GHA1 num und ana richtig. Tests nach Beispielen aus Panou 2013

This commit is contained in:
2025-12-10 11:45:41 +01:00
parent 936b7c56f9
commit 946d028fae
6 changed files with 335 additions and 102 deletions

View File

@@ -0,0 +1,111 @@
import winkelumrechnungen as wu
table1 = [
(wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(90), 1.00000000000,
wu.gms2rad([90,0,0.0000]), wu.gms2rad([90,0,0.0000]), 10018754.9569),
(wu.deg2rad(1), wu.deg2rad(0), wu.deg2rad(-80), wu.deg2rad(5), 0.05883743460,
wu.gms2rad([179,7,12.2719]), wu.gms2rad([174,40,13.8487]), 8947130.7221),
(wu.deg2rad(5), wu.deg2rad(0), wu.deg2rad(-60), wu.deg2rad(40), 0.34128138370,
wu.gms2rad([160,13,24.5001]), wu.gms2rad([137,26,47.0036]), 8004762.4330),
(wu.deg2rad(30), wu.deg2rad(0), wu.deg2rad(-30), wu.deg2rad(175), 0.86632464962,
wu.gms2rad([91,7,30.9337]), wu.gms2rad([91,7,30.8672]), 19547128.7971),
(wu.deg2rad(60), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(175), 0.06207487624,
wu.gms2rad([2,52,26.2393]), wu.gms2rad([177,4,13.6373]), 6705715.1610),
(wu.deg2rad(75), wu.deg2rad(0), wu.deg2rad(80), wu.deg2rad(120), 0.11708984898,
wu.gms2rad([23,20,34.7823]), wu.gms2rad([140,55,32.6385]), 2482501.2608),
(wu.deg2rad(80), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(90), 0.17478427424,
wu.gms2rad([72,26,50.4024]), wu.gms2rad([159,38,30.3547]), 3519745.1283)
]
table2 = [
(wu.deg2rad(0), wu.deg2rad(-90), wu.deg2rad(0), wu.deg2rad(89.5), 1.00000000000,
wu.gms2rad([90,0,0.0000]), wu.gms2rad([90,0,0.0000]), 19981849.8629),
(wu.deg2rad(1), wu.deg2rad(-90), wu.deg2rad(1), wu.deg2rad(89.5), 0.18979826428,
wu.gms2rad([10,56,33.6952]), wu.gms2rad([169,3,26.4359]), 19776667.0342),
(wu.deg2rad(5), wu.deg2rad(-90), wu.deg2rad(5), wu.deg2rad(89), 0.09398403161,
wu.gms2rad([5,24,48.3899]), wu.gms2rad([174,35,12.6880]), 18889165.0873),
(wu.deg2rad(30), wu.deg2rad(-90), wu.deg2rad(30), wu.deg2rad(86), 0.06004022935,
wu.gms2rad([3,58,23.8038]), wu.gms2rad([176,2,7.2825]), 13331814.6078),
(wu.deg2rad(60), wu.deg2rad(-90), wu.deg2rad(60), wu.deg2rad(78), 0.06076096484,
wu.gms2rad([6,56,46.4585]), wu.gms2rad([173,11,5.9592]), 6637321.6350),
(wu.deg2rad(75), wu.deg2rad(-90), wu.deg2rad(75), wu.deg2rad(66), 0.05805851008,
wu.gms2rad([12,40,34.9009]), wu.gms2rad([168,20,26.7339]), 3267941.2812),
(wu.deg2rad(80), wu.deg2rad(-90), wu.deg2rad(80), wu.deg2rad(55), 0.05817384452,
wu.gms2rad([18,35,40.7848]), wu.gms2rad([164,25,34.0017]), 2132316.9048)
]
table3 = [
(wu.deg2rad(0), wu.deg2rad(0.5), wu.deg2rad(80), wu.deg2rad(0.5), 0.05680316848,
wu.gms2rad([0,-0,16.0757]), wu.gms2rad([0,1,32.5762]), 8831874.3717),
(wu.deg2rad(-1), wu.deg2rad(5), wu.deg2rad(75), wu.deg2rad(5), 0.05659149555,
wu.gms2rad([0,-1,47.2105]), wu.gms2rad([0,6,54.0958]), 8405370.4947),
(wu.deg2rad(-5), wu.deg2rad(30), wu.deg2rad(60), wu.deg2rad(30), 0.04921108945,
wu.gms2rad([0,-4,22.3516]), wu.gms2rad([0,8,42.0756]), 7204083.8568),
(wu.deg2rad(-30), wu.deg2rad(45), wu.deg2rad(30), wu.deg2rad(45), 0.04017812574,
wu.gms2rad([0,-3,41.2461]), wu.gms2rad([0,3,41.2461]), 6652788.1287),
(wu.deg2rad(-60), wu.deg2rad(60), wu.deg2rad(5), wu.deg2rad(60), 0.02843082609,
wu.gms2rad([0,-8,40.4575]), wu.gms2rad([0,4,22.1675]), 7213412.4477),
(wu.deg2rad(-75), wu.deg2rad(85), wu.deg2rad(1), wu.deg2rad(85), 0.00497802414,
wu.gms2rad([0,-6,44.6115]), wu.gms2rad([0,1,47.0474]), 8442938.5899),
(wu.deg2rad(-80), wu.deg2rad(89.5), wu.deg2rad(0), wu.deg2rad(89.5), 0.00050178253,
wu.gms2rad([0,-1,27.9705]), wu.gms2rad([0,0,16.0490]), 8888783.7815)
]
table4 = [
(wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(90), 1.00000000000,
wu.gms2rad([90,0,0.0000]), wu.gms2rad([90,0,0.0000]), 10018754.1714),
(wu.deg2rad(1), wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(179.5), 0.30320665822,
wu.gms2rad([17,39,11.0942]), wu.gms2rad([162,20,58.9032]), 19884417.8083),
(wu.deg2rad(5), wu.deg2rad(0), wu.deg2rad(-80), wu.deg2rad(170), 0.03104258442,
wu.gms2rad([178,12,51.5083]), wu.gms2rad([10,17,52.6423]), 11652530.7514),
(wu.deg2rad(30), wu.deg2rad(0), wu.deg2rad(-75), wu.deg2rad(120), 0.24135347134,
wu.gms2rad([163,49,4.4615]), wu.gms2rad([68,49,50.9617]), 14057886.8752),
(wu.deg2rad(60), wu.deg2rad(0), wu.deg2rad(-60), wu.deg2rad(40), 0.19408499032,
wu.gms2rad([157,9,33.5589]), wu.gms2rad([157,9,33.5589]), 13767414.8267),
(wu.deg2rad(75), wu.deg2rad(0), wu.deg2rad(-30), wu.deg2rad(0.5), 0.00202789418,
wu.gms2rad([179,33,3.8613]), wu.gms2rad([179,51,57.0077]), 11661713.4496),
(wu.deg2rad(80), wu.deg2rad(0), wu.deg2rad(-5), wu.deg2rad(120), 0.15201222384,
wu.gms2rad([61,5,33.9600]), wu.gms2rad([171,13,22.0148]), 11105138.2902),
(wu.deg2rad(0), wu.deg2rad(0), wu.deg2rad(60), wu.deg2rad(0), 0.00000000000,
wu.gms2rad([0,0,0.0000]), wu.gms2rad([0,0,0.0000]), 6663348.2060)
]
tables = [table1, table2, table3, table4]
def get_example(table, example):
table -= 1
example -= 1
return tables[table][example]
def get_tables():
return tables
if __name__ == "__main__":
test = get_example(1, 4)
pass

View File

@@ -1,4 +1,5 @@
import numpy as np import numpy as np
from numpy import sin, cos, sqrt, arctan2
import ellipsoide import ellipsoide
import Numerische_Integration.num_int_runge_kutta as rk import Numerische_Integration.num_int_runge_kutta as rk
import winkelumrechnungen as wu import winkelumrechnungen as wu
@@ -6,33 +7,66 @@ import ausgaben as aus
import GHA.rk as ghark import GHA.rk as ghark
from scipy.special import factorial as fact from scipy.special import factorial as fact
from math import comb from math import comb
import GHA_triaxial.numeric_examples_panou as nep
# Panou, Korakitits 2019 # Panou, Korakitits 2019
def gha1_num(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, num): def gha1_num_old(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, num):
phi, lamb, h = ell.cart2geod("ligas3", point) phi, lamb, h = ell.cart2geod("ligas3", point)
x, y, z = ell.geod2cart(phi, lamb, 0) x, y, z = ell.geod2cart(phi, lamb, 0)
values = ell.p_q(x, y, z) p, q = ell.p_q(x, y, z)
H = values["H"]
p = values["p"]
q = values["q"]
dxds0 = p[0] * np.sin(alpha0) + q[0] * np.cos(alpha0) dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
dyds0 = p[1] * np.sin(alpha0) + q[1] * np.cos(alpha0) dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
dzds0 = p[2] * np.sin(alpha0) + q[2] * np.cos(alpha0) dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
h = lambda dxds, dyds, dzds: dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2 h = lambda dxds, dyds, dzds: dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
f1 = lambda s, x, dxds, y, dyds, z, dzds: dxds f1 = lambda x, dxds, y, dyds, z, dzds: dxds
f2 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * x f2 = lambda x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / ell.func_H(x, y, z) * x
f3 = lambda s, x, dxds, y, dyds, z, dzds: dyds f3 = lambda x, dxds, y, dyds, z, dzds: dyds
f4 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * y/(1-ell.ee**2) f4 = lambda x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / ell.func_H(x, y, z) * y/(1-ell.ee**2)
f5 = lambda s, x, dxds, y, dyds, z, dzds: dzds f5 = lambda x, dxds, y, dyds, z, dzds: dzds
f6 = lambda s, x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / H * z/(1-ell.ex**2) f6 = lambda x, dxds, y, dyds, z, dzds: -h(dxds, dyds, dzds) / ell.func_H(x, y, z) * z/(1-ell.ex**2)
funktionswerte = rk.verfahren([f1, f2, f3, f4, f5, f6], [x, dxds0, y, dyds0, z, dzds0], s, num, fein=False)
P2 = funktionswerte[-1]
P2 = (P2[0], P2[2], P2[4])
return P2
def buildODE(ell):
def ODE(v):
x, dxds, y, dyds, z, dzds = v
H = ell.func_H(x, y, z)
h = dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
ddx = -(h/H)*x
ddy = -(h/H)*y/(1-ell.ee**2)
ddz = -(h/H)*z/(1-ell.ex**2)
return [dxds, ddx, dyds, ddy, dzds, ddz]
return ODE
def gha1_num(ell, point, alpha0, s, num):
phi, lam, _ = ell.cart2geod("ligas3", point)
x0, y0, z0 = ell.geod2cart(phi, lam, 0)
p, q = ell.p_q(x0, y0, z0)
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
v_init = [x0, dxds0, y0, dyds0, z0, dzds0]
F = buildODE(ell)
werte = rk.rk_chat(F, v_init, s, num)
x1, _, y1, _, z1, _ = werte[-1]
return x1, y1, z1
funktionswerte = rk.verfahren([f1, f2, f3, f4, f5, f6], [0, x, dxds0, y, dyds0, z, dzds0], s, num)
return funktionswerte
def checkLiouville(ell: ellipsoide.EllipsoidTriaxial, points): def checkLiouville(ell: ellipsoide.EllipsoidTriaxial, points):
constantValues = [] constantValues = []
@@ -52,9 +86,9 @@ def checkLiouville(ell: ellipsoide.EllipsoidTriaxial, points):
P = p[0]*dxds + p[1]*dyds + p[2]*dzds P = p[0]*dxds + p[1]*dyds + p[2]*dzds
Q = q[0]*dxds + q[1]*dyds + q[2]*dzds Q = q[0]*dxds + q[1]*dyds + q[2]*dzds
alpha = np.arctan(P/Q) alpha = arctan2(P, Q)
c = ell.ay**2 - (t1 * np.sin(alpha)**2 + t2 * np.cos(alpha)**2) c = ell.ay**2 - (t1 * sin(alpha)**2 + t2 * cos(alpha)**2)
constantValues.append(c) constantValues.append(c)
pass pass
@@ -63,9 +97,7 @@ def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
""" """
Panou, Korakitits 2020, 5ff. Panou, Korakitits 2020, 5ff.
:param ell: :param ell:
:param x: :param point:
:param y:
:param z:
:param alpha0: :param alpha0:
:param s: :param s:
:param maxM: :param maxM:
@@ -77,21 +109,22 @@ def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
z_m = [z] z_m = [z]
# erste Ableitungen (7-8) # erste Ableitungen (7-8)
sqrtH = np.sqrt(ell.p_q(x, y, z)["H"]) H = x ** 2 + y ** 2 / (1 - ell.ee ** 2) ** 2 + z ** 2 / (1 - ell.ex ** 2) ** 2
sqrtH = sqrt(H)
n = np.array([x / sqrtH, n = np.array([x / sqrtH,
y / ((1-ell.ee**2) * sqrtH), y / ((1-ell.ee**2) * sqrtH),
z / ((1-ell.ex**2) * sqrtH)]) z / ((1-ell.ex**2) * sqrtH)])
u, v = ell.cart2para(np.array([x, y, z])) u, v = ell.cart2para(np.array([x, y, z]))
G = np.sqrt(1 - ell.ex**2 * np.cos(u)**2 - ell.ee**2 * np.sin(u)**2 * np.sin(v)**2) G = sqrt(1 - ell.ex**2 * cos(u)**2 - ell.ee**2 * sin(u)**2 * sin(v)**2)
q = np.array([-1/G * np.sin(u) * np.cos(v), q = np.array([-1/G * sin(u) * cos(v),
-1/G * np.sqrt(1-ell.ee**2) * np.sin(u) * np.sin(v), -1/G * sqrt(1-ell.ee**2) * sin(u) * sin(v),
1/G * np.sqrt(1-ell.ex**2) * np.cos(u)]) 1/G * sqrt(1-ell.ex**2) * cos(u)])
p = np.array([q[1]*n[2] - q[2]*n[1], p = np.array([q[1]*n[2] - q[2]*n[1],
q[2]*n[0] - q[0]*n[2], q[2]*n[0] - q[0]*n[2],
q[0]*n[1] - q[1]*n[0]]) q[0]*n[1] - q[1]*n[0]])
x_m.append(p[0] * np.sin(alpha0) + q[0] * np.cos(alpha0)) x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
y_m.append(p[1] * np.sin(alpha0) + q[1] * np.cos(alpha0)) y_m.append(p[1] * sin(alpha0) + q[1] * cos(alpha0))
z_m.append(p[2] * np.sin(alpha0) + q[2] * np.cos(alpha0)) z_m.append(p[2] * sin(alpha0) + q[2] * cos(alpha0))
# H Ableitungen (7) # H Ableitungen (7)
H_ = lambda p: np.sum([comb(p, i) * (x_m[p - i] * x_m[i] + H_ = lambda p: np.sum([comb(p, i) * (x_m[p - i] * x_m[i] +
@@ -143,32 +176,16 @@ def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
if __name__ == "__main__": if __name__ == "__main__":
# ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978") # ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978")
ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980") ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
ellbi = ellipsoide.EllipsoidTriaxial.init_name("Bessel-biaxial") # ellbi = ellipsoide.EllipsoidTriaxial.init_name("Bessel-biaxial")
re = ellipsoide.EllipsoidBiaxial.init_name("Bessel") re = ellipsoide.EllipsoidBiaxial.init_name("Bessel")
# Panou 2013, 7, Table 1, beta0=60° # Panou 2013, 7, Table 1, beta0=60°
beta1 = wu.deg2rad(60) beta0, lamb0, beta1, lamb1, c, alpha0, alpha1, s = nep.get_example(table=1, example=5)
lamb1 = wu.deg2rad(0) P0 = ell.ell2cart(beta0, lamb0)
beta2 = wu.deg2rad(60) P1 = ell.ell2cart(beta1, lamb1)
lamb2 = wu.deg2rad(175)
P1 = ell.ell2cart(wu.deg2rad(60), wu.deg2rad(0))
P2 = ell.ell2cart(wu.deg2rad(60), wu.deg2rad(175))
para1 = ell.cart2para(P1)
para2 = ell.cart2para(P2)
cart1 = ell.para2cart(para1[0], para1[1])
cart2 = ell.para2cart(para2[0], para2[1])
ell11 = ell.cart2ell(P1)
ell21 = ell.cart2ell(P2)
ell1 = ell.cart2ell(cart1)
ell2 = ell.cart2ell(cart2)
c = 0.06207487624 # P1_num = gha1_num(ell, P0, alpha0, s, 1000)
alpha0 = wu.gms2rad([2, 52, 26.2393]) P1_num = gha1_num(ell, P0, alpha0, s, 10000)
alpha1 = wu.gms2rad([177, 4, 13.6373]) P1_ana = gha1_ana(ell, P0, alpha0, s, 30)
s = 6705715.1610
pass
P2_num = gha1_num(ell, P1, alpha0, s, 1000)
P2_ana = gha1_ana(ell, P1, alpha0, s, 70)
pass pass

View File

@@ -319,13 +319,20 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
if __name__ == "__main__": if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round") ell = EllipsoidTriaxial.init_name("BursaSima1980round")
beta1 = np.deg2rad(75) # beta1 = np.deg2rad(75)
lamb1 = np.deg2rad(-90) # lamb1 = np.deg2rad(-90)
beta2 = np.deg2rad(75) # beta2 = np.deg2rad(75)
lamb2 = np.deg2rad(66) # lamb2 = np.deg2rad(66)
a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2) # a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2)
print(aus.gms("a1", a1, 4)) # print(aus.gms("a1", a1, 4))
print(aus.gms("a2", a2, 4)) # print(aus.gms("a2", a2, 4))
# print(s)
cart1 = ell.para2cart(0, 0)
cart2 = ell.para2cart(0.4, 0.4)
beta1, lamb1 = ell.cart2ell(cart1)
beta2, lamb2 = ell.cart2ell(cart2)
a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=2500)
print(s) print(s)

View File

@@ -1,4 +1,4 @@
def verfahren(funktionen: list, startwerte: list, weite: float, schritte: int) -> list: def verfahren(funktionen: list, startwerte: list, weite: float, schritte: int, fein: bool = True) -> list:
""" """
Runge-Kutta-Verfahren für ein beliebiges DGLS Runge-Kutta-Verfahren für ein beliebiges DGLS
:param funktionen: Liste mit allen Funktionen :param funktionen: Liste mit allen Funktionen
@@ -14,19 +14,21 @@ def verfahren(funktionen: list, startwerte: list, weite: float, schritte: int) -
zuschlaege_grob = zuschlaege(funktionen, werte[-1], h) zuschlaege_grob = zuschlaege(funktionen, werte[-1], h)
werte_grob = [werte[-1][j] if j == 0 else werte[-1][j] + zuschlaege_grob[j - 1] werte_grob = [werte[-1][j] if j == 0 else werte[-1][j] + zuschlaege_grob[j - 1]
for j in range(len(startwerte))] for j in range(len(startwerte))]
if fein:
zuschlaege_fein_1 = zuschlaege(funktionen, werte[-1], h / 2)
werte_fein_1 = [werte[-1][j] + h/2 if j == 0 else werte[-1][j]+zuschlaege_fein_1[j-1]
for j in range(len(startwerte))]
zuschlaege_fein_1 = zuschlaege(funktionen, werte[-1], h / 2) zuschlaege_fein_2 = zuschlaege(funktionen, werte_fein_1, h / 2)
werte_fein_1 = [werte[-1][j] + h/2 if j == 0 else werte[-1][j]+zuschlaege_fein_1[j-1] werte_fein_2 = [werte_fein_1[j] + h/2 if j == 0 else werte_fein_1[j]+zuschlaege_fein_2[j-1]
for j in range(len(startwerte))] for j in range(len(startwerte))]
zuschlaege_fein_2 = zuschlaege(funktionen, werte_fein_1, h / 2) werte_korr = [werte_fein_2[j] if j == 0 else werte_fein_2[j] + 1/15 * (werte_fein_2[j] - werte_grob[j])
werte_fein_2 = [werte_fein_1[j] + h/2 if j == 0 else werte_fein_1[j]+zuschlaege_fein_2[j-1] for j in range(len(startwerte))]
for j in range(len(startwerte))]
werte_korr = [werte_fein_2[j] if j == 0 else werte_fein_2[j] + 1/15 * (werte_fein_2[j] - werte_grob[j]) werte.append(werte_korr)
for j in range(len(startwerte))] else:
werte.append(werte_grob)
werte.append(werte_korr)
return werte return werte
@@ -60,3 +62,23 @@ def zuschlaege(funktionen: list, startwerte: list, h: float) -> list:
k_ = [(k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6 for i in range(len(k1))] k_ = [(k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6 for i in range(len(k1))]
return k_ return k_
def rk_chat(F, v0: list, weite: float, schritte: int):
h = weite/schritte
v = v0
werte = [v]
for _ in range(schritte):
k1 = F(v)
k2 = F([v[i] + 0.5 * h * k1[i] for i in range(6)])
k3 = F([v[i] + 0.5 * h * k2[i] for i in range(6)])
k4 = F([v[i] + h * k3[i] for i in range(6)])
v = [
v[i] + (h / 6) * (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i])
for i in range(6)
]
werte.append(v)
return werte

View File

@@ -1,4 +1,5 @@
import numpy as np import numpy as np
from numpy import sin, cos, arctan, arctan2, sqrt
import winkelumrechnungen as wu import winkelumrechnungen as wu
import ausgaben as aus import ausgaben as aus
import jacobian_Ligas import jacobian_Ligas
@@ -246,7 +247,10 @@ class EllipsoidTriaxial:
# print(s1, s2, s3) # print(s1, s2, s3)
beta = np.arctan(np.sqrt((-self.b**2 - s2) / (self.ay**2 + s2))) beta = np.arctan(np.sqrt((-self.b**2 - s2) / (self.ay**2 + s2)))
lamb = np.arctan(np.sqrt((-self.ay**2 - s3) / (self.ax**2 + s3))) if abs((-self.ay**2 - s3) / (self.ax**2 + s3)) > 1e-7:
lamb = np.arctan(np.sqrt((-self.ay**2 - s3) / (self.ax**2 + s3)))
else:
lamb = 0
u = np.sqrt(self.b**2 + s1) u = np.sqrt(self.b**2 + s1)
return beta, lamb, u return beta, lamb, u
@@ -328,39 +332,21 @@ class EllipsoidTriaxial:
if abs(xG) < eps and abs(yG) < eps: # Punkt in der z-Achse if abs(xG) < eps and abs(yG) < eps: # Punkt in der z-Achse
phi = np.pi / 2 if zG > 0 else -np.pi / 2 phi = np.pi / 2 if zG > 0 else -np.pi / 2
lamb = 0.0 lamb = 0.0
h = abs(zG) - ell.b h = abs(zG) - self.b
return phi, lamb, h return phi, lamb, h
elif abs(xG) < eps and abs(zG) < eps: # Punkt in der y-Achse elif abs(xG) < eps and abs(zG) < eps: # Punkt in der y-Achse
phi = 0.0 phi = 0.0
lamb = np.pi / 2 if yG > 0 else -np.pi / 2 lamb = np.pi / 2 if yG > 0 else -np.pi / 2
h = abs(yG) - ell.ay h = abs(yG) - self.ay
return phi, lamb, h return phi, lamb, h
elif abs(yG) < eps and abs(zG) < eps: # Punkt in der x-Achse elif abs(yG) < eps and abs(zG) < eps: # Punkt in der x-Achse
phi = 0.0 phi = 0.0
lamb = 0.0 if xG > 0 else np.pi lamb = 0.0 if xG > 0 else np.pi
h = abs(xG) - ell.ax h = abs(xG) - self.ax
return phi, lamb, h return phi, lamb, h
# elif abs(zG) < eps: # Punkt in der xy-Ebene
# phi = 0
# lamb = np.arctan2(yG / ell.ay**2, xG / ell.ax**2)
# rG = np.sqrt(xG ** 2 + yG ** 2)
# pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64)
# rE = np.sqrt(pE[0] ** 2 + pE[1] ** 2)
# h = rG - rE
# return phi, lamb, h
#
# elif abs(yG) < eps: # Punkt in der xz-Ebene
# phi = np.arctan2(zG / ell.b**2, xG / ell.ax**2)
# lamb = 0 if xG > 0 else np.pi
# rG = np.sqrt(xG ** 2 + zG ** 2)
# pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64)
# rE = np.sqrt(pE[0] ** 2 + pE[2] ** 2)
# h = rG - rE
# return phi, lamb, h
rG = np.sqrt(xG ** 2 + yG ** 2 + zG ** 2) rG = np.sqrt(xG ** 2 + yG ** 2 + zG ** 2)
pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64) pE = np.array([self.ax * xG / rG, self.ax * yG / rG, self.ax * zG / rG], dtype=np.float64)
@@ -471,7 +457,17 @@ class EllipsoidTriaxial:
return u, v return u, v
def p_q(self, x, y, z) -> dict: def func_H(self, x, y, z):
return x ** 2 + y ** 2 / (1 - self.ee ** 2) ** 2 + z ** 2 / (1 - self.ex ** 2) ** 2
def func_n(self, x, y, z, H=None):
if H is None:
H = self.func_H(x, y, z)
return np.array([x / sqrt(H),
y / ((1 - self.ee ** 2) * sqrt(H)),
z / ((1 - self.ex ** 2) * sqrt(H))])
def p_q(self, x, y, z) -> tuple[np.ndarray, np.ndarray]:
""" """
Berechnung sämtlicher Größen Berechnung sämtlicher Größen
:param x: x :param x: x
@@ -479,11 +475,9 @@ class EllipsoidTriaxial:
:param z: z :param z: z
:return: Dictionary sämtlicher Größen :return: Dictionary sämtlicher Größen
""" """
H = x ** 2 + y ** 2 / (1 - self.ee ** 2) ** 2 + z ** 2 / (1 - self.ex ** 2) ** 2 n = self.func_n(x, y, z)
n = np.array([x / np.sqrt(H), y / ((1 - self.ee ** 2) * np.sqrt(H)), z / ((1 - self.ex ** 2) * np.sqrt(H))]) beta, lamb = self.cart2ell(np.array([x, y, z]))
beta, lamb, u = self.cart2ellu(np.array([x, y, z]))
B = self.Ex ** 2 * np.cos(beta) ** 2 + self.Ee ** 2 * np.sin(beta) ** 2 B = self.Ex ** 2 * np.cos(beta) ** 2 + self.Ee ** 2 * np.sin(beta) ** 2
L = self.Ex ** 2 - self.Ee ** 2 * np.cos(lamb) ** 2 L = self.Ex ** 2 - self.Ee ** 2 * np.cos(lamb) ** 2
@@ -507,11 +501,9 @@ class EllipsoidTriaxial:
p = np.array([p1, p2, p3]) p = np.array([p1, p2, p3])
q = np.array([n[1] * p[2] - n[2] * p[1], q = np.array([n[1] * p[2] - n[2] * p[1],
n[2] * p[0] - n[0] * p[2], n[2] * p[0] - n[0] * p[2],
n[1] * p[1] - n[1] * p[0]]) n[0] * p[1] - n[1] * p[0]])
return {"H": H, "n": n, "beta": beta, "lamb": lamb, "u": u, "B": B, "L": L, "c1": c1, "c0": c0, "t1": t1, return p, q
"t2": t2,
"F": F, "p": p, "q": q}
if __name__ == "__main__": if __name__ == "__main__":

84
test_algorithms.py Normal file
View File

@@ -0,0 +1,84 @@
import GHA_triaxial.numeric_examples_panou as nep
import ellipsoide
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
from GHA_triaxial.panou import gha1_ana, gha1_num
import numpy as np
import time
def test():
ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
tables = nep.get_tables()
diffs_gha1_num = []
diffs_gha1_ana = []
diffs_gha2_num = []
times_gha1_num = []
times_gha1_ana = []
times_gha2_num = []
for table in tables:
diffs_gha1_num.append([])
diffs_gha1_ana.append([])
diffs_gha2_num.append([])
times_gha1_num.append([])
times_gha1_ana.append([])
times_gha2_num.append([])
for example in table:
beta0, lamb0, beta1, lamb1, c, alpha0, alpha1, s = example
P0 = ell.ell2cart(beta0, lamb0)
P1 = ell.ell2cart(beta1, lamb1)
start = time.perf_counter()
try:
P1_num = gha1_num(ell, P0, alpha0, s, 10000)
end = time.perf_counter()
diff_P1_num = np.linalg.norm(P1 - P1_num)
except:
end = time.perf_counter()
diff_P1_num = None
time_gha1_num = end - start
start = time.perf_counter()
try:
P1_ana = gha1_ana(ell, P0, alpha0, s, 50)
end = time.perf_counter()
diff_P1_ana = np.linalg.norm(P1 - P1_ana)
except:
end = time.perf_counter()
diff_P1_ana = None
time_gha1_ana = end - start
start = time.perf_counter()
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=1000)
end = time.perf_counter()
diff_s_num = abs(s - s_num)
except:
end = time.perf_counter()
diff_s_num = None
time_gha2_num = None
time_gha2_num = end - start
diffs_gha1_num[-1].append(diff_P1_num)
diffs_gha1_ana[-1].append(diff_P1_ana)
diffs_gha2_num[-1].append(diff_s_num)
times_gha1_num[-1].append(time_gha1_num)
times_gha1_ana[-1].append(time_gha1_ana)
times_gha2_num[-1].append(time_gha2_num)
print(diffs_gha1_num, diffs_gha1_ana, diffs_gha2_num)
print(times_gha1_num, times_gha1_ana, times_gha2_num)
def display():
diffs = [[{'gha1_num': np.float64(3.410763124264611e-05), 'gha1_ana': np.float64(3.393273802112796e-05), 'gha2_num': np.float64(3.3931806683540344e-05)}, {'gha1_num': np.float64(0.0008736425000530604), 'gha1_ana': np.float64(0.0008736458415010259), 'gha2_num': None}, {'gha1_num': np.float64(0.0007739730058338136), 'gha1_ana': np.float64(0.0007739621469802854), 'gha2_num': np.float64(1.5832483768463135e-07)}, {'gha1_num': np.float64(0.00010554956741100295), 'gha1_ana': np.float64(8.814246009944831), 'gha2_num': np.float64(4.864111542701721e-05)}, {'gha1_num': np.float64(0.0002135908394614854), 'gha1_ana': np.float64(0.0002138610897967267), 'gha2_num': np.float64(5.0179407158866525)}, {'gha1_num': np.float64(0.00032727226891456654), 'gha1_ana': np.float64(0.00032734569198545905), 'gha2_num': np.float64(9.735533967614174e-05)}, {'gha1_num': np.float64(0.0005195973303787956), 'gha1_ana': np.float64(0.0005197766935509641), 'gha2_num': None}], [{'gha1_num': np.float64(1.780250537652368e-05), 'gha1_ana': np.float64(1.996805145339501e-05), 'gha2_num': np.float64(1.8164515495300293e-05)}, {'gha1_num': np.float64(4.8607540473363564e-05), 'gha1_ana': np.float64(2205539.954949392), 'gha2_num': None}, {'gha1_num': np.float64(0.00017376854985685854), 'gha1_ana': np.float64(328124.1513636429), 'gha2_num': np.float64(0.17443156614899635)}, {'gha1_num': np.float64(5.83429352558999e-05), 'gha1_ana': np.float64(0.01891628037258558), 'gha2_num': np.float64(1.4207654744386673)}, {'gha1_num': np.float64(0.0006421087024666934), 'gha1_ana': np.float64(0.0006420400127297228), 'gha2_num': np.float64(0.12751091085374355)}, {'gha1_num': np.float64(0.0004456207867164434), 'gha1_ana': np.float64(0.0004455649707698245), 'gha2_num': np.float64(0.00922046648338437)}, {'gha1_num': np.float64(0.0002340879908275419), 'gha1_ana': np.float64(0.00023422217242111216), 'gha2_num': np.float64(0.001307751052081585)}], [{'gha1_num': np.float64(976.6580096633622), 'gha1_ana': np.float64(976.6580096562798), 'gha2_num': np.float64(6.96033239364624e-05)}, {'gha1_num': np.float64(2825.2936643258527), 'gha1_ana': np.float64(2794.954866417055), 'gha2_num': np.float64(1.3615936040878296e-05)}, {'gha1_num': np.float64(1248.8942058074501), 'gha1_ana': np.float64(538.5550561841195), 'gha2_num': np.float64(3.722589462995529e-05)}, {'gha1_num': np.float64(2201.1793359793814), 'gha1_ana': np.float64(3735.376499414938), 'gha2_num': np.float64(1.4525838196277618e-05)}, {'gha1_num': np.float64(2262.134819997246), 'gha1_ana': np.float64(25549.567793410763), 'gha2_num': np.float64(9.328126907348633e-06)}, {'gha1_num': np.float64(2673.219788119847), 'gha1_ana': np.float64(21760.866677295206), 'gha2_num': np.float64(8.635222911834717e-06)}, {'gha1_num': np.float64(1708.758419275875), 'gha1_ana': np.float64(3792.1128807063437), 'gha2_num': np.float64(2.4085864424705505e-05)}], [{'gha1_num': np.float64(0.7854659044152204), 'gha1_ana': np.float64(0.785466068424286), 'gha2_num': np.float64(0.785466069355607)}, {'gha1_num': np.float64(237.79878717216718), 'gha1_ana': np.float64(1905080.064324282), 'gha2_num': None}, {'gha1_num': np.float64(55204.601699830164), 'gha1_ana': np.float64(55204.60175211949), 'gha2_num': None}, {'gha1_num': np.float64(12766.348063015519), 'gha1_ana': np.float64(12766.376619517901), 'gha2_num': np.float64(12582.786206113175)}, {'gha1_num': np.float64(29703.049988324146), 'gha1_ana': np.float64(29703.056427749252), 'gha2_num': np.float64(28933.668131249025)}, {'gha1_num': np.float64(43912.03007182513), 'gha1_ana': np.float64(43912.03007528712), 'gha2_num': None}, {'gha1_num': np.float64(28522.29828970693), 'gha1_ana': np.float64(28522.29830145182), 'gha2_num': None}, {'gha1_num': np.float64(17769.115549537233), 'gha1_ana': np.float64(17769.115549483362), 'gha2_num': np.float64(17769.121286311187)}]]
arr = []
for table in diffs:
for example in table:
arr.append([example['gha1_num'], example['gha1_ana'], example['gha2_num']])
arr = np.array(arr)
pass
if __name__ == "__main__":
# test()
display()