diverse Änderungen, Versuch der Lösung der zweiten GHA mit Louville

This commit is contained in:
2025-11-25 14:49:06 +01:00
parent 2ff4cff2be
commit 9031a12312
5 changed files with 308 additions and 121 deletions

View File

@@ -10,7 +10,9 @@ from math import comb
# Panou, Korakitits 2019
def gha1_num(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, num):
def gha1_num(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, num):
phi, lamb, h = ell.cart2geod("ligas3", point)
x, y, z = ell.geod2cart(phi, lamb, 0)
values = ell.p_q(x, y, z)
H = values["H"]
p = values["p"]
@@ -57,7 +59,7 @@ def checkLiouville(ell: ellipsoide.EllipsoidTriaxial, points):
pass
def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, maxM):
def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
"""
Panou, Korakitits 2020, 5ff.
:param ell:
@@ -69,6 +71,7 @@ def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, maxM):
:param maxM:
:return:
"""
x, y, z = point
x_m = [x]
y_m = [y]
z_m = [z]
@@ -78,7 +81,7 @@ def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, maxM):
n = np.array([x / sqrtH,
y / ((1-ell.ee**2) * sqrtH),
z / ((1-ell.ex**2) * sqrtH)])
u, v = ell.cart2para(x, y, z)
u, v = ell.cart2para(np.array([x, y, z]))
G = np.sqrt(1 - ell.ex**2 * np.cos(u)**2 - ell.ee**2 * np.sin(u)**2 * np.sin(v)**2)
q = np.array([-1/G * np.sin(u) * np.cos(v),
-1/G * np.sqrt(1-ell.ee**2) * np.sin(u) * np.sin(v),
@@ -139,23 +142,33 @@ def gha1_ana(ell: ellipsoide.EllipsoidTriaxial, x, y, z, alpha0, s, maxM):
if __name__ == "__main__":
ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978")
# ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978")
ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980")
ellbi = ellipsoide.EllipsoidTriaxial.init_name("Bessel-biaxial")
re = ellipsoide.EllipsoidBiaxial.init_name("Bessel")
x0 = 5672455.1954766
y0 = 2698193.7242382686
z0 = 1103177.6450055107
alpha0 = wu.gms2rad([20, 0, 0])
s = 500000
num = 100
werteTri = gha1_num(ellbi, x0, y0, z0, alpha0, s, num)
print(aus.xyz(werteTri[-1][1], werteTri[-1][3], werteTri[-1][5], 8))
print("Distanz Triaxial Numerisch", np.sqrt((x0-werteTri[-1][1])**2+(y0-werteTri[-1][3])**2+(z0-werteTri[-1][5])**2))
# checkLiouville(ell, werteTri)
werteBi = ghark.gha1(re, x0, y0, z0, alpha0, s, num)
print(aus.xyz(werteBi[0], werteBi[1], werteBi[2], 8))
print("Distanz Biaxial", np.sqrt((x0-werteBi[0])**2+(y0-werteBi[1])**2+(z0-werteBi[2])**2))
werteAna = gha1_ana(ell, x0, y0, z0, alpha0, s, 7)
print(aus.xyz(werteAna[0], werteAna[1], werteAna[2], 8))
print("Distanz Triaxial Analytisch", np.sqrt((x0-werteAna[0])**2+(y0-werteAna[1])**2+(z0-werteAna[2])**2))
# Panou 2013, 7, Table 1, beta0=60°
beta1 = wu.deg2rad(60)
lamb1 = wu.deg2rad(0)
beta2 = wu.deg2rad(60)
lamb2 = wu.deg2rad(175)
P1 = ell.ell2cart2(wu.deg2rad(60), wu.deg2rad(0))
P2 = ell.ell2cart2(wu.deg2rad(60), wu.deg2rad(175))
para1 = ell.cart2para(P1)
para2 = ell.cart2para(P2)
cart1 = ell.para2cart(para1[0], para1[1])
cart2 = ell.para2cart(para2[0], para2[1])
ell11 = ell.cart2ell2(P1)
ell21 = ell.cart2ell2(P2)
ell1 = ell.cart2ell2(cart1)
ell2 = ell.cart2ell2(cart2)
c = 0.06207487624
alpha0 = wu.gms2rad([2, 52, 26.2393])
alpha1 = wu.gms2rad([177, 4, 13.6373])
s = 6705715.1610
pass
P2_num = gha1_num(ell, P1, alpha0, s, 1000)
P2_ana = gha1_ana(ell, P1, alpha0, s, 70)
pass