||
|
||||
def normalize_alpha_0_pi(alpha):
|
||||
if alpha < 0.0:
|
||||
alpha += np.pi
|
||||
return alpha
|
||||
|
||||
def sph_azimuth(beta1, lam1, beta2, lam2):
|
||||
# sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß)
|
||||
dlam = wrap_to_pi(lam2 - lam1)
|
||||
y = np.sin(dlam) * np.cos(beta2)
|
||||
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
|
||||
a = np.arctan2(y, x) # (-pi, pi]
|
||||
a = np.arctan2(y, x)
|
||||
if a < 0:
|
||||
a += 2 * np.pi
|
||||
return a
|
||||
|
||||
def BETA_LAMBDA(beta, lamb):
|
||||
|
||||
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
|
||||
LAMBDA = (ell.ax**2 * np.sin(lamb)**2 + ell.ay**2 * np.cos(lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)
|
||||
|
||||
# Erste Ableitungen von ΒETA und LAMBDA
|
||||
BETA_ = (ell.ax**2 * ell.Ey**2 * np.sin(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2
|
||||
LAMBDA_ = - (ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2
|
||||
|
||||
# Zweite Ableitungen von ΒETA und LAMBDA
|
||||
BETA__ = ((2 * ell.ax**2 * ell.Ey**4 * np.sin(2*beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**3) + ((2 * ell.ax**2 * ell.Ey**2 * np.cos(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2)
|
||||
LAMBDA__ = (((2 * ell.b**2 * ell.Ee**4 * np.sin(2*lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**3) -
|
||||
((2 * ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2))
|
||||
|
||||
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
F = 0
|
||||
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
|
||||
# Erste Ableitungen von E und G
|
||||
E_beta = BETA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - BETA * ell.Ey**2 * np.sin(2*beta)
|
||||
E_lamb = BETA * ell.Ee**2 * np.sin(2*lamb)
|
||||
|
||||
G_beta = - LAMBDA * ell.Ey**2 * np.sin(2*beta)
|
||||
G_lamb = LAMBDA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + LAMBDA * ell.Ee**2 * np.sin(2*lamb)
|
||||
|
||||
# Zweite Ableitungen von E und G
|
||||
E_beta_beta = BETA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - 2 * BETA_ * ell.Ey**2 * np.sin(2*beta) - 2 * BETA * ell.Ey**2 * np.cos(2*beta)
|
||||
E_beta_lamb = BETA_ * ell.Ee**2 * np.sin(2*lamb)
|
||||
E_lamb_lamb = 2 * BETA * ell.Ee**2 * np.cos(2*lamb)
|
||||
|
||||
G_beta_beta = - 2 * LAMBDA * ell.Ey**2 * np.cos(2*beta)
|
||||
G_beta_lamb = - LAMBDA_ * ell.Ey**2 * np.sin(2*beta)
|
||||
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
|
||||
|
||||
return (BETA, LAMBDA, E, G,
|
||||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||||
E_beta, E_lamb, G_beta, G_lamb,
|
||||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||||
G_beta_beta, G_beta_lamb, G_lamb_lamb)
|
||||
|
||||
def p_coef(beta, lamb):
|
||||
|
||||
(BETA, LAMBDA, E, G,
|
||||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||||
E_beta, E_lamb, G_beta, G_lamb,
|
||||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||||
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
|
||||
|
||||
p_3 = - 0.5 * (E_lamb / G)
|
||||
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
|
||||
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
|
||||
p_0 = 0.5 * (G_beta / E)
|
||||
|
||||
p_33 = - 0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G ** 2))
|
||||
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G ** 2)) - 0.5 * ((E * E_beta_beta - E_beta * E_beta) / (E ** 2))
|
||||
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2)) - ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2))
|
||||
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E ** 2))
|
||||
|
||||
return (BETA, LAMBDA, E, G,
|
||||
p_3, p_2, p_1, p_0,
|
||||
p_33, p_22, p_11, p_00)
|
||||
|
||||
def buildODElamb():
|
||||
def ODE(lamb, v):
|
||||
beta, beta_p, X3, X4 = v
|
||||
|
||||
(BETA, LAMBDA, E, G,
|
||||
p_3, p_2, p_1, p_0,
|
||||
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
|
||||
|
||||
dbeta = beta_p
|
||||
dbeta_p = p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
|
||||
dX3 = X4
|
||||
dX4 = (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
|
||||
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
|
||||
return np.array([dbeta, dbeta_p, dX3, dX4])
|
||||
|
||||
return ODE
|
||||
|
||||
def q_coef(beta, lamb):
|
||||
|
||||
(BETA, LAMBDA, E, G,
|
||||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||||
E_beta, E_lamb, G_beta, G_lamb,
|
||||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||||
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
|
||||
|
||||
q_3 = - 0.5 * (G_beta / E)
|
||||
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
|
||||
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
|
||||
q_0 = 0.5 * (E_lamb / G)
|
||||
|
||||
q_33 = - 0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E ** 2))
|
||||
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E ** 2)) - 0.5 * ((G * G_lamb_lamb - G_lamb * G_lamb) / (G ** 2))
|
||||
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E ** 2)) - ((G * G_beta_lamb - G_beta * G_lamb) / (G ** 2))
|
||||
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G ** 2))
|
||||
|
||||
return (BETA, LAMBDA, E, G,
|
||||
q_3, q_2, q_1, q_0,
|
||||
q_33, q_22, q_11, q_00)
|
||||
|
||||
def buildODEbeta():
|
||||
def ODE(beta, v):
|
||||
lamb, lamb_p, Y3, Y4 = v
|
||||
|
||||
(BETA, LAMBDA, E, G,
|
||||
q_3, q_2, q_1, q_0,
|
||||
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
|
||||
|
||||
dlamb = lamb_p
|
||||
dlamb_p = q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
|
||||
dY3 = Y4
|
||||
dY4 = (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
|
||||
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
|
||||
|
||||
return np.array([dlamb, dlamb_p, dY3, dY4])
|
||||
|
||||
return ODE
|
||||
|
||||
# Panou 2013
|
||||
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float,
|
||||
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False
|
||||
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
|
||||
"""
|
||||
def gha2_num(
|
||||
ell: EllipsoidTriaxial,
|
||||
beta_1: float,
|
||||
lamb_1: float,
|
||||
beta_2: float,
|
||||
lamb_2: float,
|
||||
n: int = 16000,
|
||||
epsilon: float = 10 ** -12,
|
||||
iter_max: int = 30,
|
||||
all_points: bool = False,
|
||||
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
|
||||
|
||||
:param ell: triaxiales Ellipsoid
|
||||
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
|
||||
:param lamb_1: elllipsoidische Länge Punkt 1
|
||||
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
|
||||
:param lamb_2: elllipsoidische Länge Punkt 2
|
||||
:param n: Anzahl Schritte
|
||||
:param epsilon:
|
||||
:param iter_max: Maximale Anzhal Iterationen
|
||||
:param all_points:
|
||||
:return:
|
||||
"""
|
||||
|
||||
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
|
||||
def BETA_LAMBDA(beta, lamb):
|
||||
BETA = (ell.ay ** 2 * np.sin(beta) ** 2 + ell.b ** 2 * np.cos(beta) ** 2) / (
|
||||
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2
|
||||
)
|
||||
LAMBDA = (ell.ax ** 2 * np.sin(lamb) ** 2 + ell.ay ** 2 * np.cos(lamb) ** 2) / (
|
||||
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2
|
||||
)
|
||||
|
||||
BETA_ = (ell.ax ** 2 * ell.Ey ** 2 * np.sin(2 * beta)) / (
|
||||
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2
|
||||
) ** 2
|
||||
LAMBDA_ = -(ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (
|
||||
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2
|
||||
) ** 2
|
||||
|
||||
BETA__ = (
|
||||
(2 * ell.ax ** 2 * ell.Ey ** 4 * np.sin(2 * beta) ** 2)
|
||||
/ (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 3
|
||||
+ (2 * ell.ax ** 2 * ell.Ey ** 2 * np.cos(2 * beta))
|
||||
/ (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2
|
||||
)
|
||||
LAMBDA__ = (
|
||||
(2 * ell.b ** 2 * ell.Ee ** 4 * np.sin(2 * lamb) ** 2)
|
||||
/ (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 3
|
||||
- (2 * ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb))
|
||||
/ (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2
|
||||
)
|
||||
|
||||
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
|
||||
E_beta = (
|
||||
BETA_ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
- BETA * ell.Ey ** 2 * np.sin(2 * beta)
|
||||
)
|
||||
E_lamb = BETA * ell.Ee ** 2 * np.sin(2 * lamb)
|
||||
|
||||
G_beta = -LAMBDA * ell.Ey ** 2 * np.sin(2 * beta)
|
||||
G_lamb = (
|
||||
LAMBDA_ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
+ LAMBDA * ell.Ee ** 2 * np.sin(2 * lamb)
|
||||
)
|
||||
|
||||
E_beta_beta = (
|
||||
BETA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
- 2 * BETA_ * ell.Ey ** 2 * np.sin(2 * beta)
|
||||
- 2 * BETA * ell.Ey ** 2 * np.cos(2 * beta)
|
||||
)
|
||||
E_beta_lamb = BETA_ * ell.Ee ** 2 * np.sin(2 * lamb)
|
||||
E_lamb_lamb = 2 * BETA * ell.Ee ** 2 * np.cos(2 * lamb)
|
||||
|
||||
G_beta_beta = -2 * LAMBDA * ell.Ey ** 2 * np.cos(2 * beta)
|
||||
G_beta_lamb = -LAMBDA_ * ell.Ey ** 2 * np.sin(2 * beta)
|
||||
G_lamb_lamb = (
|
||||
LAMBDA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||
+ 2 * LAMBDA_ * ell.Ee ** 2 * np.sin(2 * lamb)
|
||||
+ 2 * LAMBDA * ell.Ee ** 2 * np.cos(2 * lamb)
|
||||
)
|
||||
|
||||
return (
|
||||
BETA,
|
||||
LAMBDA,
|
||||
E,
|
||||
G,
|
||||
BETA_,
|
||||
LAMBDA_,
|
||||
BETA__,
|
||||
LAMBDA__,
|
||||
E_beta,
|
||||
E_lamb,
|
||||
G_beta,
|
||||
G_lamb,
|
||||
E_beta_beta,
|
||||
E_beta_lamb,
|
||||
E_lamb_lamb,
|
||||
G_beta_beta,
|
||||
G_beta_lamb,
|
||||
G_lamb_lamb,
|
||||
)
|
||||
|
||||
def p_coef(beta, lamb):
|
||||
(
|
||||
BETA,
|
||||
LAMBDA,
|
||||
E,
|
||||
G,
|
||||
BETA_,
|
||||
LAMBDA_,
|
||||
BETA__,
|
||||
LAMBDA__,
|
||||
E_beta,
|
||||
E_lamb,
|
||||
G_beta,
|
||||
G_lamb,
|
||||
E_beta_beta,
|
||||
E_beta_lamb,
|
||||
E_lamb_lamb,
|
||||
G_beta_beta,
|
||||
G_beta_lamb,
|
||||
G_lamb_lamb,
|
||||
) = BETA_LAMBDA(beta, lamb)
|
||||
|
||||
p_3 = -0.5 * (E_lamb / G)
|
||||
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
|
||||
p_1 = 0.5 * (G_lamb / G) - (E_lamb / E)
|
||||
p_0 = 0.5 * (G_beta / E)
|
||||
|
||||
p_33 = -0.5 * ((E_beta_lamb * G - E_lamb * G_beta) / (G**2))
|
||||
p_22 = ((G * G_beta_beta - G_beta * G_beta) / (G**2)) - 0.5 * (
|
||||
(E * E_beta_beta - E_beta * E_beta) / (E**2)
|
||||
)
|
||||
p_11 = 0.5 * ((G * G_beta_lamb - G_beta * G_lamb) / (G**2)) - (
|
||||
(E * E_beta_lamb - E_beta * E_lamb) / (E**2)
|
||||
)
|
||||
p_00 = 0.5 * ((E * G_beta_beta - E_beta * G_beta) / (E**2))
|
||||
|
||||
return (BETA, LAMBDA, E, G, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00)
|
||||
|
||||
def q_coef(beta, lamb):
|
||||
(
|
||||
BETA,
|
||||
LAMBDA,
|
||||
E,
|
||||
G,
|
||||
BETA_,
|
||||
LAMBDA_,
|
||||
BETA__,
|
||||
LAMBDA__,
|
||||
E_beta,
|
||||
E_lamb,
|
||||
G_beta,
|
||||
G_lamb,
|
||||
E_beta_beta,
|
||||
E_beta_lamb,
|
||||
E_lamb_lamb,
|
||||
G_beta_beta,
|
||||
G_beta_lamb,
|
||||
G_lamb_lamb,
|
||||
) = BETA_LAMBDA(beta, lamb)
|
||||
|
||||
q_3 = -0.5 * (G_beta / E)
|
||||
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
|
||||
q_1 = 0.5 * (E_beta / E) - (G_beta / G)
|
||||
q_0 = 0.5 * (E_lamb / G)
|
||||
|
||||
q_33 = -0.5 * ((E * G_beta_lamb - E_lamb * G_lamb) / (E**2))
|
||||
q_22 = ((E * E_lamb_lamb - E_lamb * E_lamb) / (E**2)) - 0.5 * (
|
||||
(G * G_lamb_lamb - G_lamb * G_lamb) / (G**2)
|
||||
)
|
||||
q_11 = 0.5 * ((E * E_beta_lamb - E_beta * E_lamb) / (E**2)) - (
|
||||
(G * G_beta_lamb - G_beta * G_lamb) / (G**2)
|
||||
)
|
||||
q_00 = 0.5 * ((E_lamb_lamb * G - E_lamb * G_lamb) / (G**2))
|
||||
|
||||
return (BETA, LAMBDA, E, G, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00)
|
||||
|
||||
def rk4_last(f, t0, y0, dt, N):
|
||||
h = dt / N
|
||||
t = t0
|
||||
y = np.array(y0, dtype=float, copy=True)
|
||||
for _ in range(N):
|
||||
k1 = f(t, y)
|
||||
k2 = f(t + 0.5 * h, y + 0.5 * h * k1)
|
||||
k3 = f(t + 0.5 * h, y + 0.5 * h * k2)
|
||||
k4 = f(t + h, y + h * k3)
|
||||
y = y + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
|
||||
t = t + h
|
||||
return t, y
|
||||
|
||||
def rk4_last_with_integral(f, t0, y0, dt, N, integrand_at):
|
||||
|
||||
h = dt / N
|
||||
habs = abs(h)
|
||||
t = t0
|
||||
y = np.array(y0, dtype=float, copy=True)
|
||||
|
||||
if N % 2 == 0:
|
||||
# Simpson streaming
|
||||
f0 = integrand_at(t, y)
|
||||
odd_sum = 0.0
|
||||
even_sum = 0.0
|
||||
|
||||
for i in range(1, N + 1):
|
||||
k1 = f(t, y)
|
||||
k2 = f(t + 0.5 * h, y + 0.5 * h * k1)
|
||||
k3 = f(t + 0.5 * h, y + 0.5 * h * k2)
|
||||
k4 = f(t + h, y + h * k3)
|
||||
y = y + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
|
||||
t = t + h
|
||||
|
||||
fi = integrand_at(t, y)
|
||||
if i == N:
|
||||
fN = fi
|
||||
elif i % 2 == 1:
|
||||
odd_sum += fi
|
||||
else:
|
||||
even_sum += fi
|
||||
|
||||
S = f0 + fN + 4.0 * odd_sum + 2.0 * even_sum
|
||||
s = (habs / 3.0) * S
|
||||
return t, y, s
|
||||
|
||||
# Trapez streaming
|
||||
f_prev = integrand_at(t, y)
|
||||
acc = 0.0
|
||||
for _ in range(N):
|
||||
k1 = f(t, y)
|
||||
k2 = f(t + 0.5 * h, y + 0.5 * h * k1)
|
||||
k3 = f(t + 0.5 * h, y + 0.5 * h * k2)
|
||||
k4 = f(t + h, y + h * k3)
|
||||
y = y + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
|
||||
t = t + h
|
||||
f_cur = integrand_at(t, y)
|
||||
acc += 0.5 * (f_prev + f_cur)
|
||||
f_prev = f_cur
|
||||
s = habs * acc
|
||||
return t, y, s
|
||||
|
||||
def integrand_lambda(lamb, y):
|
||||
beta = y[0]
|
||||
beta_p = y[1]
|
||||
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
|
||||
return np.sqrt(E * beta_p**2 + G)
|
||||
|
||||
def integrand_beta(beta, y):
|
||||
lamb = y[0]
|
||||
lamb_p = y[1]
|
||||
(_, _, E, G, *_) = BETA_LAMBDA(beta, lamb)
|
||||
return np.sqrt(E + G * lamb_p**2)
|
||||
|
||||
if lamb_1 != lamb_2:
|
||||
N = n
|
||||
dlamb = lamb_2 - lamb_1
|
||||
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
||||
|
||||
if abs(dlamb) < 1e-15:
|
||||
beta_0 = 0.0
|
||||
else:
|
||||
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
||||
def buildODElamb():
|
||||
def ODE(lamb, v):
|
||||
beta, beta_p, X3, X4 = v
|
||||
(_, _, _, _, p_3, p_2, p_1, p_0, p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
|
||||
|
||||
dbeta = beta_p
|
||||
dbeta_p = p_3 * beta_p**3 + p_2 * beta_p**2 + p_1 * beta_p + p_0
|
||||
dX3 = X4
|
||||
dX4 = (p_33 * beta_p**3 + p_22 * beta_p**2 + p_11 * beta_p + p_00) * X3 + (
|
||||
3 * p_3 * beta_p**2 + 2 * p_2 * beta_p + p_1
|
||||
) * X4
|
||||
return np.array([dbeta, dbeta_p, dX3, dX4], dtype=float)
|
||||
|
||||
return ODE
|
||||
|
||||
ode_lamb = buildODElamb()
|
||||
|
||||
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
||||
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph) if abs(dlamb) >= 1e-15 else 0.0
|
||||
|
||||
|
||||
N_newton = min(N, 4000)
|
||||
|
||||
def solve_newton(beta_p0_init: float):
|
||||
beta_p0 = float(beta_p0_init)
|
||||
|
||||
for _ in range(iter_max):
|
||||
startwerte = np.array([beta_1, beta_p0, 0.0, 1.0], dtype=float)
|
||||
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
|
||||
_, y_end = rk4_last(ode_lamb, lamb_1, startwerte, dlamb, N_newton)
|
||||
beta_end, _, X3_end, _ = y_end
|
||||
|
||||
beta_end, beta_p_end, X3_end, X4_end = states[-1]
|
||||
delta = beta_end - beta_2
|
||||
|
||||
if abs(delta) < epsilon:
|
||||
return True, beta_p0, lamb_list, states
|
||||
return True, beta_p0
|
||||
|
||||
d_beta_end_d_beta0 = X3_end
|
||||
if abs(d_beta_end_d_beta0) < 1e-20:
|
||||
return False, None, None, None
|
||||
if abs(X3_end) < 1e-20:
|
||||
return False, None
|
||||
|
||||
step = delta / d_beta_end_d_beta0
|
||||
step = delta / X3_end
|
||||
max_step = 0.5
|
||||
if abs(step) > max_step:
|
||||
step = np.sign(step) * max_step
|
||||
|
||||
beta_p0 = beta_p0 - step
|
||||
|
||||
return False, None, None, None
|
||||
return False, None
|
||||
|
||||
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
||||
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
||||
ok, beta_p0_sol = solve_newton(beta_p0_sph)
|
||||
|
||||
guesses = [
|
||||
beta_p0_sph,
|
||||
0.5 * beta_p0_sph,
|
||||
2.0 * beta_p0_sph,
|
||||
-beta_p0_sph,
|
||||
-0.5 * beta_p0_sph,
|
||||
]
|
||||
if not ok:
|
||||
|
||||
best = None
|
||||
candidates = [-beta_p0_sph, 0.5 * beta_p0_sph, 2.0 * beta_p0_sph]
|
||||
N_quick = min(N, 2000)
|
||||
best = None
|
||||
|
||||
for g in guesses:
|
||||
ok, beta_p0_sol, lamb_list_cand, states_cand = solve_newton(g)
|
||||
if not ok:
|
||||
continue
|
||||
for g in candidates:
|
||||
ok_g, beta_p0_sol_g = solve_newton(g)
|
||||
if not ok_g:
|
||||
continue
|
||||
|
||||
beta_arr_c = np.array([st[0] for st in states_cand], dtype=float)
|
||||
beta_p_arr_c = np.array([st[1] for st in states_cand], dtype=float)
|
||||
lamb_arr_c = np.array(lamb_list_cand, dtype=float)
|
||||
startwerte_g = np.array([beta_1, beta_p0_sol_g, 0.0, 1.0], dtype=float)
|
||||
_, _, s_quick = rk4_last_with_integral(
|
||||
ode_lamb, lamb_1, startwerte_g, dlamb, N_quick, integrand_lambda
|
||||
)
|
||||
|
||||
integrand = np.zeros(N + 1)
|
||||
if (best is None) or (s_quick < best[0]):
|
||||
best = (s_quick, beta_p0_sol_g)
|
||||
|
||||
if best is None:
|
||||
raise RuntimeError("Keine Startwert-Variante konvergiert.")
|
||||
|
||||
beta_p0_sol = best[1]
|
||||
|
||||
beta_0 = beta_p0_sol
|
||||
startwerte_final = np.array([beta_1, beta_0, 0.0, 1.0], dtype=float)
|
||||
|
||||
if all_points:
|
||||
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte_final, dlamb, N, False)
|
||||
|
||||
lamb_arr = np.array(lamb_list, dtype=float)
|
||||
beta_arr = np.array([st[0] for st in states], dtype=float)
|
||||
beta_p_arr = np.array([st[1] for st in states], dtype=float)
|
||||
|
||||
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||
(_, _, E2, G2, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||
|
||||
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
|
||||
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
|
||||
|
||||
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
|
||||
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
|
||||
|
||||
# Distanz s aus Arrays (Simpson/Trapz)
|
||||
integrand = np.zeros(N + 1, dtype=float)
|
||||
for i in range(N + 1):
|
||||
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr_c[i], lamb_arr_c[i])
|
||||
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi)
|
||||
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
||||
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
|
||||
|
||||
h = abs(dlamb) / N
|
||||
if N % 2 == 0:
|
||||
S = integrand[0] + integrand[-1] \
|
||||
+ 4.0 * np.sum(integrand[1:-1:2]) \
|
||||
+ 2.0 * np.sum(integrand[2:-1:2])
|
||||
s_cand = h / 3.0 * S
|
||||
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(integrand[2:-1:2])
|
||||
s = h / 3.0 * S
|
||||
else:
|
||||
s_cand = np.trapz(integrand, dx=h)
|
||||
s = np.trapz(integrand, dx=h)
|
||||
|
||||
if (best is None) or (s_cand < best[0]):
|
||||
best = (s_cand, beta_p0_sol, lamb_list_cand, states_cand)
|
||||
|
||||
if best is None:
|
||||
raise RuntimeError("Keine Multi-Start-Variante konvergiert.")
|
||||
|
||||
s_best, beta_0, lamb_list, werte = best
|
||||
|
||||
beta_arr = np.zeros(N + 1)
|
||||
# lamb_arr = np.zeros(N + 1)
|
||||
lamb_arr = np.array(lamb_list)
|
||||
beta_p_arr = np.zeros(N + 1)
|
||||
|
||||
for i, state in enumerate(werte):
|
||||
# lamb_arr[i] = state[0]
|
||||
# beta_arr[i] = state[1]
|
||||
# beta_p_arr[i] = state[2]
|
||||
beta_arr[i] = state[0]
|
||||
beta_p_arr[i] = state[1]
|
||||
|
||||
(_, _, E1, G1,
|
||||
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||
(_, _, E2, G2,
|
||||
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||
|
||||
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
|
||||
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
|
||||
|
||||
integrand = np.zeros(N + 1)
|
||||
for i in range(N + 1):
|
||||
(_, _, Ei, Gi,
|
||||
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
||||
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
|
||||
|
||||
h = abs(dlamb) / N
|
||||
if N % 2 == 0:
|
||||
S = integrand[0] + integrand[-1] \
|
||||
+ 4.0 * np.sum(integrand[1:-1:2]) \
|
||||
+ 2.0 * np.sum(integrand[2:-1:2])
|
||||
s = h / 3.0 * S
|
||||
else:
|
||||
s = np.trapz(integrand, dx=h)
|
||||
|
||||
beta0 = beta_arr[0]
|
||||
lamb0 = lamb_arr[0]
|
||||
c = np.sqrt(
|
||||
(np.cos(beta0) ** 2 + (ell.Ee**2 / ell.Ex**2) * np.sin(beta0) ** 2) * np.sin(alpha_1) ** 2
|
||||
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
|
||||
)
|
||||
|
||||
if all_points:
|
||||
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||||
else:
|
||||
return alpha_1, alpha_2, s
|
||||
|
||||
else: # lamb_1 == lamb_2
|
||||
N = n
|
||||
dbeta = beta_2 - beta_1
|
||||
# all_points == False (schnell)
|
||||
_, y_end, s = rk4_last_with_integral(ode_lamb, lamb_1, startwerte_final, dlamb, N, integrand_lambda)
|
||||
beta_end, beta_p_end, _, _ = y_end
|
||||
|
||||
if abs(dbeta) < 1e-15:
|
||||
if all_points:
|
||||
return 0, 0, 0, np.array([]), np.array([])
|
||||
else:
|
||||
return 0, 0, 0
|
||||
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||
(_, _, E2, G2, *_) = BETA_LAMBDA(beta_2, lamb_2)
|
||||
|
||||
lamb_0 = 0
|
||||
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_0)
|
||||
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_end)
|
||||
|
||||
ode_beta = buildODEbeta()
|
||||
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
|
||||
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
|
||||
|
||||
for i in range(iter_max):
|
||||
startwerte = [lamb_1, lamb_0, 0.0, 1.0]
|
||||
return alpha_1, alpha_2, s
|
||||
|
||||
beta_list, werte = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False)
|
||||
N = n
|
||||
dbeta = beta_2 - beta_1
|
||||
|
||||
beta_end = beta_list[-1]
|
||||
lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
|
||||
if abs(dbeta) < 1e-15:
|
||||
if all_points:
|
||||
return 0.0, 0.0, 0.0, np.array([]), np.array([])
|
||||
return 0.0, 0.0, 0.0
|
||||
|
||||
d_lamb_end_d_lambda0 = Y3_end
|
||||
delta = lamb_end - lamb_2
|
||||
# ODE-System (lambda, lambda', Y3, Y4) in Abhängigkeit von beta
|
||||
def buildODEbeta():
|
||||
def ODE(beta, v):
|
||||
lamb, lamb_p, Y3, Y4 = v
|
||||
(_, _, _, _, q_3, q_2, q_1, q_0, q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
|
||||
|
||||
if abs(delta) < epsilon:
|
||||
break
|
||||
dlamb = lamb_p
|
||||
dlamb_p = q_3 * lamb_p**3 + q_2 * lamb_p**2 + q_1 * lamb_p + q_0
|
||||
dY3 = Y4
|
||||
dY4 = (q_33 * lamb_p**3 + q_22 * lamb_p**2 + q_11 * lamb_p + q_00) * Y3 + (
|
||||
3 * q_3 * lamb_p**2 + 2 * q_2 * lamb_p + q_1
|
||||
) * Y4
|
||||
|
||||
if abs(d_lamb_end_d_lambda0) < 1e-20:
|
||||
raise RuntimeError("Abbruch (Ableitung ~ 0).")
|
||||
return np.array([dlamb, dlamb_p, dY3, dY4], dtype=float)
|
||||
|
||||
max_step = 1.0
|
||||
step = delta / d_lamb_end_d_lambda0
|
||||
if abs(step) > max_step:
|
||||
step = np.sign(step) * max_step
|
||||
return ODE
|
||||
|
||||
lamb_0 = lamb_0 - step
|
||||
ode_beta = buildODEbeta()
|
||||
|
||||
beta_list, werte = rk.rk4(ode_beta, beta_1, np.array([lamb_1, lamb_0, 0.0, 1.0]), dbeta, N, False)
|
||||
# Newton auf lambda'_0
|
||||
lamb_0 = 0.0
|
||||
for _ in range(iter_max):
|
||||
startwerte = np.array([lamb_1, lamb_0, 0.0, 1.0], dtype=float)
|
||||
beta_list, states = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False)
|
||||
|
||||
# beta_arr = np.zeros(N + 1)
|
||||
beta_arr = np.array(beta_list)
|
||||
lamb_arr = np.zeros(N + 1)
|
||||
lambda_p_arr = np.zeros(N + 1)
|
||||
lamb_end, lamb_p_end, Y3_end, _ = states[-1]
|
||||
delta = lamb_end - lamb_2
|
||||
|
||||
for i, state in enumerate(werte):
|
||||
# beta_arr[i] = state[0]
|
||||
# lamb_arr[i] = state[1]
|
||||
# lambda_p_arr[i] = state[2]
|
||||
lamb_arr[i] = state[0]
|
||||
lambda_p_arr[i] = state[1]
|
||||
if abs(delta) < epsilon:
|
||||
break
|
||||
|
||||
if abs(Y3_end) < 1e-20:
|
||||
raise RuntimeError("Abbruch (Ableitung ~ 0).")
|
||||
|
||||
step = delta / Y3_end
|
||||
max_step = 1.0
|
||||
if abs(step) > max_step:
|
||||
step = np.sign(step) * max_step
|
||||
lamb_0 = lamb_0 - step
|
||||
|
||||
startwerte_final = np.array([lamb_1, lamb_0, 0.0, 1.0], dtype=float)
|
||||
|
||||
if all_points:
|
||||
beta_list, states = rk.rk4(ode_beta, beta_1, startwerte_final, dbeta, N, False)
|
||||
|
||||
beta_arr = np.array(beta_list, dtype=float)
|
||||
lamb_arr = np.array([st[0] for st in states], dtype=float)
|
||||
lamb_p_arr = np.array([st[1] for st in states], dtype=float)
|
||||
|
||||
# Azimute
|
||||
(BETA1, LAMBDA1, E1, G1,
|
||||
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||
(BETA2, LAMBDA2, E2, G2,
|
||||
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||
(BETA1, LAMBDA1, _, _, *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||
(BETA2, LAMBDA2, _, _, *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||
|
||||
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0])
|
||||
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1])
|
||||
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lamb_p_arr[0])
|
||||
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lamb_p_arr[-1])
|
||||
|
||||
integrand = np.zeros(N + 1)
|
||||
# optionaler Quadrantenfix (robust)
|
||||
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
|
||||
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
|
||||
|
||||
# Distanz
|
||||
integrand = np.zeros(N + 1, dtype=float)
|
||||
for i in range(N + 1):
|
||||
(_, _, Ei, Gi,
|
||||
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
||||
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
|
||||
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
||||
integrand[i] = np.sqrt(Ei + Gi * lamb_p_arr[i] ** 2)
|
||||
|
||||
h = abs(dbeta) / N
|
||||
if N % 2 == 0:
|
||||
S = integrand[0] + integrand[-1] \
|
||||
+ 4.0 * np.sum(integrand[1:-1:2]) \
|
||||
+ 2.0 * np.sum(integrand[2:-1:2])
|
||||
S = integrand[0] + integrand[-1] + 4.0 * np.sum(integrand[1:-1:2]) + 2.0 * np.sum(integrand[2:-1:2])
|
||||
s = h / 3.0 * S
|
||||
else:
|
||||
s = np.trapz(integrand, dx=h)
|
||||
|
||||
if all_points:
|
||||
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||||
else:
|
||||
return alpha_1, alpha_2, s
|
||||
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||||
|
||||
# all_points == False: streaming Integral
|
||||
_, y_end, s = rk4_last_with_integral(ode_beta, beta_1, startwerte_final, dbeta, N, integrand_beta)
|
||||
lamb_end, lamb_p_end, _, _ = y_end
|
||||
|
||||
(BETA1, LAMBDA1, _, _, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||
(BETA2, LAMBDA2, _, _, *_) = BETA_LAMBDA(beta_2, lamb_2)
|
||||
|
||||
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lamb_0)
|
||||
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lamb_p_end)
|
||||
|
||||
alpha_1 = normalize_alpha_0_pi(float(alpha_1))
|
||||
alpha_2 = normalize_alpha_0_pi(float(alpha_2))
|
||||
|
||||
return alpha_1, alpha_2, s
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# ell = EllipsoidTriaxial.init_name("Fiction")
|
||||
# # beta1 = np.deg2rad(75)
|
||||
# # lamb1 = np.deg2rad(-90)
|
||||
# # beta2 = np.deg2rad(75)
|
||||
# # lamb2 = np.deg2rad(66)
|
||||
# # a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2)
|
||||
# # print(aus.gms("a1", a1, 4))
|
||||
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||
beta1 = np.deg2rad(75)
|
||||
lamb1 = np.deg2rad(-90)
|
||||
beta2 = np.deg2rad(75)
|
||||
lamb2 = np.deg2rad(66)
|
||||
a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
|
||||
print(aus.gms("a1", a1, 4))
|
||||
# # print(aus.gms("a2", a2, 4))
|
||||
# # print(s)
|
||||
# cart1 = ell.para2cart(0, 0)
|
||||
|
||||
Reference in New Issue
Block a user