Merge remote-tracking branch 'origin/main'
This commit is contained in:
@@ -1,364 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import plotly.graph_objects as go
|
|
||||||
from ellipsoide import EllipsoidTriaxial
|
|
||||||
|
|
||||||
|
|
||||||
def ell2cart(ell: EllipsoidTriaxial, beta, lamb):
|
|
||||||
x = ell.ax * np.cos(beta) * np.cos(lamb)
|
|
||||||
y = ell.ay * np.cos(beta) * np.sin(lamb)
|
|
||||||
z = ell.b * np.sin(beta)
|
|
||||||
return np.array([x, y, z], dtype=float)
|
|
||||||
|
|
||||||
|
|
||||||
def liouville(ell: EllipsoidTriaxial, beta, lamb, alpha):
|
|
||||||
k = (ell.Ee**2) / (ell.Ex**2)
|
|
||||||
c_sq = (np.cos(beta)**2 + k * np.sin(beta)**2) * np.sin(alpha)**2 \
|
|
||||||
+ k * np.cos(lamb)**2 * np.cos(alpha)**2
|
|
||||||
return c_sq
|
|
||||||
|
|
||||||
|
|
||||||
def normalize_angles(beta, lamb):
|
|
||||||
beta = np.clip(beta, -np.pi / 2.0, np.pi / 2.0)
|
|
||||||
lamb = (lamb + np.pi) % (2 * np.pi) - np.pi
|
|
||||||
return beta, lamb
|
|
||||||
|
|
||||||
|
|
||||||
def compute_azimuth(beta0: float, lamb0: float,
|
|
||||||
beta1: float, lamb1: float) -> float:
|
|
||||||
dlam = lamb1 - lamb0
|
|
||||||
y = np.cos(beta1) * np.sin(dlam)
|
|
||||||
x = np.cos(beta0) * np.sin(beta1) - np.sin(beta0) * np.cos(beta1) * np.cos(dlam)
|
|
||||||
alpha = np.arctan2(y, x)
|
|
||||||
return alpha
|
|
||||||
|
|
||||||
|
|
||||||
def sphere_forward_step(beta0: float,
|
|
||||||
lamb0: float,
|
|
||||||
alpha0: float,
|
|
||||||
s: float,
|
|
||||||
R: float) -> tuple[float, float]:
|
|
||||||
|
|
||||||
delta = s / R
|
|
||||||
sin_beta0 = np.sin(beta0)
|
|
||||||
cos_beta0 = np.cos(beta0)
|
|
||||||
|
|
||||||
sin_beta2 = sin_beta0 * np.cos(delta) + cos_beta0 * np.sin(delta) * np.cos(alpha0)
|
|
||||||
beta2 = np.arcsin(sin_beta2)
|
|
||||||
|
|
||||||
y = np.sin(alpha0) * np.sin(delta) * cos_beta0
|
|
||||||
x = np.cos(delta) - sin_beta0 * sin_beta2
|
|
||||||
dlam = np.arctan2(y, x)
|
|
||||||
lamb2 = lamb0 + dlam
|
|
||||||
|
|
||||||
beta2, lamb2 = normalize_angles(beta2, lamb2)
|
|
||||||
return beta2, lamb2
|
|
||||||
|
|
||||||
|
|
||||||
def local_step_objective(candidate: np.ndarray,
|
|
||||||
beta_start: float,
|
|
||||||
lamb_start: float,
|
|
||||||
alpha_prev: float,
|
|
||||||
c_target: float,
|
|
||||||
step_length: float,
|
|
||||||
ell: EllipsoidTriaxial,
|
|
||||||
beta_pred: float,
|
|
||||||
lamb_pred: float,
|
|
||||||
w_L: float = 5.0,
|
|
||||||
w_d: float = 5.0,
|
|
||||||
w_p: float = 2.0,
|
|
||||||
w_a: float = 2.0) -> float:
|
|
||||||
|
|
||||||
beta1, lamb1 = candidate
|
|
||||||
beta1, lamb1 = normalize_angles(beta1, lamb1)
|
|
||||||
|
|
||||||
P0 = ell2cart(ell, beta_start, lamb_start)
|
|
||||||
P1 = ell2cart(ell, beta1, lamb1)
|
|
||||||
d = np.linalg.norm(P1 - P0)
|
|
||||||
|
|
||||||
alpha1 = compute_azimuth(beta_start, lamb_start, beta1, lamb1)
|
|
||||||
|
|
||||||
c1 = liouville(ell, beta1, lamb1, alpha1)
|
|
||||||
J_L = (c1 - c_target) ** 2
|
|
||||||
|
|
||||||
J_d = (d - step_length) ** 2
|
|
||||||
|
|
||||||
d_beta = beta1 - beta_pred
|
|
||||||
d_lamb = lamb1 - lamb_pred
|
|
||||||
d_ang2 = d_beta**2 + (np.cos(beta_pred) * d_lamb)**2
|
|
||||||
J_p = d_ang2
|
|
||||||
|
|
||||||
d_alpha = np.arctan2(np.sin(alpha1 - alpha_prev),
|
|
||||||
np.cos(alpha1 - alpha_prev))
|
|
||||||
J_a = d_alpha**2
|
|
||||||
|
|
||||||
return w_L * J_L + w_d * J_d + w_p * J_p + w_a * J_a
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def ES_CMA_step(beta_start: float,
|
|
||||||
lamb_start: float,
|
|
||||||
alpha_prev: float,
|
|
||||||
c_target: float,
|
|
||||||
step_length: float,
|
|
||||||
ell: EllipsoidTriaxial,
|
|
||||||
beta_pred: float,
|
|
||||||
lamb_pred: float,
|
|
||||||
sigma0: float,
|
|
||||||
stopfitness: float = 1e-18) -> tuple[float, float]:
|
|
||||||
|
|
||||||
N = 2
|
|
||||||
xmean = np.array([beta_pred, lamb_pred], dtype=float)
|
|
||||||
sigma = sigma0
|
|
||||||
stopeval = int(400 * N**2)
|
|
||||||
|
|
||||||
lamb = 30
|
|
||||||
mu = 1
|
|
||||||
weights = np.array([1.0])
|
|
||||||
mueff = 1.0
|
|
||||||
|
|
||||||
cc = (4 + mueff / N) / (N + 4 + 2 * mueff / N)
|
|
||||||
cs = (mueff + 2) / (N + mueff + 5)
|
|
||||||
c1 = 2 / ((N + 1.3)**2 + mueff)
|
|
||||||
cmu = min(1 - c1,
|
|
||||||
2 * (mueff - 2 + 1/mueff) / ((N + 2)**2 + mueff))
|
|
||||||
damps = 1 + 2 * max(0, np.sqrt((mueff - 1) / (N + 1)) - 1) + cs
|
|
||||||
|
|
||||||
pc = np.zeros(N)
|
|
||||||
ps = np.zeros(N)
|
|
||||||
B = np.eye(N)
|
|
||||||
D = np.eye(N)
|
|
||||||
C = B @ D @ (B @ D).T
|
|
||||||
eigeneval = 0
|
|
||||||
chiN = np.sqrt(N) * (1 - 1 / (4 * N) + 1 / (21 * N**2))
|
|
||||||
|
|
||||||
counteval = 0
|
|
||||||
arx = np.zeros((N, lamb))
|
|
||||||
arz = np.zeros((N, lamb))
|
|
||||||
arfitness = np.zeros(lamb)
|
|
||||||
|
|
||||||
while counteval < stopeval:
|
|
||||||
for k in range(lamb):
|
|
||||||
arz[:, k] = np.random.randn(N)
|
|
||||||
arx[:, k] = xmean + sigma * (B @ D @ arz[:, k])
|
|
||||||
|
|
||||||
arfitness[k] = local_step_objective(
|
|
||||||
arx[:, k],
|
|
||||||
beta_start, lamb_start,
|
|
||||||
alpha_prev,
|
|
||||||
c_target,
|
|
||||||
step_length,
|
|
||||||
ell,
|
|
||||||
beta_pred, lamb_pred
|
|
||||||
)
|
|
||||||
counteval += 1
|
|
||||||
|
|
||||||
idx = np.argsort(arfitness)
|
|
||||||
arfitness = arfitness[idx]
|
|
||||||
arindex = idx
|
|
||||||
|
|
||||||
xold = xmean.copy()
|
|
||||||
xmean = arx[:, arindex[:mu]] @ weights
|
|
||||||
zmean = arz[:, arindex[:mu]] @ weights
|
|
||||||
|
|
||||||
ps = (1 - cs) * ps + np.sqrt(cs * (2 - cs) * mueff) * (B @ zmean)
|
|
||||||
norm_ps = np.linalg.norm(ps)
|
|
||||||
hsig = norm_ps / np.sqrt(1 - (1 - cs)**(2 * counteval / lamb)) / chiN < 1.4 + 2 / (N + 1)
|
|
||||||
hsig = 1.0 if hsig else 0.0
|
|
||||||
pc = (1 - cc) * pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * (B @ D @ zmean)
|
|
||||||
|
|
||||||
BDz = B @ D @ arz[:, arindex[:mu]]
|
|
||||||
C = (1 - c1 - cmu) * C \
|
|
||||||
+ c1 * (np.outer(pc, pc) + (1 - hsig) * cc * (2 - cc) * C) \
|
|
||||||
+ cmu * BDz @ np.diag(weights) @ BDz.T
|
|
||||||
|
|
||||||
sigma = sigma * np.exp((cs / damps) * (norm_ps / chiN - 1))
|
|
||||||
|
|
||||||
if counteval - eigeneval > lamb / ((c1 + cmu) * N * 10):
|
|
||||||
eigeneval = counteval
|
|
||||||
C = (C + C.T) / 2.0
|
|
||||||
eigvals, B = np.linalg.eigh(C)
|
|
||||||
D = np.diag(np.sqrt(np.maximum(eigvals, 1e-20)))
|
|
||||||
|
|
||||||
if arfitness[0] <= stopfitness:
|
|
||||||
break
|
|
||||||
|
|
||||||
xmin = arx[:, arindex[0]]
|
|
||||||
beta1, lamb1 = normalize_angles(xmin[0], xmin[1])
|
|
||||||
return beta1, lamb1
|
|
||||||
|
|
||||||
|
|
||||||
def march_geodesic(beta1: float,
|
|
||||||
lamb1: float,
|
|
||||||
alpha1: float,
|
|
||||||
S_total: float,
|
|
||||||
step_length: float,
|
|
||||||
ell: EllipsoidTriaxial):
|
|
||||||
|
|
||||||
beta_curr = beta1
|
|
||||||
lamb_curr = lamb1
|
|
||||||
alpha_curr = alpha1
|
|
||||||
|
|
||||||
betas = [beta_curr]
|
|
||||||
lambs = [lamb_curr]
|
|
||||||
alphas = [alpha_curr]
|
|
||||||
|
|
||||||
c_target = liouville(ell, beta_curr, lamb_curr, alpha_curr)
|
|
||||||
|
|
||||||
total_distance = 0.0
|
|
||||||
R_sphere = ell.ax
|
|
||||||
sigma0 = 1e-10
|
|
||||||
|
|
||||||
while total_distance < S_total - 1e-6:
|
|
||||||
remaining = S_total - total_distance
|
|
||||||
this_step = min(step_length, remaining)
|
|
||||||
|
|
||||||
beta_pred, lamb_pred = sphere_forward_step(
|
|
||||||
beta_curr, lamb_curr, alpha_curr,
|
|
||||||
this_step, R_sphere
|
|
||||||
)
|
|
||||||
|
|
||||||
beta_next, lamb_next = ES_CMA_step(
|
|
||||||
beta_curr, lamb_curr, alpha_curr,
|
|
||||||
c_target,
|
|
||||||
this_step,
|
|
||||||
ell,
|
|
||||||
beta_pred,
|
|
||||||
lamb_pred,
|
|
||||||
sigma0=sigma0
|
|
||||||
)
|
|
||||||
|
|
||||||
P_curr = ell2cart(ell, beta_curr, lamb_curr)
|
|
||||||
P_next = ell2cart(ell, beta_next, lamb_next)
|
|
||||||
d_step = np.linalg.norm(P_next - P_curr)
|
|
||||||
total_distance += d_step
|
|
||||||
|
|
||||||
alpha_next = compute_azimuth(beta_curr, lamb_curr, beta_next, lamb_next)
|
|
||||||
|
|
||||||
beta_curr, lamb_curr, alpha_curr = beta_next, lamb_next, alpha_next
|
|
||||||
betas.append(beta_curr)
|
|
||||||
lambs.append(lamb_curr)
|
|
||||||
alphas.append(alpha_curr)
|
|
||||||
|
|
||||||
return np.array(betas), np.array(lambs), np.array(alphas), total_distance
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
|
||||||
|
|
||||||
beta1 = np.deg2rad(10.0)
|
|
||||||
lamb1 = np.deg2rad(10.0)
|
|
||||||
alpha1 = 0.7494562507041596 # Ergebnis 20°, 20°
|
|
||||||
|
|
||||||
STEP_LENGTH = 500.0
|
|
||||||
S_total = 1542703.1458877102
|
|
||||||
|
|
||||||
betas, lambs, alphas, S_real = march_geodesic(
|
|
||||||
beta1, lamb1, alpha1,
|
|
||||||
S_total,
|
|
||||||
STEP_LENGTH,
|
|
||||||
ell
|
|
||||||
)
|
|
||||||
|
|
||||||
print("Anzahl Schritte:", len(betas) - 1)
|
|
||||||
print("Resultierende Gesamtstrecke (Chord, Ellipsoid):", S_real, "m")
|
|
||||||
print("Letzter Punkt (beta, lambda) in Grad:",
|
|
||||||
np.rad2deg(betas[-1]), np.rad2deg(lambs[-1]))
|
|
||||||
|
|
||||||
def plot_geodesic_3d(ell: EllipsoidTriaxial,
|
|
||||||
betas: np.ndarray,
|
|
||||||
lambs: np.ndarray,
|
|
||||||
n_beta: int = 60,
|
|
||||||
n_lamb: int = 120):
|
|
||||||
|
|
||||||
beta_grid = np.linspace(-np.pi/2, np.pi/2, n_beta)
|
|
||||||
lamb_grid = np.linspace(-np.pi, np.pi, n_lamb)
|
|
||||||
B, L = np.meshgrid(beta_grid, lamb_grid, indexing="ij")
|
|
||||||
|
|
||||||
Xs = ell.ax * np.cos(B) * np.cos(L)
|
|
||||||
Ys = ell.ay * np.cos(B) * np.sin(L)
|
|
||||||
Zs = ell.b * np.sin(B)
|
|
||||||
|
|
||||||
Xp = ell.ax * np.cos(betas) * np.cos(lambs)
|
|
||||||
Yp = ell.ay * np.cos(betas) * np.sin(lambs)
|
|
||||||
Zp = ell.b * np.sin(betas)
|
|
||||||
|
|
||||||
fig = go.Figure()
|
|
||||||
|
|
||||||
fig.add_trace(
|
|
||||||
go.Surface(
|
|
||||||
x=Xs,
|
|
||||||
y=Ys,
|
|
||||||
z=Zs,
|
|
||||||
opacity=0.6,
|
|
||||||
showscale=False,
|
|
||||||
colorscale="Viridis",
|
|
||||||
name="Ellipsoid"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter3d(
|
|
||||||
x=Xp,
|
|
||||||
y=Yp,
|
|
||||||
z=Zp,
|
|
||||||
mode="lines+markers",
|
|
||||||
line=dict(width=5, color="red"),
|
|
||||||
marker=dict(size=4, color="black"),
|
|
||||||
name="ES-CMA Schritte"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter3d(
|
|
||||||
x=[Xp[0]], y=[Yp[0]], z=[Zp[0]],
|
|
||||||
mode="markers",
|
|
||||||
marker=dict(size=6, color="green"),
|
|
||||||
name="Start"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter3d(
|
|
||||||
x=[Xp[-1]], y=[Yp[-1]], z=[Zp[-1]],
|
|
||||||
mode="markers",
|
|
||||||
marker=dict(size=6, color="blue"),
|
|
||||||
name="Ende"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.update_layout(
|
|
||||||
title="ES-CMA",
|
|
||||||
scene=dict(
|
|
||||||
xaxis_title="X [m]",
|
|
||||||
yaxis_title="Y [m]",
|
|
||||||
zaxis_title="Z [m]",
|
|
||||||
aspectmode="data"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.show()
|
|
||||||
|
|
||||||
plot_geodesic_3d(ell, betas, lambs)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -1,120 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
from ellipsoide import EllipsoidTriaxial
|
|
||||||
from panou import louville_constant, func_sigma_ell, gha1_ana
|
|
||||||
import plotly.graph_objects as go
|
|
||||||
import winkelumrechnungen as wu
|
|
||||||
from numpy import sin, cos, arccos
|
|
||||||
|
|
||||||
def Bogenlaenge(P1: NDArray, P2: NDArray) -> float:
|
|
||||||
"""
|
|
||||||
Berechnung der mittleren Bogenlänge zwischen zwei kartesischen Punkten
|
|
||||||
:param P1: kartesische Koordinate Punkt 1
|
|
||||||
:param P2: kartesische Koordinate Punkt 2
|
|
||||||
:return: Bogenlänge s
|
|
||||||
"""
|
|
||||||
R1 = np.linalg.norm(P1)
|
|
||||||
R2 = np.linalg.norm(P2)
|
|
||||||
R = 0.5 * (R1 + R2)
|
|
||||||
if P1 @ P2 / (R1 * R2) > 1:
|
|
||||||
s = np.linalg.norm(P1 - P2)
|
|
||||||
else:
|
|
||||||
theta = arccos(P1 @ P2 / (R1 * R2))
|
|
||||||
s = float(R * theta)
|
|
||||||
return s
|
|
||||||
|
|
||||||
def gha1_approx2(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray]:
|
|
||||||
"""
|
|
||||||
Berechung einer Näherungslösung der ersten Hauptaufgabe
|
|
||||||
:param ell: Ellipsoid
|
|
||||||
:param p0: Anfangspunkt
|
|
||||||
:param alpha0: Azimut im Anfangspunkt
|
|
||||||
:param s: Strecke bis zum Endpunkt
|
|
||||||
:param ds: Länge einzelner Streckenelemente
|
|
||||||
:param all_points: Ausgabe aller Punkte als Array?
|
|
||||||
:return: Endpunkt, Azimut im Endpunkt, optional alle Punkte
|
|
||||||
"""
|
|
||||||
l0 = louville_constant(ell, p0, alpha0)
|
|
||||||
points = [p0]
|
|
||||||
alphas = [alpha0]
|
|
||||||
s_curr = 0.0
|
|
||||||
|
|
||||||
while s_curr < s:
|
|
||||||
ds_target = min(ds, s - s_curr)
|
|
||||||
if ds_target < 1e-8:
|
|
||||||
break
|
|
||||||
|
|
||||||
p1 = points[-1]
|
|
||||||
alpha1 = alphas[-1]
|
|
||||||
alpha1_mid = alphas[-1]
|
|
||||||
p2 = points[-1]
|
|
||||||
alpha2 = alphas[-1]
|
|
||||||
|
|
||||||
i = 0
|
|
||||||
while i < 2:
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
sigma = func_sigma_ell(ell, p1, alpha1_mid)
|
|
||||||
p2_new = p1 + ds_target * sigma
|
|
||||||
p2_new = ell.point_onto_ellipsoid(p2_new)
|
|
||||||
p2 = p2_new
|
|
||||||
|
|
||||||
j = 0
|
|
||||||
while j < 2:
|
|
||||||
j += 1
|
|
||||||
|
|
||||||
dalpha = 1e-6
|
|
||||||
l2 = louville_constant(ell, p2, alpha2)
|
|
||||||
dl_dalpha = (louville_constant(ell, p2, alpha2 + dalpha) - l2) / dalpha
|
|
||||||
alpha2_new = alpha2 + (l0 - l2) / dl_dalpha
|
|
||||||
alpha2 = alpha2_new
|
|
||||||
|
|
||||||
alpha1_mid = (alpha1 + alpha2) / 2
|
|
||||||
|
|
||||||
points.append(p2)
|
|
||||||
alphas.append(alpha2)
|
|
||||||
|
|
||||||
ds_actual = np.linalg.norm(p2 - p1)
|
|
||||||
s_curr += ds_actual
|
|
||||||
if s_curr > 10000000:
|
|
||||||
pass
|
|
||||||
|
|
||||||
if all_points:
|
|
||||||
return points[-1], alphas[-1], np.array(points)
|
|
||||||
else:
|
|
||||||
return points[-1], alphas[-1]
|
|
||||||
|
|
||||||
def show_points(points: NDArray, p0: NDArray, p1: NDArray):
|
|
||||||
"""
|
|
||||||
Anzeigen der Punkte
|
|
||||||
:param points: Array aller approximierten Punkte
|
|
||||||
:param p0: Startpunkt
|
|
||||||
:param p1: wahrer Endpunkt
|
|
||||||
"""
|
|
||||||
fig = go.Figure()
|
|
||||||
|
|
||||||
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
|
|
||||||
mode='lines', line=dict(color="red", width=3), name="Approx")
|
|
||||||
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
|
|
||||||
mode='markers', marker=dict(color="green"), name="P0")
|
|
||||||
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
|
|
||||||
mode='markers', marker=dict(color="green"), name="P1")
|
|
||||||
|
|
||||||
fig.update_layout(
|
|
||||||
scene=dict(xaxis_title='X [km]',
|
|
||||||
yaxis_title='Y [km]',
|
|
||||||
zaxis_title='Z [km]',
|
|
||||||
aspectmode='data'),
|
|
||||||
title="CHAMP")
|
|
||||||
|
|
||||||
fig.show()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
|
||||||
P0 = ell.para2cart(0.2, 0.3)
|
|
||||||
alpha0 = wu.deg2rad(35)
|
|
||||||
s = 13000000
|
|
||||||
P1_app, alpha1_app, points = gha1_approx2(ell, P0, alpha0, s, ds=10000, all_points=True)
|
|
||||||
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=60, maxPartCircum=16)
|
|
||||||
show_points(points, P0, P1_ana)
|
|
||||||
print(np.linalg.norm(P1_app - P1_ana))
|
|
||||||
136
GHA_triaxial/gha1_ana.py
Normal file
136
GHA_triaxial/gha1_ana.py
Normal file
@@ -0,0 +1,136 @@
|
|||||||
|
from math import comb
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from numpy import sin, cos, arctan2
|
||||||
|
from numpy._typing import NDArray
|
||||||
|
from scipy.special import factorial as fact
|
||||||
|
|
||||||
|
from ellipsoide import EllipsoidTriaxial
|
||||||
|
from GHA_triaxial.utils import pq_para
|
||||||
|
|
||||||
|
|
||||||
|
def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int) -> Tuple[NDArray, float]:
|
||||||
|
"""
|
||||||
|
Panou, Korakitits 2020, 5ff.
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
|
:param alpha0: Azimut im Startpunkt
|
||||||
|
:param s: Strecke
|
||||||
|
:param maxM: maximale Ordnung
|
||||||
|
:return: Zwischenpunkt, Azimut im Zwischenpunkt
|
||||||
|
"""
|
||||||
|
x, y, z = point
|
||||||
|
|
||||||
|
# S. 6
|
||||||
|
x_m = [x]
|
||||||
|
y_m = [y]
|
||||||
|
z_m = [z]
|
||||||
|
|
||||||
|
p, q = pq_para(ell, point)
|
||||||
|
|
||||||
|
# 48-50
|
||||||
|
x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
|
||||||
|
y_m.append(p[1] * sin(alpha0) + q[1] * cos(alpha0))
|
||||||
|
z_m.append(p[2] * sin(alpha0) + q[2] * cos(alpha0))
|
||||||
|
|
||||||
|
# 34
|
||||||
|
H_ = lambda p: np.sum([comb(p, p - i) * (x_m[p - i] * x_m[i] +
|
||||||
|
1 / (1 - ell.ee ** 2) ** 2 * y_m[p - i] * y_m[i] +
|
||||||
|
1 / (1 - ell.ex ** 2) ** 2 * z_m[p - i] * z_m[i])
|
||||||
|
for i in range(0, p + 1)])
|
||||||
|
|
||||||
|
# 35
|
||||||
|
h_ = lambda q: np.sum([comb(q, q-j) * (x_m[q-j+1] * x_m[j+1] +
|
||||||
|
1 / (1 - ell.ee ** 2) * y_m[q-j+1] * y_m[j+1] +
|
||||||
|
1 / (1 - ell.ex ** 2) * z_m[q-j+1] * z_m[j+1])
|
||||||
|
for j in range(0, q+1)])
|
||||||
|
|
||||||
|
# 31
|
||||||
|
hH_ = lambda t: 1/H_(0) * (h_(t) - np.sum([comb(t, l-1) * H_(t+1-l) * hH_t[l-1] for l in range(1, t+1)]))
|
||||||
|
|
||||||
|
# 28-30
|
||||||
|
x_ = lambda m: - np.sum([comb(m-2, k) * hH_t[m-2-k] * x_m[k] for k in range(0, m-2+1)])
|
||||||
|
y_ = lambda m: -1 / (1-ell.ee**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * y_m[k] for k in range(0, m-2+1)])
|
||||||
|
z_ = lambda m: -1 / (1-ell.ex**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * z_m[k] for k in range(0, m-2+1)])
|
||||||
|
|
||||||
|
hH_t = []
|
||||||
|
a_m = []
|
||||||
|
b_m = []
|
||||||
|
c_m = []
|
||||||
|
for m in range(0, maxM+1):
|
||||||
|
if m >= 2:
|
||||||
|
hH_t.append(hH_(m-2))
|
||||||
|
x_m.append(x_(m))
|
||||||
|
y_m.append(y_(m))
|
||||||
|
z_m.append(z_(m))
|
||||||
|
fact_m = fact(m)
|
||||||
|
|
||||||
|
# 22-24
|
||||||
|
a_m.append(x_m[m] / fact_m)
|
||||||
|
b_m.append(y_m[m] / fact_m)
|
||||||
|
c_m.append(z_m[m] / fact_m)
|
||||||
|
|
||||||
|
# 19-21
|
||||||
|
x_s = 0
|
||||||
|
for a in reversed(a_m):
|
||||||
|
x_s = x_s * s + a
|
||||||
|
y_s = 0
|
||||||
|
for b in reversed(b_m):
|
||||||
|
y_s = y_s * s + b
|
||||||
|
z_s = 0
|
||||||
|
for c in reversed(c_m):
|
||||||
|
z_s = z_s * s + c
|
||||||
|
|
||||||
|
p1 = np.array([x_s, y_s, z_s])
|
||||||
|
p_s, q_s = pq_para(ell, p1)
|
||||||
|
|
||||||
|
# 57-59
|
||||||
|
dx_s = 0
|
||||||
|
for i, a in reversed(list(enumerate(a_m[1:], start=1))):
|
||||||
|
dx_s = dx_s * s + i * a
|
||||||
|
|
||||||
|
dy_s = 0
|
||||||
|
for i, b in reversed(list(enumerate(b_m[1:], start=1))):
|
||||||
|
dy_s = dy_s * s + i * b
|
||||||
|
|
||||||
|
dz_s = 0
|
||||||
|
for i, c in reversed(list(enumerate(c_m[1:], start=1))):
|
||||||
|
dz_s = dz_s * s + i * c
|
||||||
|
|
||||||
|
# 52-53
|
||||||
|
sigma = np.array([dx_s, dy_s, dz_s])
|
||||||
|
P = float(p_s @ sigma)
|
||||||
|
Q = float(q_s @ sigma)
|
||||||
|
|
||||||
|
# 51
|
||||||
|
alpha1 = arctan2(P, Q)
|
||||||
|
|
||||||
|
if alpha1 < 0:
|
||||||
|
alpha1 += 2 * np.pi
|
||||||
|
|
||||||
|
return p1, alpha1
|
||||||
|
|
||||||
|
|
||||||
|
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 16) -> Tuple[NDArray, float]:
|
||||||
|
"""
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
|
:param alpha0: Azimut im Startpunkt
|
||||||
|
:param s: Strecke
|
||||||
|
:param maxM: maximale Ordnung
|
||||||
|
:param maxPartCircum: maximale Aufteilung (1/x halber Ellipsoidumfang)
|
||||||
|
:return: Zielpunkt, Azimut im Zielpunkt
|
||||||
|
"""
|
||||||
|
if s > np.pi / maxPartCircum * ell.ax:
|
||||||
|
s /= 2
|
||||||
|
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
|
||||||
|
point_end, alpha_end = gha1_ana(ell, point_step, alpha_step, s, maxM, maxPartCircum)
|
||||||
|
else:
|
||||||
|
point_end, alpha_end = gha1_ana_step(ell, point, alpha0, s, maxM)
|
||||||
|
|
||||||
|
_, _, h = ell.cart2geod(point_end, "ligas3")
|
||||||
|
if h > 1e-5:
|
||||||
|
raise Exception("Analytische Methode ist explodiert, Punkt liegt nicht mehr auf dem Ellipsoid")
|
||||||
|
|
||||||
|
return point_end, alpha_end
|
||||||
@@ -1,6 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from ellipsoide import EllipsoidTriaxial
|
from ellipsoide import EllipsoidTriaxial
|
||||||
from GHA_triaxial.panou import louville_constant, func_sigma_ell, gha1_ana
|
from GHA_triaxial.gha1_ana import gha1_ana
|
||||||
|
from GHA_triaxial.utils import func_sigma_ell, louville_constant
|
||||||
import plotly.graph_objects as go
|
import plotly.graph_objects as go
|
||||||
import winkelumrechnungen as wu
|
import winkelumrechnungen as wu
|
||||||
|
|
||||||
129
GHA_triaxial/gha1_num.py
Normal file
129
GHA_triaxial/gha1_num.py
Normal file
@@ -0,0 +1,129 @@
|
|||||||
|
import numpy as np
|
||||||
|
from numpy import sin, cos, arctan2
|
||||||
|
import ellipsoide
|
||||||
|
import runge_kutta as rk
|
||||||
|
import winkelumrechnungen as wu
|
||||||
|
import GHA_triaxial.numeric_examples_karney as ne_karney
|
||||||
|
from GHA_triaxial.gha1_ana import gha1_ana
|
||||||
|
from ellipsoide import EllipsoidTriaxial
|
||||||
|
from typing import Callable, Tuple, List
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
|
||||||
|
from GHA_triaxial.utils import alpha_ell2para, pq_ell
|
||||||
|
|
||||||
|
|
||||||
|
def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, num: int, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, List]:
|
||||||
|
"""
|
||||||
|
Panou, Korakitits 2019
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
|
:param alpha0: Azimut im Startpunkt
|
||||||
|
:param s: Strecke
|
||||||
|
:param num: Anzahl Zwischenpunkte
|
||||||
|
:param all_points: Ausgabe aller Punkte?
|
||||||
|
:return: Zielpunkt, Azimut im Zielpunkt (, alle Punkte)
|
||||||
|
"""
|
||||||
|
phi, lam, _ = ell.cart2geod(point, "ligas3")
|
||||||
|
p0 = ell.geod2cart(phi, lam, 0)
|
||||||
|
x0, y0, z0 = p0
|
||||||
|
|
||||||
|
p, q = pq_ell(ell, p0)
|
||||||
|
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
|
||||||
|
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
|
||||||
|
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
|
||||||
|
|
||||||
|
v_init = np.array([x0, dxds0, y0, dyds0, z0, dzds0])
|
||||||
|
|
||||||
|
def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
||||||
|
"""
|
||||||
|
Aufbau des DGL-Systems
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:return: DGL-System
|
||||||
|
"""
|
||||||
|
|
||||||
|
def ODE(s: float, v: NDArray) -> NDArray:
|
||||||
|
"""
|
||||||
|
DGL-System
|
||||||
|
:param s: unabhängige Variable
|
||||||
|
:param v: abhängige Variablen
|
||||||
|
:return: Ableitungen der abhängigen Variablen
|
||||||
|
"""
|
||||||
|
x, dxds, y, dyds, z, dzds = v
|
||||||
|
|
||||||
|
H = ell.func_H(np.array([x, y, z]))
|
||||||
|
h = dxds ** 2 + 1 / (1 - ell.ee ** 2) * dyds ** 2 + 1 / (1 - ell.ex ** 2) * dzds ** 2
|
||||||
|
|
||||||
|
ddx = -(h / H) * x
|
||||||
|
ddy = -(h / H) * y / (1 - ell.ee ** 2)
|
||||||
|
ddz = -(h / H) * z / (1 - ell.ex ** 2)
|
||||||
|
|
||||||
|
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
|
||||||
|
|
||||||
|
return ODE
|
||||||
|
|
||||||
|
ode = buildODE(ell)
|
||||||
|
|
||||||
|
_, werte = rk.rk4(ode, 0, v_init, s, num)
|
||||||
|
x1, dx1ds, y1, dy1ds, z1, dz1ds = werte[-1]
|
||||||
|
|
||||||
|
point1 = np.array([x1, y1, z1])
|
||||||
|
|
||||||
|
p1, q1 = pq_ell(ell, point1)
|
||||||
|
sigma = np.array([dx1ds, dy1ds, dz1ds])
|
||||||
|
P = float(p1 @ sigma)
|
||||||
|
Q = float(q1 @ sigma)
|
||||||
|
|
||||||
|
alpha1 = arctan2(P, Q)
|
||||||
|
|
||||||
|
if alpha1 < 0:
|
||||||
|
alpha1 += 2 * np.pi
|
||||||
|
|
||||||
|
if all_points:
|
||||||
|
return point1, alpha1, werte
|
||||||
|
else:
|
||||||
|
return point1, alpha1
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
# ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||||
|
# diffs_panou = []
|
||||||
|
# examples_panou = ne_panou.get_random_examples(5)
|
||||||
|
# for example in examples_panou:
|
||||||
|
# beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
|
||||||
|
# P0 = ell.ell2cart(beta0, lamb0)
|
||||||
|
#
|
||||||
|
# P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 100)
|
||||||
|
# beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||||
|
#
|
||||||
|
# _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
||||||
|
# P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 60)
|
||||||
|
# beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
||||||
|
# diffs_panou.append((abs(beta1-beta1_num), abs(lamb1-lamb1_num), abs(beta1-beta1_ana), abs(lamb1-lamb1_ana)))
|
||||||
|
# diffs_panou = np.array(diffs_panou)
|
||||||
|
# mask_360 = (diffs_panou > 359) & (diffs_panou < 361)
|
||||||
|
# diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
|
||||||
|
# print(diffs_panou)
|
||||||
|
|
||||||
|
ell: EllipsoidTriaxial = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
|
||||||
|
diffs_karney = []
|
||||||
|
# examples_karney = ne_karney.get_examples((30499, 30500, 40500))
|
||||||
|
examples_karney = ne_karney.get_random_examples(20)
|
||||||
|
for example in examples_karney:
|
||||||
|
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
|
||||||
|
P0 = ell.ell2cart(beta0, lamb0)
|
||||||
|
|
||||||
|
P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 10000)
|
||||||
|
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||||
|
|
||||||
|
try:
|
||||||
|
_, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
||||||
|
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 45, maxPartCircum=32)
|
||||||
|
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
||||||
|
except:
|
||||||
|
beta1_ana, lamb1_ana = np.inf, np.inf
|
||||||
|
|
||||||
|
diffs_karney.append((wu.rad2deg(abs(beta1-beta1_num)), wu.rad2deg(abs(lamb1-lamb1_num)), wu.rad2deg(abs(beta1-beta1_ana)), wu.rad2deg(abs(lamb1-lamb1_ana))))
|
||||||
|
diffs_karney = np.array(diffs_karney)
|
||||||
|
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
|
||||||
|
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
|
||||||
|
print(diffs_karney)
|
||||||
@@ -1,11 +1,10 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from numpy import arccos
|
|
||||||
from Hansen_ES_CMA import escma
|
from Hansen_ES_CMA import escma
|
||||||
from ellipsoide import EllipsoidTriaxial
|
from ellipsoide import EllipsoidTriaxial
|
||||||
from numpy.typing import NDArray
|
from numpy.typing import NDArray
|
||||||
import plotly.graph_objects as go
|
import plotly.graph_objects as go
|
||||||
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
|
from GHA_triaxial.gha2_num import gha2_num
|
||||||
from utils import sigma2alpha
|
from GHA_triaxial.utils import sigma2alpha
|
||||||
|
|
||||||
ell_ES: EllipsoidTriaxial = None
|
ell_ES: EllipsoidTriaxial = None
|
||||||
P_left: NDArray = None
|
P_left: NDArray = None
|
||||||
@@ -1,12 +1,12 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from ellipsoide import EllipsoidTriaxial
|
from ellipsoide import EllipsoidTriaxial
|
||||||
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
|
from GHA_triaxial.gha2_num import gha2_num
|
||||||
import plotly.graph_objects as go
|
import plotly.graph_objects as go
|
||||||
import winkelumrechnungen as wu
|
import winkelumrechnungen as wu
|
||||||
from numpy.typing import NDArray
|
from numpy.typing import NDArray
|
||||||
from typing import Tuple
|
from typing import Tuple
|
||||||
|
|
||||||
from utils import sigma2alpha
|
from GHA_triaxial.utils import sigma2alpha
|
||||||
|
|
||||||
|
|
||||||
def gha2_approx(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]:
|
def gha2_approx(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]:
|
||||||
@@ -1,365 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
from numpy import sin, cos, sqrt, arctan2
|
|
||||||
import ellipsoide
|
|
||||||
import runge_kutta as rk
|
|
||||||
import winkelumrechnungen as wu
|
|
||||||
from scipy.special import factorial as fact
|
|
||||||
from math import comb
|
|
||||||
import GHA_triaxial.numeric_examples_panou as ne_panou
|
|
||||||
import GHA_triaxial.numeric_examples_karney as ne_karney
|
|
||||||
from ellipsoide import EllipsoidTriaxial
|
|
||||||
from typing import Callable, Tuple, List
|
|
||||||
from numpy.typing import NDArray
|
|
||||||
|
|
||||||
|
|
||||||
def pq_ell(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
|
|
||||||
"""
|
|
||||||
Berechnung von p und q in elliptischen Koordinaten
|
|
||||||
Panou, Korakitits 2019
|
|
||||||
:param ell: Ellipsoid
|
|
||||||
:param point: Punkt
|
|
||||||
:return: p und q
|
|
||||||
"""
|
|
||||||
x, y, z = point
|
|
||||||
n = ell.func_n(point)
|
|
||||||
|
|
||||||
beta, lamb = ell.cart2ell(point)
|
|
||||||
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
|
|
||||||
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
|
|
||||||
|
|
||||||
c1 = x ** 2 + y ** 2 + z ** 2 - (ell.ax ** 2 + ell.ay ** 2 + ell.b ** 2)
|
|
||||||
c0 = (ell.ax ** 2 * ell.ay ** 2 + ell.ax ** 2 * ell.b ** 2 + ell.ay ** 2 * ell.b ** 2 -
|
|
||||||
(ell.ay ** 2 + ell.b ** 2) * x ** 2 - (ell.ax ** 2 + ell.b ** 2) * y ** 2 - (
|
|
||||||
ell.ax ** 2 + ell.ay ** 2) * z ** 2)
|
|
||||||
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
|
|
||||||
|
|
||||||
F = ell.Ey ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(lamb) ** 2
|
|
||||||
p1 = -sqrt(L / (F * t2)) * ell.ax / ell.Ex * sqrt(B) * sin(lamb)
|
|
||||||
p2 = sqrt(L / (F * t2)) * ell.ay * cos(beta) * cos(lamb)
|
|
||||||
p3 = 1 / sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * sin(beta) * sin(2 * lamb)
|
|
||||||
p = np.array([p1, p2, p3])
|
|
||||||
p = p / np.linalg.norm(p)
|
|
||||||
q = np.array([n[1] * p[2] - n[2] * p[1],
|
|
||||||
n[2] * p[0] - n[0] * p[2],
|
|
||||||
n[0] * p[1] - n[1] * p[0]])
|
|
||||||
q = q / np.linalg.norm(q)
|
|
||||||
|
|
||||||
return p, q
|
|
||||||
|
|
||||||
def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
|
||||||
"""
|
|
||||||
Aufbau des DGL-Systems
|
|
||||||
:param ell: Ellipsoid
|
|
||||||
:return: DGL-System
|
|
||||||
"""
|
|
||||||
def ODE(s: float, v: NDArray) -> NDArray:
|
|
||||||
"""
|
|
||||||
DGL-System
|
|
||||||
:param s: unabhängige Variable
|
|
||||||
:param v: abhängige Variablen
|
|
||||||
:return: Ableitungen der abhängigen Variablen
|
|
||||||
"""
|
|
||||||
x, dxds, y, dyds, z, dzds = v
|
|
||||||
|
|
||||||
H = ell.func_H(np.array([x, y, z]))
|
|
||||||
h = dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
|
|
||||||
|
|
||||||
ddx = -(h/H)*x
|
|
||||||
ddy = -(h/H)*y/(1-ell.ee**2)
|
|
||||||
ddz = -(h/H)*z/(1-ell.ex**2)
|
|
||||||
|
|
||||||
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
|
|
||||||
return ODE
|
|
||||||
|
|
||||||
def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, num: int, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, List]:
|
|
||||||
"""
|
|
||||||
Panou, Korakitits 2019
|
|
||||||
:param ell:
|
|
||||||
:param point:
|
|
||||||
:param alpha0:
|
|
||||||
:param s:
|
|
||||||
:param num:
|
|
||||||
:param all_points:
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
phi, lam, _ = ell.cart2geod(point, "ligas3")
|
|
||||||
p0 = ell.geod2cart(phi, lam, 0)
|
|
||||||
x0, y0, z0 = p0
|
|
||||||
|
|
||||||
p, q = pq_ell(ell, p0)
|
|
||||||
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
|
|
||||||
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
|
|
||||||
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
|
|
||||||
|
|
||||||
v_init = np.array([x0, dxds0, y0, dyds0, z0, dzds0])
|
|
||||||
|
|
||||||
ode = buildODE(ell)
|
|
||||||
|
|
||||||
_, werte = rk.rk4(ode, 0, v_init, s, num)
|
|
||||||
x1, dx1ds, y1, dy1ds, z1, dz1ds = werte[-1]
|
|
||||||
|
|
||||||
point1 = np.array([x1, y1, z1])
|
|
||||||
|
|
||||||
p1, q1 = pq_ell(ell, point1)
|
|
||||||
sigma = np.array([dx1ds, dy1ds, dz1ds])
|
|
||||||
P = float(p1 @ sigma)
|
|
||||||
Q = float(q1 @ sigma)
|
|
||||||
|
|
||||||
alpha1 = arctan2(P, Q)
|
|
||||||
|
|
||||||
if alpha1 < 0:
|
|
||||||
alpha1 += 2 * np.pi
|
|
||||||
|
|
||||||
if all_points:
|
|
||||||
return point1, alpha1, werte
|
|
||||||
else:
|
|
||||||
return point1, alpha1
|
|
||||||
|
|
||||||
# ---------------------------------------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
def pq_para(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
|
|
||||||
"""
|
|
||||||
Berechnung von p und q in parametrischen Koordinaten
|
|
||||||
Panou, Korakitits 2020
|
|
||||||
:param ell: Ellipsoid
|
|
||||||
:param point: Punkt
|
|
||||||
:return: p und q
|
|
||||||
"""
|
|
||||||
n = ell.func_n(point)
|
|
||||||
u, v = ell.cart2para(point)
|
|
||||||
|
|
||||||
# 41-47
|
|
||||||
G = sqrt(1 - ell.ex ** 2 * cos(u) ** 2 - ell.ee ** 2 * sin(u) ** 2 * sin(v) ** 2)
|
|
||||||
q = np.array([-1 / G * sin(u) * cos(v),
|
|
||||||
-1 / G * sqrt(1 - ell.ee ** 2) * sin(u) * sin(v),
|
|
||||||
1 / G * sqrt(1 - ell.ex ** 2) * cos(u)])
|
|
||||||
p = np.array([q[1] * n[2] - q[2] * n[1],
|
|
||||||
q[2] * n[0] - q[0] * n[2],
|
|
||||||
q[0] * n[1] - q[1] * n[0]])
|
|
||||||
|
|
||||||
t1 = np.dot(n, q)
|
|
||||||
t2 = np.dot(n, p)
|
|
||||||
t3 = np.dot(p, q)
|
|
||||||
if not (t1 < 1e-10 or t1 > 1-1e-10) and not (t2 < 1e-10 or t2 > 1-1e-10) and not (t3 < 1e-10 or t3 > 1-1e-10):
|
|
||||||
raise Exception("Fehler in den normierten Vektoren")
|
|
||||||
|
|
||||||
p = p / np.linalg.norm(p)
|
|
||||||
q = q / np.linalg.norm(q)
|
|
||||||
|
|
||||||
return p, q
|
|
||||||
|
|
||||||
def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int) -> Tuple[NDArray, float]:
|
|
||||||
"""
|
|
||||||
Panou, Korakitits 2020, 5ff.
|
|
||||||
:param ell:
|
|
||||||
:param point:
|
|
||||||
:param alpha0:
|
|
||||||
:param s:
|
|
||||||
:param maxM:
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
x, y, z = point
|
|
||||||
|
|
||||||
# S. 6
|
|
||||||
x_m = [x]
|
|
||||||
y_m = [y]
|
|
||||||
z_m = [z]
|
|
||||||
|
|
||||||
p, q = pq_para(ell, point)
|
|
||||||
|
|
||||||
# 48-50
|
|
||||||
x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
|
|
||||||
y_m.append(p[1] * sin(alpha0) + q[1] * cos(alpha0))
|
|
||||||
z_m.append(p[2] * sin(alpha0) + q[2] * cos(alpha0))
|
|
||||||
|
|
||||||
# 34
|
|
||||||
H_ = lambda p: np.sum([comb(p, p - i) * (x_m[p - i] * x_m[i] +
|
|
||||||
1 / (1 - ell.ee ** 2) ** 2 * y_m[p - i] * y_m[i] +
|
|
||||||
1 / (1 - ell.ex ** 2) ** 2 * z_m[p - i] * z_m[i])
|
|
||||||
for i in range(0, p + 1)])
|
|
||||||
|
|
||||||
# 35
|
|
||||||
h_ = lambda q: np.sum([comb(q, q-j) * (x_m[q-j+1] * x_m[j+1] +
|
|
||||||
1 / (1 - ell.ee ** 2) * y_m[q-j+1] * y_m[j+1] +
|
|
||||||
1 / (1 - ell.ex ** 2) * z_m[q-j+1] * z_m[j+1])
|
|
||||||
for j in range(0, q+1)])
|
|
||||||
|
|
||||||
# 31
|
|
||||||
hH_ = lambda t: 1/H_(0) * (h_(t) - np.sum([comb(t, l-1) * H_(t+1-l) * hH_t[l-1] for l in range(1, t+1)]))
|
|
||||||
|
|
||||||
# 28-30
|
|
||||||
x_ = lambda m: - np.sum([comb(m-2, k) * hH_t[m-2-k] * x_m[k] for k in range(0, m-2+1)])
|
|
||||||
y_ = lambda m: -1 / (1-ell.ee**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * y_m[k] for k in range(0, m-2+1)])
|
|
||||||
z_ = lambda m: -1 / (1-ell.ex**2) * np.sum([comb(m-2, k) * hH_t[m-2-k] * z_m[k] for k in range(0, m-2+1)])
|
|
||||||
|
|
||||||
hH_t = []
|
|
||||||
a_m = []
|
|
||||||
b_m = []
|
|
||||||
c_m = []
|
|
||||||
for m in range(0, maxM+1):
|
|
||||||
if m >= 2:
|
|
||||||
hH_t.append(hH_(m-2))
|
|
||||||
x_m.append(x_(m))
|
|
||||||
y_m.append(y_(m))
|
|
||||||
z_m.append(z_(m))
|
|
||||||
fact_m = fact(m)
|
|
||||||
|
|
||||||
# 22-24
|
|
||||||
a_m.append(x_m[m] / fact_m)
|
|
||||||
b_m.append(y_m[m] / fact_m)
|
|
||||||
c_m.append(z_m[m] / fact_m)
|
|
||||||
|
|
||||||
# 19-21
|
|
||||||
x_s = 0
|
|
||||||
for a in reversed(a_m):
|
|
||||||
x_s = x_s * s + a
|
|
||||||
y_s = 0
|
|
||||||
for b in reversed(b_m):
|
|
||||||
y_s = y_s * s + b
|
|
||||||
z_s = 0
|
|
||||||
for c in reversed(c_m):
|
|
||||||
z_s = z_s * s + c
|
|
||||||
|
|
||||||
p1 = np.array([x_s, y_s, z_s])
|
|
||||||
p_s, q_s = pq_para(ell, p1)
|
|
||||||
|
|
||||||
# 57-59
|
|
||||||
dx_s = 0
|
|
||||||
for i, a in reversed(list(enumerate(a_m[1:], start=1))):
|
|
||||||
dx_s = dx_s * s + i * a
|
|
||||||
|
|
||||||
dy_s = 0
|
|
||||||
for i, b in reversed(list(enumerate(b_m[1:], start=1))):
|
|
||||||
dy_s = dy_s * s + i * b
|
|
||||||
|
|
||||||
dz_s = 0
|
|
||||||
for i, c in reversed(list(enumerate(c_m[1:], start=1))):
|
|
||||||
dz_s = dz_s * s + i * c
|
|
||||||
|
|
||||||
# 52-53
|
|
||||||
sigma = np.array([dx_s, dy_s, dz_s])
|
|
||||||
P = float(p_s @ sigma)
|
|
||||||
Q = float(q_s @ sigma)
|
|
||||||
|
|
||||||
# 51
|
|
||||||
alpha1 = arctan2(P, Q)
|
|
||||||
|
|
||||||
if alpha1 < 0:
|
|
||||||
alpha1 += 2 * np.pi
|
|
||||||
|
|
||||||
return p1, alpha1
|
|
||||||
|
|
||||||
|
|
||||||
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 16) -> Tuple[NDArray, float]:
|
|
||||||
if s > np.pi / maxPartCircum * ell.ax:
|
|
||||||
s /= 2
|
|
||||||
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
|
|
||||||
point_end, alpha_end = gha1_ana(ell, point_step, alpha_step, s, maxM, maxPartCircum)
|
|
||||||
else:
|
|
||||||
point_end, alpha_end = gha1_ana_step(ell, point, alpha0, s, maxM)
|
|
||||||
|
|
||||||
_, _, h = ell.cart2geod(point_end, "ligas3")
|
|
||||||
if h > 1e-5:
|
|
||||||
raise Exception("Analytische Methode ist explodiert, Punkt liegt nicht mehr auf dem Ellipsoid")
|
|
||||||
|
|
||||||
return point_end, alpha_end
|
|
||||||
|
|
||||||
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> Tuple[float, float, float]:
|
|
||||||
point = ell.para2cart(u, v)
|
|
||||||
beta, lamb = ell.para2ell(u, v)
|
|
||||||
|
|
||||||
p_para, q_para = pq_para(ell, point)
|
|
||||||
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
|
||||||
|
|
||||||
p_ell, q_ell = pq_ell(ell, point)
|
|
||||||
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
|
|
||||||
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
|
||||||
|
|
||||||
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
|
|
||||||
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
|
||||||
|
|
||||||
return beta, lamb, alpha_ell
|
|
||||||
|
|
||||||
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> Tuple[float, float, float]:
|
|
||||||
point = ell.ell2cart(beta, lamb)
|
|
||||||
u, v = ell.ell2para(beta, lamb)
|
|
||||||
|
|
||||||
p_ell, q_ell = pq_ell(ell, point)
|
|
||||||
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
|
||||||
|
|
||||||
p_para, q_para = pq_para(ell, point)
|
|
||||||
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
|
|
||||||
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
|
||||||
|
|
||||||
if np.linalg.norm(sigma_para - sigma_ell) > 1e-9:
|
|
||||||
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
|
||||||
|
|
||||||
return u, v, alpha_para
|
|
||||||
|
|
||||||
def func_sigma_ell(ell: EllipsoidTriaxial, point: NDArray, alpha: float) -> NDArray:
|
|
||||||
p, q = pq_ell(ell, point)
|
|
||||||
sigma = p * sin(alpha) + q * cos(alpha)
|
|
||||||
return sigma
|
|
||||||
|
|
||||||
def func_sigma_para(ell: EllipsoidTriaxial, point: NDArray, alpha: float) -> NDArray:
|
|
||||||
p, q = pq_para(ell, point)
|
|
||||||
sigma = p * sin(alpha) + q * cos(alpha)
|
|
||||||
return sigma
|
|
||||||
|
|
||||||
|
|
||||||
def louville_constant(ell: EllipsoidTriaxial, p0: NDArray, alpha: float) -> float:
|
|
||||||
beta, lamb = ell.cart2ell(p0)
|
|
||||||
l = ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2
|
|
||||||
return l
|
|
||||||
|
|
||||||
def louville_l2c(ell: EllipsoidTriaxial, l: float) -> float:
|
|
||||||
return sqrt((l + ell.Ee**2) / ell.Ex**2)
|
|
||||||
|
|
||||||
def louville_c2l(ell: EllipsoidTriaxial, c: float) -> float:
|
|
||||||
return ell.Ex**2 * c**2 - ell.Ee**2
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
|
|
||||||
# ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
|
|
||||||
# diffs_panou = []
|
|
||||||
# examples_panou = ne_panou.get_random_examples(5)
|
|
||||||
# for example in examples_panou:
|
|
||||||
# beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
|
|
||||||
# P0 = ell.ell2cart(beta0, lamb0)
|
|
||||||
#
|
|
||||||
# P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 100)
|
|
||||||
# beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
|
||||||
#
|
|
||||||
# _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
|
||||||
# P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 60)
|
|
||||||
# beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
|
||||||
# diffs_panou.append((abs(beta1-beta1_num), abs(lamb1-lamb1_num), abs(beta1-beta1_ana), abs(lamb1-lamb1_ana)))
|
|
||||||
# diffs_panou = np.array(diffs_panou)
|
|
||||||
# mask_360 = (diffs_panou > 359) & (diffs_panou < 361)
|
|
||||||
# diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
|
|
||||||
# print(diffs_panou)
|
|
||||||
|
|
||||||
ell: EllipsoidTriaxial = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
|
|
||||||
diffs_karney = []
|
|
||||||
# examples_karney = ne_karney.get_examples((30499, 30500, 40500))
|
|
||||||
examples_karney = ne_karney.get_random_examples(20)
|
|
||||||
for example in examples_karney:
|
|
||||||
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
|
|
||||||
P0 = ell.ell2cart(beta0, lamb0)
|
|
||||||
|
|
||||||
P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 10000)
|
|
||||||
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
|
||||||
|
|
||||||
try:
|
|
||||||
_, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
|
||||||
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 45, maxPartCircum=32)
|
|
||||||
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
|
||||||
except:
|
|
||||||
beta1_ana, lamb1_ana = np.inf, np.inf
|
|
||||||
|
|
||||||
diffs_karney.append((wu.rad2deg(abs(beta1-beta1_num)), wu.rad2deg(abs(lamb1-lamb1_num)), wu.rad2deg(abs(beta1-beta1_ana)), wu.rad2deg(abs(lamb1-lamb1_ana))))
|
|
||||||
diffs_karney = np.array(diffs_karney)
|
|
||||||
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
|
|
||||||
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
|
|
||||||
print(diffs_karney)
|
|
||||||
183
GHA_triaxial/utils.py
Normal file
183
GHA_triaxial/utils.py
Normal file
@@ -0,0 +1,183 @@
|
|||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from numpy import arctan2, sin, cos, sqrt
|
||||||
|
from numpy._typing import NDArray
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
|
||||||
|
from ellipsoide import EllipsoidTriaxial
|
||||||
|
|
||||||
|
|
||||||
|
def sigma2alpha(ell: EllipsoidTriaxial, sigma: NDArray, point: NDArray) -> float:
|
||||||
|
"""
|
||||||
|
Berechnung des Azimuts an einem Punkt anhand der Ableitung zu den kartesischen Koordinaten
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param sigma: Ableitungsvektor ver kartesischen Koordinaten
|
||||||
|
:param point: Punkt
|
||||||
|
:return: Azimuts
|
||||||
|
"""
|
||||||
|
p, q = pq_ell(ell, point)
|
||||||
|
P = float(p @ sigma)
|
||||||
|
Q = float(q @ sigma)
|
||||||
|
|
||||||
|
alpha = arctan2(P, Q)
|
||||||
|
return alpha
|
||||||
|
|
||||||
|
|
||||||
|
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> Tuple[float, float, float]:
|
||||||
|
"""
|
||||||
|
Umrechnung des Azimuts bezogen auf parametrische Koordinaten zu ellipsoidischen
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param u: parametrische Breite
|
||||||
|
:param v: parametrische Länge
|
||||||
|
:param alpha_para: Azimut bezogen auf parametrische Koordinaten
|
||||||
|
:return: Azimut bezogen auf ellipsoidische Koordinaten
|
||||||
|
"""
|
||||||
|
point = ell.para2cart(u, v)
|
||||||
|
beta, lamb = ell.para2ell(u, v)
|
||||||
|
|
||||||
|
p_para, q_para = pq_para(ell, point)
|
||||||
|
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
||||||
|
|
||||||
|
p_ell, q_ell = pq_ell(ell, point)
|
||||||
|
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
|
||||||
|
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
||||||
|
|
||||||
|
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
|
||||||
|
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
||||||
|
|
||||||
|
return beta, lamb, alpha_ell
|
||||||
|
|
||||||
|
|
||||||
|
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> Tuple[float, float, float]:
|
||||||
|
"""
|
||||||
|
Umrechnung des Azimuts bezogen auf ellipsoidische Koordinaten zu parametrischen
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param beta: ellipsoidische Breite
|
||||||
|
:param lamb: ellipsoidische Länge
|
||||||
|
:param alpha_ell: Azimut bezogen auf ellipsoidische Koordinaten
|
||||||
|
:return: Azimut bezogen auf parametrische Koordinaten
|
||||||
|
"""
|
||||||
|
point = ell.ell2cart(beta, lamb)
|
||||||
|
u, v = ell.ell2para(beta, lamb)
|
||||||
|
|
||||||
|
p_ell, q_ell = pq_ell(ell, point)
|
||||||
|
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
||||||
|
|
||||||
|
p_para, q_para = pq_para(ell, point)
|
||||||
|
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
|
||||||
|
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
||||||
|
|
||||||
|
if np.linalg.norm(sigma_para - sigma_ell) > 1e-9:
|
||||||
|
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
||||||
|
|
||||||
|
return u, v, alpha_para
|
||||||
|
|
||||||
|
|
||||||
|
def func_sigma_ell(ell: EllipsoidTriaxial, point: NDArray, alpha_ell: float) -> NDArray:
|
||||||
|
"""
|
||||||
|
Berechnung der Richtungsableitungen in kartesischen Koordinaten aus ellipsoidischem Azimut
|
||||||
|
Panou (2019) [6]
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
|
:param alpha_ell: ellipsoidischer Azimut
|
||||||
|
:return: Richtungsableitungen in kartesischen Koordinaten
|
||||||
|
"""
|
||||||
|
p, q = pq_ell(ell, point)
|
||||||
|
sigma = p * sin(alpha_ell) + q * cos(alpha_ell)
|
||||||
|
return sigma
|
||||||
|
|
||||||
|
|
||||||
|
def func_sigma_para(ell: EllipsoidTriaxial, point: NDArray, alpha_para: float) -> NDArray:
|
||||||
|
"""
|
||||||
|
Berechnung der Richtungsableitungen in kartesischen Koordinaten aus parametischem Azimut
|
||||||
|
Panou, Korakitis (2019) [6]
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
|
:param alpha_para: parametrischer Azimut
|
||||||
|
:return: Richtungsableitungen in kartesischen Koordinaten
|
||||||
|
"""
|
||||||
|
p, q = pq_para(ell, point)
|
||||||
|
sigma = p * sin(alpha_para) + q * cos(alpha_para)
|
||||||
|
return sigma
|
||||||
|
|
||||||
|
|
||||||
|
def louville_constant(ell: EllipsoidTriaxial, p0: NDArray, alpha_ell: float) -> float:
|
||||||
|
"""
|
||||||
|
Berechnung der Louville Konstanten
|
||||||
|
Panou, Korakitis (2019) [6]
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param p0: Punkt in kartesischen Koordinaten
|
||||||
|
:param alpha_ell: ellipsoidischer Azimut
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
beta, lamb = ell.cart2ell(p0)
|
||||||
|
l = ell.Ey**2 * cos(beta)**2 * sin(alpha_ell)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha_ell)**2
|
||||||
|
return l
|
||||||
|
|
||||||
|
|
||||||
|
def pq_ell(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
|
||||||
|
"""
|
||||||
|
Berechnung von p (Tangente entlang konstantem beta) und q (Tangente entlang konstantem lambda)
|
||||||
|
Panou, Korakitits (2019) [5f.]
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param point: Punkt
|
||||||
|
:return: p und q
|
||||||
|
"""
|
||||||
|
x, y, z = point
|
||||||
|
n = ell.func_n(point)
|
||||||
|
|
||||||
|
beta, lamb = ell.cart2ell(point)
|
||||||
|
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
|
||||||
|
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
|
||||||
|
|
||||||
|
c1 = x ** 2 + y ** 2 + z ** 2 - (ell.ax ** 2 + ell.ay ** 2 + ell.b ** 2)
|
||||||
|
c0 = (ell.ax ** 2 * ell.ay ** 2 + ell.ax ** 2 * ell.b ** 2 + ell.ay ** 2 * ell.b ** 2 -
|
||||||
|
(ell.ay ** 2 + ell.b ** 2) * x ** 2 - (ell.ax ** 2 + ell.b ** 2) * y ** 2 - (
|
||||||
|
ell.ax ** 2 + ell.ay ** 2) * z ** 2)
|
||||||
|
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
|
||||||
|
|
||||||
|
F = ell.Ey ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(lamb) ** 2
|
||||||
|
p1 = -sqrt(L / (F * t2)) * ell.ax / ell.Ex * sqrt(B) * sin(lamb)
|
||||||
|
p2 = sqrt(L / (F * t2)) * ell.ay * cos(beta) * cos(lamb)
|
||||||
|
p3 = 1 / sqrt(F * t2) * (ell.b * ell.Ee ** 2) / (2 * ell.Ex) * sin(beta) * sin(2 * lamb)
|
||||||
|
p = np.array([p1, p2, p3])
|
||||||
|
p = p / np.linalg.norm(p)
|
||||||
|
q = np.array([n[1] * p[2] - n[2] * p[1],
|
||||||
|
n[2] * p[0] - n[0] * p[2],
|
||||||
|
n[0] * p[1] - n[1] * p[0]])
|
||||||
|
q = q / np.linalg.norm(q)
|
||||||
|
|
||||||
|
return p, q
|
||||||
|
|
||||||
|
|
||||||
|
def pq_para(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
|
||||||
|
"""
|
||||||
|
Berechnung von p (Tangente entlang konstantem u) und q (Tangente entlang konstantem v)
|
||||||
|
Panou, Korakitits (2020)
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param point: Punkt
|
||||||
|
:return: p und q
|
||||||
|
"""
|
||||||
|
n = ell.func_n(point)
|
||||||
|
u, v = ell.cart2para(point)
|
||||||
|
|
||||||
|
# 41-47
|
||||||
|
G = sqrt(1 - ell.ex ** 2 * cos(u) ** 2 - ell.ee ** 2 * sin(u) ** 2 * sin(v) ** 2)
|
||||||
|
q = np.array([-1 / G * sin(u) * cos(v),
|
||||||
|
-1 / G * sqrt(1 - ell.ee ** 2) * sin(u) * sin(v),
|
||||||
|
1 / G * sqrt(1 - ell.ex ** 2) * cos(u)])
|
||||||
|
p = np.array([q[1] * n[2] - q[2] * n[1],
|
||||||
|
q[2] * n[0] - q[0] * n[2],
|
||||||
|
q[0] * n[1] - q[1] * n[0]])
|
||||||
|
|
||||||
|
t1 = np.dot(n, q)
|
||||||
|
t2 = np.dot(n, p)
|
||||||
|
t3 = np.dot(p, q)
|
||||||
|
if not (t1 < 1e-10 or t1 > 1-1e-10) and not (t2 < 1e-10 or t2 > 1-1e-10) and not (t3 < 1e-10 or t3 > 1-1e-10):
|
||||||
|
raise Exception("Fehler in den normierten Vektoren")
|
||||||
|
|
||||||
|
p = p / np.linalg.norm(p)
|
||||||
|
q = q / np.linalg.norm(q)
|
||||||
|
|
||||||
|
return p, q
|
||||||
2655
Tests/algorithms_test.ipynb
Normal file
2655
Tests/algorithms_test.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
@@ -30,7 +30,7 @@
|
|||||||
"%autoreload 2\n",
|
"%autoreload 2\n",
|
||||||
"import winkelumrechnungen as wu\n",
|
"import winkelumrechnungen as wu\n",
|
||||||
"from ellipsoide import EllipsoidTriaxial\n",
|
"from ellipsoide import EllipsoidTriaxial\n",
|
||||||
"from GHA_triaxial.panou import alpha_ell2para, alpha_para2ell\n",
|
"from GHA_triaxial.utils import alpha_para2ell, alpha_ell2para\n",
|
||||||
"import numpy as np"
|
"import numpy as np"
|
||||||
],
|
],
|
||||||
"id": "9ad815aea55574e3",
|
"id": "9ad815aea55574e3",
|
||||||
34
Tests/test_biaxial.py
Normal file
34
Tests/test_biaxial.py
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
import numpy as np
|
||||||
|
from ellipsoide import EllipsoidBiaxial
|
||||||
|
from GHA_biaxial.bessel import gha1 as gha1_bessel
|
||||||
|
from GHA_biaxial.gauss import gha1 as gha1_gauss
|
||||||
|
from GHA_biaxial.rk import gha1 as gha1_rk
|
||||||
|
from GHA_biaxial.gauss import gha2 as gha2_gauss
|
||||||
|
|
||||||
|
re = EllipsoidBiaxial.init_name("Bessel")
|
||||||
|
|
||||||
|
# phi0 = 0.6
|
||||||
|
# lamb0 = 1.2
|
||||||
|
# alpha0 = 0.45
|
||||||
|
# s = 123456
|
||||||
|
#
|
||||||
|
# values_bessel = gha1_bessel(re, phi0, lamb0, alpha0, s)
|
||||||
|
# alpha1_bessel = values_bessel[-1]
|
||||||
|
# p1_bessel = re.bi_ell2cart(values_bessel[0], values_bessel[1], 0)
|
||||||
|
#
|
||||||
|
# values_gauss1 = gha1_gauss(re, phi0, lamb0, alpha0, s)
|
||||||
|
# alpha1_gauss1 = values_gauss1[-1]
|
||||||
|
# p1_gauss = re.bi_ell2cart(values_gauss1[0], values_gauss1[1], 0)
|
||||||
|
#
|
||||||
|
# values_rk = gha1_rk(re, phi0, lamb0 , alpha0, s, 10000)
|
||||||
|
# alpha1_rk = values_rk[-1]
|
||||||
|
# p1_rk = re.bi_ell2cart(values_rk[0], values_rk[1], 0)
|
||||||
|
#
|
||||||
|
# alpha0_gauss, alpha1_gauss2, s_gauss = gha2_gauss(re, phi0, lamb0, values_gauss1[0], values_gauss1[1])
|
||||||
|
|
||||||
|
phi0 = 0.6
|
||||||
|
lamb0 = 1.2
|
||||||
|
|
||||||
|
cart = re.bi_ell2cart(phi0, lamb0, 0)
|
||||||
|
ell = re.bi_cart2ell(cart)
|
||||||
|
pass
|
||||||
@@ -1,363 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"id": "initial_id",
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": true
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"%load_ext autoreload\n",
|
|
||||||
"%autoreload 2"
|
|
||||||
],
|
|
||||||
"outputs": [],
|
|
||||||
"execution_count": null
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"metadata": {},
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"%reload_ext autoreload\n",
|
|
||||||
"%autoreload 2\n",
|
|
||||||
"import time\n",
|
|
||||||
"import pickle\n",
|
|
||||||
"import numpy as np\n",
|
|
||||||
"from numpy import nan\n",
|
|
||||||
"import winkelumrechnungen as wu\n",
|
|
||||||
"import os\n",
|
|
||||||
"from contextlib import contextmanager, redirect_stdout, redirect_stderr\n",
|
|
||||||
"import pandas as pd\n",
|
|
||||||
"import plotly.graph_objects as go\n",
|
|
||||||
"import math\n",
|
|
||||||
"\n",
|
|
||||||
"from ellipsoide import EllipsoidTriaxial\n",
|
|
||||||
"from GHA_triaxial.panou import alpha_ell2para, alpha_para2ell\n",
|
|
||||||
"\n",
|
|
||||||
"from GHA_triaxial.panou import gha1_num, gha1_ana\n",
|
|
||||||
"from GHA_triaxial.approx_gha1 import gha1_approx\n",
|
|
||||||
"\n",
|
|
||||||
"from GHA_triaxial.panou_2013_2GHA_num import gha2_num\n",
|
|
||||||
"from GHA_triaxial.ES_gha2 import gha2_ES\n",
|
|
||||||
"from GHA_triaxial.approx_gha2 import gha2_approx\n",
|
|
||||||
"\n",
|
|
||||||
"from GHA_triaxial.numeric_examples_panou import get_tables as get_tables_panou\n",
|
|
||||||
"from GHA_triaxial.numeric_examples_karney import get_random_examples as get_examples_karney"
|
|
||||||
],
|
|
||||||
"id": "961cb22764c5bcb9",
|
|
||||||
"outputs": [],
|
|
||||||
"execution_count": null
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"metadata": {},
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"@contextmanager\n",
|
|
||||||
"def suppress_print():\n",
|
|
||||||
" with open(os.devnull, 'w') as fnull:\n",
|
|
||||||
" with redirect_stdout(fnull), redirect_stderr(fnull):\n",
|
|
||||||
" yield"
|
|
||||||
],
|
|
||||||
"id": "e4740625a366ac13",
|
|
||||||
"outputs": [],
|
|
||||||
"execution_count": null
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"metadata": {},
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"# steps_gha1_num = [2000, 5000, 10000, 20000]\n",
|
|
||||||
"# maxM_gha1_ana = [20, 50]\n",
|
|
||||||
"# parts_gha1_ana = [4, 8]\n",
|
|
||||||
"# dsPart_gha1_approx = [600, 1250, 6000, 60000] # entspricht bei der Erde ca. 10000, 5000, 1000, 100\n",
|
|
||||||
"#\n",
|
|
||||||
"# steps_gha2_num = [2000, 5000, 10000, 20000]\n",
|
|
||||||
"# dsPart_gha2_ES = [600, 1250, 6000] # entspricht bei der Erde ca. 10000, 5000, 1000\n",
|
|
||||||
"# dsPart_gha2_approx = [600, 1250, 6000, 60000] # entspricht bei der Erde ca. 10000, 5000, 1000, 100\n",
|
|
||||||
"\n",
|
|
||||||
"steps_gha1_num = [2000]\n",
|
|
||||||
"maxM_gha1_ana = [10, 20, 40, 60, 80]\n",
|
|
||||||
"parts_gha1_ana = [4, 8, 12, 16]\n",
|
|
||||||
"dsPart_gha1_approx = [600]\n",
|
|
||||||
"\n",
|
|
||||||
"steps_gha2_num = [16000]\n",
|
|
||||||
"dsPart_gha2_ES = [20]\n",
|
|
||||||
"dsPart_gha2_approx = [600]"
|
|
||||||
],
|
|
||||||
"id": "96093cdde03f8d57",
|
|
||||||
"outputs": [],
|
|
||||||
"execution_count": null
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"metadata": {},
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"# test = \"Karney\"\n",
|
|
||||||
"test = \"Panou\"\n",
|
|
||||||
"if test == \"Karney\":\n",
|
|
||||||
" ell: EllipsoidTriaxial = EllipsoidTriaxial.init_name(\"KarneyTest2024\")\n",
|
|
||||||
" examples = get_examples_karney(10, 42)\n",
|
|
||||||
"elif test == \"Panou\":\n",
|
|
||||||
" ell: EllipsoidTriaxial = EllipsoidTriaxial.init_name(\"BursaSima1980round\")\n",
|
|
||||||
" tables = get_tables_panou()\n",
|
|
||||||
" table_indices = []\n",
|
|
||||||
" examples = []\n",
|
|
||||||
" for i, table in enumerate(tables):\n",
|
|
||||||
" for example in table:\n",
|
|
||||||
" table_indices.append(i+1)\n",
|
|
||||||
" examples.append(example)"
|
|
||||||
],
|
|
||||||
"id": "6e384cc01c2dbe",
|
|
||||||
"outputs": [],
|
|
||||||
"execution_count": null
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"metadata": {},
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"results = {}\n",
|
|
||||||
"for example in examples:\n",
|
|
||||||
" example_results = {}\n",
|
|
||||||
"\n",
|
|
||||||
" beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example\n",
|
|
||||||
" P0 = ell.ell2cart(beta0, lamb0)\n",
|
|
||||||
" P1 = ell.ell2cart(beta1, lamb1)\n",
|
|
||||||
" _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)\n",
|
|
||||||
"\n",
|
|
||||||
" # for steps in steps_gha1_num:\n",
|
|
||||||
" # start = time.perf_counter()\n",
|
|
||||||
" # try:\n",
|
|
||||||
" # P1_num, alpha1_num_1 = gha1_num(ell, P0, alpha0_ell, s, num=steps)\n",
|
|
||||||
" # end = time.perf_counter()\n",
|
|
||||||
" # beta1_num, lamb1_num = ell.cart2ell(P1_num)\n",
|
|
||||||
" # d_beta1 = abs(wu.rad2deg(beta1_num - beta1)) / 3600\n",
|
|
||||||
" # d_lamb1 = abs(wu.rad2deg(lamb1_num - lamb1)) / 3600\n",
|
|
||||||
" # d_alpha1 = abs(wu.rad2deg(alpha1_num_1 - alpha1_ell)) / 3600\n",
|
|
||||||
" # d_time = end - start\n",
|
|
||||||
" # example_results[f\"GHA1_num_{steps}\"] = (d_beta1, d_lamb1, d_alpha1, d_time)\n",
|
|
||||||
" # except Exception as e:\n",
|
|
||||||
" # print(e)\n",
|
|
||||||
" # example_results[f\"GHA1_num_{steps}\"] = (nan, nan, nan, nan)\n",
|
|
||||||
" #\n",
|
|
||||||
" for maxM in maxM_gha1_ana:\n",
|
|
||||||
" for parts in parts_gha1_ana:\n",
|
|
||||||
" start = time.perf_counter()\n",
|
|
||||||
" try:\n",
|
|
||||||
" P1_ana, alpha1_ana_para = gha1_ana(ell, P0, alpha0_para, s, maxM=maxM, maxPartCircum=parts)\n",
|
|
||||||
" end = time.perf_counter()\n",
|
|
||||||
" beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)\n",
|
|
||||||
" _, _, alpha1_ana_ell = alpha_para2ell(ell, beta1_ana, lamb1_ana, alpha1_ana_para)\n",
|
|
||||||
" d_beta1 = abs(wu.rad2deg(beta1_ana - beta1)) / 3600\n",
|
|
||||||
" d_lamb1 = abs(wu.rad2deg(lamb1_ana - lamb1)) / 3600\n",
|
|
||||||
" d_alpha1 = abs(wu.rad2deg(alpha1_ana_ell - alpha1_ell)) / 3600\n",
|
|
||||||
" d_time = end - start\n",
|
|
||||||
" example_results[f\"GHA1_ana_{maxM}_{parts}\"] = (d_beta1, d_lamb1, d_alpha1, d_time)\n",
|
|
||||||
" except Exception as e:\n",
|
|
||||||
" print(e)\n",
|
|
||||||
" example_results[f\"GHA1_ana_{maxM}_{parts}\"] = (nan, nan, nan, nan)\n",
|
|
||||||
" #\n",
|
|
||||||
" # for dsPart in dsPart_gha1_approx:\n",
|
|
||||||
" # ds = ell.ax/dsPart\n",
|
|
||||||
" # start = time.perf_counter()\n",
|
|
||||||
" # try:\n",
|
|
||||||
" # P1_approx, alpha1_approx = gha1_approx(ell, P0, alpha0_ell, s, ds=ds)\n",
|
|
||||||
" # end = time.perf_counter()\n",
|
|
||||||
" # beta1_approx, lamb1_approx = ell.cart2ell(P1_approx)\n",
|
|
||||||
" # d_beta1 = abs(wu.rad2deg(beta1_approx - beta1)) / 3600\n",
|
|
||||||
" # d_lamb1 = abs(wu.rad2deg(lamb1_approx - lamb1)) / 3600\n",
|
|
||||||
" # d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600\n",
|
|
||||||
" # d_time = end - start\n",
|
|
||||||
" # example_results[f\"GHA1_approx_{ds:.3f}\"] = (d_beta1, d_lamb1, d_alpha1, d_time)\n",
|
|
||||||
" # except Exception as e:\n",
|
|
||||||
" # print(e)\n",
|
|
||||||
" # example_results[f\"GHA1_approx_{ds:.3f}\"] = (nan, nan, nan, nan)\n",
|
|
||||||
"\n",
|
|
||||||
" # for steps in steps_gha2_num:\n",
|
|
||||||
" # start = time.perf_counter()\n",
|
|
||||||
" # try:\n",
|
|
||||||
" # alpha0_num, alpha1_num_2, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=steps)\n",
|
|
||||||
" # end = time.perf_counter()\n",
|
|
||||||
" # d_alpha0 = abs(wu.rad2deg(alpha0_num - alpha0_ell)) / 3600\n",
|
|
||||||
" # d_alpha1 = abs(wu.rad2deg(alpha1_num_2 - alpha1_ell)) / 3600\n",
|
|
||||||
" # d_s = abs(s_num - s) / 1000\n",
|
|
||||||
" # d_time = end - start\n",
|
|
||||||
" # example_results[f\"GHA2_num_{steps}\"] = (d_alpha0, d_alpha1, d_s, d_time)\n",
|
|
||||||
" # print(\"konvergiert\")\n",
|
|
||||||
" # except Exception as e:\n",
|
|
||||||
" # print(e)\n",
|
|
||||||
" # print(example)\n",
|
|
||||||
" # example_results[f\"GHA2_num_{steps}\"] = (nan, nan, nan, nan)\n",
|
|
||||||
"\n",
|
|
||||||
" # for dsPart in dsPart_gha2_ES:\n",
|
|
||||||
" # ds = ell.ax/dsPart\n",
|
|
||||||
" # start = time.perf_counter()\n",
|
|
||||||
" # try:\n",
|
|
||||||
" # with suppress_print():\n",
|
|
||||||
" # alpha0_ES, alpha1_ES, s_ES = gha2_ES(ell, P0, P1, maxSegLen=ds)\n",
|
|
||||||
" # end = time.perf_counter()\n",
|
|
||||||
" # d_alpha0 = abs(wu.rad2deg(alpha0_ES - alpha0_ell)) / 3600\n",
|
|
||||||
" # d_alpha1 = abs(wu.rad2deg(alpha1_ES - alpha1_ell)) / 3600\n",
|
|
||||||
" # d_s = abs(s_ES - s) / 1000\n",
|
|
||||||
" # d_time = end - start\n",
|
|
||||||
" # example_results[f\"GHA2_ES_{ds:.3f}\"] = (d_alpha0, d_alpha1, d_s, d_time)\n",
|
|
||||||
" # except Exception as e:\n",
|
|
||||||
" # print(e)\n",
|
|
||||||
" # example_results[f\"GHA2_ES_{ds:.3f}\"] = (nan, nan, nan, nan)\n",
|
|
||||||
" #\n",
|
|
||||||
" # for dsPart in dsPart_gha2_approx:\n",
|
|
||||||
" # ds = ell.ax/dsPart\n",
|
|
||||||
" # start = time.perf_counter()\n",
|
|
||||||
" # try:\n",
|
|
||||||
" # alpha0_approx, alpha1_approx, s_approx = gha2_approx(ell, P0, P1, ds=ds)\n",
|
|
||||||
" # end = time.perf_counter()\n",
|
|
||||||
" # d_alpha0 = abs(wu.rad2deg(alpha0_approx - alpha0_ell)) / 3600\n",
|
|
||||||
" # d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600\n",
|
|
||||||
" # d_s = abs(s_approx - s) / 1000\n",
|
|
||||||
" # d_time = end - start\n",
|
|
||||||
" # example_results[f\"GHA2_approx_{ds:.3f}\"] = (d_alpha0, d_alpha1, d_s, d_time)\n",
|
|
||||||
" # except Exception as e:\n",
|
|
||||||
" # print(e)\n",
|
|
||||||
" # example_results[f\"GHA2_approx_{ds:.3f}\"] = (nan, nan, nan, nan)\n",
|
|
||||||
"\n",
|
|
||||||
" results[f\"beta0: {wu.rad2deg(beta0):.3f}, lamb0: {wu.rad2deg(lamb0):.3f}, alpha0: {wu.rad2deg(alpha0_ell):.3f}, s: {s}\"] = example_results"
|
|
||||||
],
|
|
||||||
"id": "ef8849908ed3231e",
|
|
||||||
"outputs": [],
|
|
||||||
"execution_count": null
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"metadata": {},
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"# with open(f\"gha_results{test}.pkl\", \"wb\") as f:\n",
|
|
||||||
"# pickle.dump(results, f)"
|
|
||||||
],
|
|
||||||
"id": "664105ea35d50a7b",
|
|
||||||
"outputs": [],
|
|
||||||
"execution_count": null
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"metadata": {},
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"# with open(f\"gha_results{test}.pkl\", \"rb\") as f:\n",
|
|
||||||
"# results = pickle.load(f)"
|
|
||||||
],
|
|
||||||
"id": "ad8aa9dcc8af4a05",
|
|
||||||
"outputs": [],
|
|
||||||
"execution_count": null
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"metadata": {},
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"def format_max(values, is_angle=False):\n",
|
|
||||||
" arr = np.array(values, dtype=float)\n",
|
|
||||||
" if arr.size==0:\n",
|
|
||||||
" return np.nan\n",
|
|
||||||
" maxi = np.nanmax(np.abs(arr))\n",
|
|
||||||
" if maxi is None or (isinstance(maxi,float) and (math.isnan(maxi))):\n",
|
|
||||||
" return \"nan\"\n",
|
|
||||||
" i = 2\n",
|
|
||||||
" while maxi > np.nanmean(np.abs(arr)):\n",
|
|
||||||
" maxi = np.sort(np.abs(arr[~np.isnan(arr)]))[-i]\n",
|
|
||||||
" i += 1\n",
|
|
||||||
" if is_angle:\n",
|
|
||||||
" maxi = wu.rad2deg(maxi)*3600\n",
|
|
||||||
" if f\"{maxi:.3g}\" == 0:\n",
|
|
||||||
" pass\n",
|
|
||||||
" return f\"{maxi:.3g}\"\n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"def build_max_table(gha_prefix, title, group_value = None):\n",
|
|
||||||
" # metrics\n",
|
|
||||||
" if gha_prefix==\"GHA1\":\n",
|
|
||||||
" metrics = ['dBeta [\"]', 'dLambda [\"]', 'dAlpha1 [\"]', 'time [s]']\n",
|
|
||||||
" angle_mask = [True, True, True, False]\n",
|
|
||||||
" else:\n",
|
|
||||||
" metrics = ['dAlpha0 [\"]', 'dAlpha1 [\"]', 'dStrecke [m]', 'time [s]']\n",
|
|
||||||
" angle_mask = [True, True, False, False]\n",
|
|
||||||
"\n",
|
|
||||||
" # collect keys in this group\n",
|
|
||||||
" if group_value is None:\n",
|
|
||||||
" example_keys = [example_key for example_key in results.keys()]\n",
|
|
||||||
" else:\n",
|
|
||||||
" example_keys = [example_key for example_key, group_index in zip(results.keys(), table_indices) if group_index==group_value]\n",
|
|
||||||
" # all variant keys (inner dict keys) matching prefix\n",
|
|
||||||
" algorithms = sorted({algorithm for example_key in example_keys for algorithm in results[example_key].keys() if algorithm.startswith(gha_prefix)})\n",
|
|
||||||
"\n",
|
|
||||||
" header = [\"Algorithmus\", \"Parameter\"] + list(metrics)\n",
|
|
||||||
" cells = [[] for i in range(len(metrics) + 2)]\n",
|
|
||||||
" for algorithm in algorithms:\n",
|
|
||||||
" if algorithm == \"GHA1_ana_80_16\":\n",
|
|
||||||
" pass\n",
|
|
||||||
" ghaNr, variant, params = algorithm.split(\"_\", 2)\n",
|
|
||||||
" cells[0].append(variant)\n",
|
|
||||||
" cells[1].append(params)\n",
|
|
||||||
" for i, metric in enumerate(metrics):\n",
|
|
||||||
" values = []\n",
|
|
||||||
" for example_key in example_keys:\n",
|
|
||||||
" values.append(results[example_key][algorithm][i])\n",
|
|
||||||
" cells[i+2].append(format_max(values, is_angle=angle_mask[i]))\n",
|
|
||||||
"\n",
|
|
||||||
" header = dict(\n",
|
|
||||||
" values=header,\n",
|
|
||||||
" align=\"center\",\n",
|
|
||||||
" fill_color=\"lightgrey\",\n",
|
|
||||||
" font=dict(size=13)\n",
|
|
||||||
" )\n",
|
|
||||||
" cells = dict(\n",
|
|
||||||
" values=cells,\n",
|
|
||||||
" align=\"center\"\n",
|
|
||||||
" )\n",
|
|
||||||
"\n",
|
|
||||||
" fig = go.Figure(data=[go.Table(header=header, cells=cells)])\n",
|
|
||||||
" fig.update_layout(title=title,\n",
|
|
||||||
" template=\"simple_white\",\n",
|
|
||||||
" width=800,\n",
|
|
||||||
" height=280,\n",
|
|
||||||
" margin=dict(l=20, r=20, t=60, b=20))\n",
|
|
||||||
" return fig\n",
|
|
||||||
"\n",
|
|
||||||
"figs = []\n",
|
|
||||||
"if test == \"Panou\":\n",
|
|
||||||
" for table_index in sorted(set(table_indices))[:-1]:\n",
|
|
||||||
" fig1 = build_max_table(\"GHA1\", f\"{test} - Gruppe {table_index} - GHA1\", table_index)\n",
|
|
||||||
" fig2 = build_max_table(\"GHA2\", f\"{test} - Gruppe {table_index} - GHA2\", table_index)\n",
|
|
||||||
" figs.append(fig1)\n",
|
|
||||||
" figs.append(fig2)\n",
|
|
||||||
"elif test == \"Karney\":\n",
|
|
||||||
" fig1 = build_max_table(\"GHA1\", f\"{test} - GHA1\")\n",
|
|
||||||
" fig2 = build_max_table(\"GHA2\", f\"{test} - GHA2\")\n",
|
|
||||||
" figs.append(fig1)\n",
|
|
||||||
" figs.append(fig2)\n",
|
|
||||||
"\n",
|
|
||||||
"for fig in figs:\n",
|
|
||||||
" fig.show()"
|
|
||||||
],
|
|
||||||
"id": "b46d57fc0d794e28",
|
|
||||||
"outputs": [],
|
|
||||||
"execution_count": null
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 2
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython2",
|
|
||||||
"version": "2.7.6"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 5
|
|
||||||
}
|
|
||||||
@@ -1,267 +0,0 @@
|
|||||||
import time
|
|
||||||
import pickle
|
|
||||||
import numpy as np
|
|
||||||
from numpy import nan
|
|
||||||
import winkelumrechnungen as wu
|
|
||||||
import os
|
|
||||||
from contextlib import contextmanager, redirect_stdout, redirect_stderr
|
|
||||||
|
|
||||||
from ellipsoide import EllipsoidTriaxial
|
|
||||||
from GHA_triaxial.panou import alpha_ell2para, alpha_para2ell
|
|
||||||
|
|
||||||
from GHA_triaxial.panou import gha1_num, gha1_ana
|
|
||||||
from GHA_triaxial.approx_gha1 import gha1_approx
|
|
||||||
|
|
||||||
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
|
|
||||||
from GHA_triaxial.ES_gha2 import gha2_ES
|
|
||||||
from GHA_triaxial.approx_gha2 import gha2_approx
|
|
||||||
|
|
||||||
from GHA_triaxial.numeric_examples_panou import get_random_examples as get_examples_panou
|
|
||||||
from GHA_triaxial.numeric_examples_karney import get_random_examples as get_examples_karney
|
|
||||||
|
|
||||||
@contextmanager
|
|
||||||
def suppress_print():
|
|
||||||
with open(os.devnull, 'w') as fnull:
|
|
||||||
with redirect_stdout(fnull), redirect_stderr(fnull):
|
|
||||||
yield
|
|
||||||
|
|
||||||
# steps_gha1_num = [2000, 5000, 10000, 20000]
|
|
||||||
# maxM_gha1_ana = [20, 40, 60]
|
|
||||||
# parts_gha1_ana = [4, 8, 16]
|
|
||||||
# dsPart_gha1_approx = [600, 1250, 6000, 60000] # entspricht bei der Erde ca. 10000, 5000, 1000, 100
|
|
||||||
#
|
|
||||||
# steps_gha2_num = [2000, 5000, 10000, 20000]
|
|
||||||
# dsPart_gha2_ES = [600, 1250, 6000] # entspricht bei der Erde ca. 10000, 5000, 1000
|
|
||||||
# dsPart_gha2_approx = [600, 1250, 6000, 60000] # entspricht bei der Erde ca. 10000, 5000, 1000, 100
|
|
||||||
|
|
||||||
steps_gha1_num = [2000, 5000]
|
|
||||||
maxM_gha1_ana = [20, 40]
|
|
||||||
parts_gha1_ana = [4, 8]
|
|
||||||
dsPart_gha1_approx = [600, 1250]
|
|
||||||
|
|
||||||
steps_gha2_num = [2000, 5000]
|
|
||||||
dsPart_gha2_ES = [20]
|
|
||||||
dsPart_gha2_approx = [600, 1250]
|
|
||||||
|
|
||||||
ell_karney: EllipsoidTriaxial = EllipsoidTriaxial.init_name("KarneyTest2024")
|
|
||||||
ell_panou: EllipsoidTriaxial = EllipsoidTriaxial.init_name("BursaSima1980round")
|
|
||||||
|
|
||||||
results_karney = {}
|
|
||||||
results_panou = {}
|
|
||||||
|
|
||||||
examples_karney = get_examples_karney(2, 42)
|
|
||||||
examples_panou = get_examples_panou(2, 42)
|
|
||||||
|
|
||||||
for example in examples_karney:
|
|
||||||
example_results = {}
|
|
||||||
|
|
||||||
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
|
|
||||||
P0 = ell_karney.ell2cart(beta0, lamb0)
|
|
||||||
P1 = ell_karney.ell2cart(beta1, lamb1)
|
|
||||||
_, _, alpha0_para = alpha_ell2para(ell_karney, beta0, lamb0, alpha0_ell)
|
|
||||||
|
|
||||||
for steps in steps_gha1_num:
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
P1_num, alpha1_num_1 = gha1_num(ell_karney, P0, alpha0_ell, s, num=steps)
|
|
||||||
end = time.perf_counter()
|
|
||||||
beta1_num, lamb1_num = ell_karney.cart2ell(P1_num)
|
|
||||||
d_beta1 = abs(wu.rad2deg(beta1_num - beta1)) / 3600
|
|
||||||
d_lamb1 = abs(wu.rad2deg(lamb1_num - lamb1)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_num_1 - alpha1_ell)) / 3600
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA1_num_{steps}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA1_num_{steps}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
for maxM in maxM_gha1_ana:
|
|
||||||
for parts in parts_gha1_ana:
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
P1_ana, alpha1_ana_para = gha1_ana(ell_karney, P0, alpha0_para, s, maxM=maxM, maxPartCircum=parts)
|
|
||||||
end = time.perf_counter()
|
|
||||||
beta1_ana, lamb1_ana = ell_karney.cart2ell(P1_ana)
|
|
||||||
_, _, alpha1_ana_ell = alpha_para2ell(ell_karney, beta1_ana, lamb1_ana, alpha1_ana_para)
|
|
||||||
d_beta1 = abs(wu.rad2deg(beta1_ana - beta1)) / 3600
|
|
||||||
d_lamb1 = abs(wu.rad2deg(lamb1_ana - lamb1)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_ana_ell - alpha1_ell)) / 3600
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA1_ana_{maxM}_{parts}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA1_ana_{maxM}_{parts}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
for dsPart in dsPart_gha1_approx:
|
|
||||||
ds = ell_karney.ax/dsPart
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
P1_approx, alpha1_approx = gha1_approx(ell_karney, P0, alpha0_ell, s, ds=ds)
|
|
||||||
end = time.perf_counter()
|
|
||||||
beta1_approx, lamb1_approx = ell_karney.cart2ell(P1_approx)
|
|
||||||
d_beta1 = abs(wu.rad2deg(beta1_approx - beta1)) / 3600
|
|
||||||
d_lamb1 = abs(wu.rad2deg(lamb1_approx - lamb1)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA1_approx_{ds:.3f}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA1_approx_{ds:.3f}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
for steps in steps_gha2_num:
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
alpha0_num, alpha1_num_2, s_num = gha2_num(ell_karney, beta0, lamb0, beta1, lamb1, n=steps)
|
|
||||||
end = time.perf_counter()
|
|
||||||
d_alpha0 = abs(wu.rad2deg(alpha0_num - alpha0_ell)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_num_2 - alpha1_ell)) / 3600
|
|
||||||
d_s = abs(s_num - s) / 1000
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA2_num_{steps}"] = (d_alpha0, d_alpha1, d_s, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA2_num_{steps}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
for dsPart in dsPart_gha2_ES:
|
|
||||||
ds = ell_karney.ax/dsPart
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
with suppress_print():
|
|
||||||
alpha0_ES, alpha1_ES, s_ES = gha2_ES(ell_karney, P0, P1, stepLenTarget=ds)
|
|
||||||
end = time.perf_counter()
|
|
||||||
d_alpha0 = abs(wu.rad2deg(alpha0_ES - alpha0_ell)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_ES - alpha1_ell)) / 3600
|
|
||||||
d_s = abs(s_ES - s) / 1000
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA2_ES_{ds:.3f}"] = (d_alpha0, d_alpha1, d_s, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA2_ES_{ds:.3f}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
for dsPart in dsPart_gha2_approx:
|
|
||||||
ds = ell_karney.ax/dsPart
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
alpha0_approx, alpha1_approx, s_approx = gha2_approx(ell_karney, P0, P1, ds=ds)
|
|
||||||
end = time.perf_counter()
|
|
||||||
d_alpha0 = abs(wu.rad2deg(alpha0_approx - alpha0_ell)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600
|
|
||||||
d_s = abs(s_approx - s) / 1000
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA2_approx_{ds:.3f}"] = (d_alpha0, d_alpha1, d_s, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA2_approx_{ds:.3f}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
results_karney[f"beta0: {wu.rad2deg(beta0):.3f}, lamb0: {wu.rad2deg(lamb0):.3f}, alpha0: {wu.rad2deg(alpha0_ell):.3f}, s: {s}"] = example_results
|
|
||||||
|
|
||||||
for example in examples_panou:
|
|
||||||
example_results = {}
|
|
||||||
|
|
||||||
beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
|
|
||||||
P0 = ell_panou.ell2cart(beta0, lamb0)
|
|
||||||
P1 = ell_panou.ell2cart(beta1, lamb1)
|
|
||||||
_, _, alpha0_para = alpha_ell2para(ell_panou, beta0, lamb0, alpha0_ell)
|
|
||||||
|
|
||||||
for steps in steps_gha1_num:
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
P1_num, alpha1_num_1 = gha1_num(ell_panou, P0, alpha0_ell, s, num=steps)
|
|
||||||
end = time.perf_counter()
|
|
||||||
beta1_num, lamb1_num = ell_panou.cart2ell(P1_num)
|
|
||||||
d_beta1 = abs(wu.rad2deg(beta1_num - beta1)) / 3600
|
|
||||||
d_lamb1 = abs(wu.rad2deg(lamb1_num - lamb1)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_num_1 - alpha1_ell)) / 3600
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA1_num_{steps}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA1_num_{steps}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
for maxM in maxM_gha1_ana:
|
|
||||||
for parts in parts_gha1_ana:
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
P1_ana, alpha1_ana_para = gha1_ana(ell_panou, P0, alpha0_para, s, maxM=maxM, maxPartCircum=parts)
|
|
||||||
end = time.perf_counter()
|
|
||||||
beta1_ana, lamb1_ana = ell_panou.cart2ell(P1_ana)
|
|
||||||
_, _, alpha1_ana = alpha_para2ell(ell_panou, beta1_ana, lamb1_ana, alpha1_ana_para)
|
|
||||||
d_beta1 = abs(wu.rad2deg(beta1_ana - beta1)) / 3600
|
|
||||||
d_lamb1 = abs(wu.rad2deg(lamb1_ana - lamb1)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_ana - alpha1_ell)) / 3600
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA1_ana_{maxM}_{parts}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA1_ana_{maxM}_{parts}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
for dsPart in dsPart_gha1_approx:
|
|
||||||
ds = ell_panou.ax/dsPart
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
P1_approx, alpha1_approx = gha1_approx(ell_panou, P0, alpha0_ell, s, ds=ds)
|
|
||||||
end = time.perf_counter()
|
|
||||||
beta1_approx, lamb1_approx = ell_panou.cart2ell(P1_approx)
|
|
||||||
d_beta1 = abs(wu.rad2deg(beta1_approx - beta1)) / 3600
|
|
||||||
d_lamb1 = abs(wu.rad2deg(lamb1_approx - lamb1)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA1_approx_{ds:.3f}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA1_approx_{ds:.3f}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
for steps in steps_gha2_num:
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
alpha0_num, alpha1_num_2, s_num = gha2_num(ell_panou, beta0, lamb0, beta1, lamb1, n=steps)
|
|
||||||
end = time.perf_counter()
|
|
||||||
d_alpha0 = abs(wu.rad2deg(alpha0_num - alpha0_ell)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_num_2 - alpha1_ell)) / 3600
|
|
||||||
d_s = abs(s_num - s) / 1000
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA2_num_{steps}"] = (d_alpha0, d_alpha1, d_s, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA2_num_{steps}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
for dsPart in dsPart_gha2_ES:
|
|
||||||
ds = ell_panou.ax/dsPart
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
with suppress_print():
|
|
||||||
alpha0_ES, alpha1_ES, s_ES = gha2_ES(ell_panou, P0, P1, stepLenTarget=ds)
|
|
||||||
end = time.perf_counter()
|
|
||||||
d_alpha0 = abs(wu.rad2deg(alpha0_ES - alpha0_ell)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_ES - alpha1_ell)) / 3600
|
|
||||||
d_s = abs(s_ES - s) / 1000
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA2_ES_{ds:.3f}"] = (d_alpha0, d_alpha1, d_s, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA2_ES_{ds:.3f}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
for dsPart in dsPart_gha2_approx:
|
|
||||||
ds = ell_panou.ax/dsPart
|
|
||||||
start = time.perf_counter()
|
|
||||||
try:
|
|
||||||
alpha0_approx, alpha1_approx, s_approx = gha2_approx(ell_panou, P0, P1, ds=ds)
|
|
||||||
end = time.perf_counter()
|
|
||||||
d_alpha0 = abs(wu.rad2deg(alpha0_approx - alpha0_ell)) / 3600
|
|
||||||
d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600
|
|
||||||
d_s = abs(s_approx - s) / 1000
|
|
||||||
d_time = end - start
|
|
||||||
example_results[f"GHA2_approx_{ds:.3f}"] = (d_alpha0, d_alpha1, d_s, d_time)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
example_results[f"GHA2_approx_{ds:.3f}"] = (nan, nan, nan, nan)
|
|
||||||
|
|
||||||
results_panou[f"beta0: {wu.rad2deg(beta0):.3f}, lamb0: {wu.rad2deg(lamb0):.3f}, alpha0: {wu.rad2deg(alpha0_ell):.3f}, s: {s}"] = example_results
|
|
||||||
|
|
||||||
print(results_karney)
|
|
||||||
with open("results_karney.pkl", "wb") as f:
|
|
||||||
pickle.dump(results_karney, f)
|
|
||||||
|
|
||||||
print(results_panou)
|
|
||||||
with open("results_panou.pkl", "wb") as f:
|
|
||||||
pickle.dump(results_panou, f)
|
|
||||||
@@ -1,106 +0,0 @@
|
|||||||
import time
|
|
||||||
import pickle
|
|
||||||
import numpy as np
|
|
||||||
from numpy import nan
|
|
||||||
import winkelumrechnungen as wu
|
|
||||||
import os
|
|
||||||
from contextlib import contextmanager, redirect_stdout, redirect_stderr
|
|
||||||
from itertools import product
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
from ellipsoide import EllipsoidTriaxial
|
|
||||||
|
|
||||||
# ellips = "KarneyTest2024"
|
|
||||||
# ellips = "BursaSima1980"
|
|
||||||
ellips = "Fiction"
|
|
||||||
|
|
||||||
ell: EllipsoidTriaxial = EllipsoidTriaxial.init_name(ellips)
|
|
||||||
|
|
||||||
|
|
||||||
def deg_range(start, stop, step):
|
|
||||||
return [float(x) for x in range(start, stop + step, step)]
|
|
||||||
|
|
||||||
def asymptotic_range(start, direction="up", max_decimals=4):
|
|
||||||
values = []
|
|
||||||
for d in range(0, max_decimals + 1):
|
|
||||||
step = 10 ** -d
|
|
||||||
if direction == "up":
|
|
||||||
values.append(start + (1 - step))
|
|
||||||
else:
|
|
||||||
values.append(start - (1 - step))
|
|
||||||
return values
|
|
||||||
|
|
||||||
|
|
||||||
beta_5_85 = deg_range(5, 85, 5)
|
|
||||||
lambda_5_85 = deg_range(5, 85, 5)
|
|
||||||
|
|
||||||
beta_5_90 = deg_range(5, 90, 5)
|
|
||||||
lambda_5_90 = deg_range(5, 90, 5)
|
|
||||||
|
|
||||||
beta_0_90 = deg_range(0, 90, 5)
|
|
||||||
lambda_0_90 = deg_range(0, 90, 5)
|
|
||||||
|
|
||||||
beta_90 = [90.0]
|
|
||||||
lambda_90 = [90.0]
|
|
||||||
beta_0 = [0.0]
|
|
||||||
lambda_0 = [0.0]
|
|
||||||
|
|
||||||
beta_asym_89 = asymptotic_range(89.0, direction="up")
|
|
||||||
lambda_asym_0 = asymptotic_range(1.0, direction="down")
|
|
||||||
|
|
||||||
groups = {
|
|
||||||
1: list(product(beta_5_85, lambda_5_85)),
|
|
||||||
# 2: list(product(beta_0, lambda_0_90)),
|
|
||||||
# 3: list(product(beta_5_85, lambda_0)),
|
|
||||||
# 4: list(product(beta_90, lambda_5_90)),
|
|
||||||
# 5: list(product(beta_asym_89, lambda_asym_0)),
|
|
||||||
# 6: list(product(beta_5_85, lambda_90)),
|
|
||||||
7: list(product(lambda_asym_0, lambda_0_90)),
|
|
||||||
# 8: list(product(beta_0_90, lambda_asym_0)),
|
|
||||||
# 9: list(product(beta_asym_89, lambda_0_90)),
|
|
||||||
# 10: list(product(beta_0_90, beta_asym_89)),
|
|
||||||
}
|
|
||||||
|
|
||||||
for nr, points in groups.items():
|
|
||||||
points_cart = []
|
|
||||||
for point in points:
|
|
||||||
beta, lamb = point
|
|
||||||
cart = ell.ell2cart(wu.deg2rad(beta), wu.deg2rad(lamb))
|
|
||||||
points_cart.append(cart)
|
|
||||||
groups[nr] = points_cart
|
|
||||||
|
|
||||||
results = {}
|
|
||||||
|
|
||||||
for nr, points in groups.items():
|
|
||||||
group_results = {"ell": [],
|
|
||||||
"para": [],
|
|
||||||
"geod": []}
|
|
||||||
for point in points:
|
|
||||||
elli = ell.cart2ell(point)
|
|
||||||
cart_elli = ell.ell2cart(elli[0], elli[1])
|
|
||||||
group_results["ell"].append(np.linalg.norm(point - cart_elli, axis=-1))
|
|
||||||
|
|
||||||
para = ell.cart2para(point)
|
|
||||||
cart_para = ell.para2cart(para[0], para[1])
|
|
||||||
group_results["para"].append(np.linalg.norm(point - cart_para, axis=-1))
|
|
||||||
|
|
||||||
geod = ell.cart2geod(point, "ligas3")
|
|
||||||
cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
|
|
||||||
group_results["geod"].append(np.linalg.norm(point - cart_geod, axis=-1))
|
|
||||||
|
|
||||||
group_results["ell"] = np.array(group_results["ell"])
|
|
||||||
group_results["para"] = np.array(group_results["para"])
|
|
||||||
group_results["geod"] = np.array(group_results["geod"])
|
|
||||||
results[nr] = group_results
|
|
||||||
|
|
||||||
with open(f"conversion_results_{ellips}.pkl", "wb") as f:
|
|
||||||
pickle.dump(results, f)
|
|
||||||
|
|
||||||
df = pd.DataFrame({
|
|
||||||
"Gruppe": [nr for nr in results.keys()],
|
|
||||||
"max_Δr_ell": [f"{max(result["ell"]):.3g}" for result in results.values()],
|
|
||||||
"max_Δr_para": [f"{max(result["para"]):.3g}" for result in results.values()],
|
|
||||||
"max_Δr_geod": [f"{max(result["geod"]):.3g}" for result in results.values()]
|
|
||||||
})
|
|
||||||
|
|
||||||
print(df)
|
|
||||||
119
ellipsoide.py
119
ellipsoide.py
@@ -59,6 +59,14 @@ class EllipsoidBiaxial:
|
|||||||
phi2p = lambda self, phi: self.N(phi) * cos(phi)
|
phi2p = lambda self, phi: self.N(phi) * cos(phi)
|
||||||
|
|
||||||
def bi_cart2ell(self, point: NDArrayself, Eh: float = 0.001, Ephi: float = wu.gms2rad([0, 0, 0.001])) -> Tuple[float, float, float]:
|
def bi_cart2ell(self, point: NDArrayself, Eh: float = 0.001, Ephi: float = wu.gms2rad([0, 0, 0.001])) -> Tuple[float, float, float]:
|
||||||
|
"""
|
||||||
|
Umrechnung von kartesischen in ellipsoidische Koordinaten auf einem Rotationsellipsoid
|
||||||
|
# TODO: Quelle
|
||||||
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
|
:param Eh: Grenzwert für die Höhe
|
||||||
|
:param Ephi: Grenzwert für die Breite
|
||||||
|
:return: ellipsoidische Breite, Länge, geodätische Höhe
|
||||||
|
"""
|
||||||
x, y, z = point
|
x, y, z = point
|
||||||
|
|
||||||
lamb = arctan2(y, x)
|
lamb = arctan2(y, x)
|
||||||
@@ -87,6 +95,14 @@ class EllipsoidBiaxial:
|
|||||||
return phi, lamb, h
|
return phi, lamb, h
|
||||||
|
|
||||||
def bi_ell2cart(self, phi: float, lamb: float, h: float) -> NDArray:
|
def bi_ell2cart(self, phi: float, lamb: float, h: float) -> NDArray:
|
||||||
|
"""
|
||||||
|
Umrechnung von ellipsoidischen in kartesische Koordinaten auf einem Rotationsellipsoid
|
||||||
|
# TODO: Quelle
|
||||||
|
:param phi: ellipsoidische Breite
|
||||||
|
:param lamb: ellipsoidische Länge
|
||||||
|
:param h: geodätische Höhe
|
||||||
|
:return: Punkt in kartesischen Koordinaten
|
||||||
|
"""
|
||||||
W = sqrt(1 - self.e**2 * sin(phi)**2)
|
W = sqrt(1 - self.e**2 * sin(phi)**2)
|
||||||
N = self.a / W
|
N = self.a / W
|
||||||
x = (N+h) * cos(phi) * cos(lamb)
|
x = (N+h) * cos(phi) * cos(lamb)
|
||||||
@@ -112,7 +128,8 @@ class EllipsoidTriaxial:
|
|||||||
@classmethod
|
@classmethod
|
||||||
def init_name(cls, name: str):
|
def init_name(cls, name: str):
|
||||||
"""
|
"""
|
||||||
Mögliche Ellipsoide: BursaFialova1993, BursaSima1980, Eitschberger1978, Bursa1972, Bursa1970, BesselBiaxial
|
Mögliche Ellipsoide: BursaFialova1993, BursaSima1980, BursaSima1980round, Eitschberger1978, Bursa1972,
|
||||||
|
Bursa1970, BesselBiaxial, Fiction, KarneyTest2024
|
||||||
Panou et al (2020)
|
Panou et al (2020)
|
||||||
:param name: Name des dreiachsigen Ellipsoids
|
:param name: Name des dreiachsigen Ellipsoids
|
||||||
"""
|
"""
|
||||||
@@ -213,12 +230,9 @@ class EllipsoidTriaxial:
|
|||||||
def ellu2cart(self, beta: float, lamb: float, u: float) -> NDArray:
|
def ellu2cart(self, beta: float, lamb: float, u: float) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Panou 2014 12ff.
|
Panou 2014 12ff.
|
||||||
Elliptische Breite+Länge sind nicht gleich der geodätischen
|
:param beta: ellipsoidische Breite
|
||||||
Verhältnisse des Ellipsoids bekannt, Größe verändern bis Punkt erreicht,
|
:param lamb: ellipsoidische Länge
|
||||||
dann ist u die Größe entlang der z-Achse
|
:param u: radiale Koordinate entlang der kleinen Halbachse
|
||||||
:param beta: ellipsoidische Breite [rad]
|
|
||||||
:param lamb: ellipsoidische Länge [rad]
|
|
||||||
:param u: Größe entlang der z-Achse
|
|
||||||
:return: Punkt in kartesischen Koordinaten
|
:return: Punkt in kartesischen Koordinaten
|
||||||
"""
|
"""
|
||||||
x = sqrt(u**2 + self.Ex**2) * sqrt(cos(beta)**2 + self.Ee**2/self.Ex**2 * sin(beta)**2) * cos(lamb)
|
x = sqrt(u**2 + self.Ex**2) * sqrt(cos(beta)**2 + self.Ee**2/self.Ex**2 * sin(beta)**2) * cos(lamb)
|
||||||
@@ -231,7 +245,7 @@ class EllipsoidTriaxial:
|
|||||||
"""
|
"""
|
||||||
Panou 2014 15ff.
|
Panou 2014 15ff.
|
||||||
:param point: Punkt in kartesischen Koordinaten
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
:return: elliptische Breite, elliptische Länge, Größe entlang der z-Achse
|
:return: ellipsoidische Breite, ellipsoidische Länge, radiale Koordinate entlang der kleinen Halbachse
|
||||||
"""
|
"""
|
||||||
x, y, z = point
|
x, y, z = point
|
||||||
c2 = self.ax**2 + self.ay**2 + self.b**2 - x**2 - y**2 - z**2
|
c2 = self.ax**2 + self.ay**2 + self.b**2 - x**2 - y**2 - z**2
|
||||||
@@ -261,8 +275,8 @@ class EllipsoidTriaxial:
|
|||||||
def ell2cart(self, beta: float | NDArray, lamb: float | NDArray) -> NDArray:
|
def ell2cart(self, beta: float | NDArray, lamb: float | NDArray) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Panou, Korakitis 2019 2
|
Panou, Korakitis 2019 2
|
||||||
:param beta: elliptische Breite [rad]
|
:param beta: ellipsoidische Breite
|
||||||
:param lamb: elliptische Länge [rad]
|
:param lamb: ellipsoidische Länge
|
||||||
:return: Punkt in kartesischen Koordinaten
|
:return: Punkt in kartesischen Koordinaten
|
||||||
"""
|
"""
|
||||||
beta = np.asarray(beta, dtype=float)
|
beta = np.asarray(beta, dtype=float)
|
||||||
@@ -297,8 +311,8 @@ class EllipsoidTriaxial:
|
|||||||
def ell2cart_bektas(self, beta: float | NDArray, omega: float | NDArray) -> NDArray:
|
def ell2cart_bektas(self, beta: float | NDArray, omega: float | NDArray) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Bektas 2015
|
Bektas 2015
|
||||||
:param beta: elliptische Breite [rad]
|
:param beta: ellipsoidische Breite
|
||||||
:param omega: elliptische Länge [rad]
|
:param omega: ellipsoidische Länge
|
||||||
:return: Punkt in kartesischen Koordinaten
|
:return: Punkt in kartesischen Koordinaten
|
||||||
"""
|
"""
|
||||||
x = self.ax * cos(omega) * sqrt((self.ax**2 - self.ay**2 * sin(beta)**2 - self.b**2 * cos(beta)**2) / (self.ax**2 - self.b**2))
|
x = self.ax * cos(omega) * sqrt((self.ax**2 - self.ay**2 * sin(beta)**2 - self.b**2 * cos(beta)**2) / (self.ax**2 - self.b**2))
|
||||||
@@ -310,8 +324,8 @@ class EllipsoidTriaxial:
|
|||||||
def ell2cart_karney(self, beta: float | NDArray, lamb: float | NDArray) -> NDArray:
|
def ell2cart_karney(self, beta: float | NDArray, lamb: float | NDArray) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Karney 2025 Geographic Lib
|
Karney 2025 Geographic Lib
|
||||||
:param beta: elliptische Breite [rad]
|
:param beta: ellipsoidische Breite
|
||||||
:param lamb: elliptische Länge [rad]
|
:param lamb: ellipsoidische Länge
|
||||||
:return: Punkt in kartesischen Koordinaten
|
:return: Punkt in kartesischen Koordinaten
|
||||||
"""
|
"""
|
||||||
k = sqrt(self.ay**2 - self.b**2) / sqrt(self.ax**2 - self.b**2)
|
k = sqrt(self.ay**2 - self.b**2) / sqrt(self.ax**2 - self.b**2)
|
||||||
@@ -321,11 +335,11 @@ class EllipsoidTriaxial:
|
|||||||
Z = self.b * sin(beta) * sqrt(k**2 + k_**2 * sin(lamb)**2)
|
Z = self.b * sin(beta) * sqrt(k**2 + k_**2 * sin(lamb)**2)
|
||||||
return np.array([X, Y, Z])
|
return np.array([X, Y, Z])
|
||||||
|
|
||||||
def cart2ell_yFake(self, point: NDArray, start_delta) -> Tuple[float, float]:
|
def cart2ell_yFake(self, point: NDArray) -> Tuple[float, float]:
|
||||||
"""
|
"""
|
||||||
|
Bei Fehlschlagen von cart2ell
|
||||||
:param point:
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
:return:
|
:return: ellipsoidische Breite und Länge
|
||||||
"""
|
"""
|
||||||
x, y, z = point
|
x, y, z = point
|
||||||
delta_y = 1e-4
|
delta_y = 1e-4
|
||||||
@@ -363,8 +377,8 @@ class EllipsoidTriaxial:
|
|||||||
:param point: Punkt in kartesischen Koordinaten
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
:param eps: zu erreichende Genauigkeit
|
:param eps: zu erreichende Genauigkeit
|
||||||
:param maxI: maximale Anzahl Iterationen
|
:param maxI: maximale Anzahl Iterationen
|
||||||
:param noFake:
|
:param noFake: y numerisch anpassen?
|
||||||
:return: elliptische Breite und Länge [rad]
|
:return: ellipsoidische Breite und Länge
|
||||||
"""
|
"""
|
||||||
x, y, z = point
|
x, y, z = point
|
||||||
beta, lamb = self.cart2ell_panou(point)
|
beta, lamb = self.cart2ell_panou(point)
|
||||||
@@ -408,6 +422,7 @@ class EllipsoidTriaxial:
|
|||||||
return beta, lamb
|
return beta, lamb
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
# Wenn die Berechnung fehlschlägt auf Grund von sehr kleinem y, solange anpassen, bis Umrechnung ohne Fehler
|
||||||
delta_y = 10 ** math.floor(math.log10(abs(self.ay/1000)))
|
delta_y = 10 ** math.floor(math.log10(abs(self.ay/1000)))
|
||||||
if abs(y) < delta_y and not noFake:
|
if abs(y) < delta_y and not noFake:
|
||||||
return self.cart2ell_yFake(point, delta_y)
|
return self.cart2ell_yFake(point, delta_y)
|
||||||
@@ -418,7 +433,7 @@ class EllipsoidTriaxial:
|
|||||||
"""
|
"""
|
||||||
Panou, Korakitis 2019 2f. (analytisch -> Näherung)
|
Panou, Korakitis 2019 2f. (analytisch -> Näherung)
|
||||||
:param point: Punkt in kartesischen Koordinaten
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
:return: elliptische Breite, elliptische Länge
|
:return: ellipsoidische Breite und Länge
|
||||||
"""
|
"""
|
||||||
x, y, z = point
|
x, y, z = point
|
||||||
|
|
||||||
@@ -477,7 +492,7 @@ class EllipsoidTriaxial:
|
|||||||
:param point: Punkt in kartesischen Koordinaten
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
:param eps: zu erreichende Genauigkeit
|
:param eps: zu erreichende Genauigkeit
|
||||||
:param maxI: maximale Anzahl Iterationen
|
:param maxI: maximale Anzahl Iterationen
|
||||||
:return: elliptische Breite und Länge [rad]
|
:return: ellipsoidische Breite und Länge
|
||||||
"""
|
"""
|
||||||
x, y, z = point
|
x, y, z = point
|
||||||
phi, lamb = self.cart2para(point)
|
phi, lamb = self.cart2para(point)
|
||||||
@@ -503,9 +518,9 @@ class EllipsoidTriaxial:
|
|||||||
def geod2cart(self, phi: float | NDArray, lamb: float | NDArray, h: float) -> NDArray:
|
def geod2cart(self, phi: float | NDArray, lamb: float | NDArray, h: float) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Ligas 2012, 250
|
Ligas 2012, 250
|
||||||
:param phi: geodätische Breite [rad]
|
:param phi: geodätische Breite
|
||||||
:param lamb: geodätische Länge [rad]
|
:param lamb: geodätische Länge
|
||||||
:param h: Höhe über dem Ellipsoid
|
:param h: geodätische Höhe
|
||||||
:return: kartesische Koordinaten
|
:return: kartesische Koordinaten
|
||||||
"""
|
"""
|
||||||
v = self.ax / sqrt(1 - self.ex**2*sin(phi)**2-self.ee**2*cos(phi)**2*sin(lamb)**2)
|
v = self.ax / sqrt(1 - self.ex**2*sin(phi)**2-self.ee**2*cos(phi)**2*sin(lamb)**2)
|
||||||
@@ -521,7 +536,7 @@ class EllipsoidTriaxial:
|
|||||||
:param point: Punkt in kartesischen Koordinaten
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
:param maxIter: maximale Anzahl Iterationen
|
:param maxIter: maximale Anzahl Iterationen
|
||||||
:param maxLoa: Level of Accuracy, das erreicht werden soll
|
:param maxLoa: Level of Accuracy, das erreicht werden soll
|
||||||
:return: phi, lambda, h
|
:return: geodätische Breite, Länge, Höhe
|
||||||
"""
|
"""
|
||||||
xG, yG, zG = point
|
xG, yG, zG = point
|
||||||
|
|
||||||
@@ -596,8 +611,8 @@ class EllipsoidTriaxial:
|
|||||||
def para2cart(self, u: float | NDArray, v: float | NDArray) -> NDArray:
|
def para2cart(self, u: float | NDArray, v: float | NDArray) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Panou, Korakitits 2020, 4
|
Panou, Korakitits 2020, 4
|
||||||
:param u: Parameter u
|
:param u: parametrische Breite
|
||||||
:param v: Parameter v
|
:param v: parametrische Länge
|
||||||
:return: Punkt in kartesischen Koordinaten
|
:return: Punkt in kartesischen Koordinaten
|
||||||
"""
|
"""
|
||||||
x = self.ax * cos(u) * cos(v)
|
x = self.ax * cos(u) * cos(v)
|
||||||
@@ -610,7 +625,7 @@ class EllipsoidTriaxial:
|
|||||||
"""
|
"""
|
||||||
Panou, Korakitits 2020, 4
|
Panou, Korakitits 2020, 4
|
||||||
:param point: Punkt in kartesischen Koordinaten
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
:return: parametrische Koordinaten
|
:return: parametrische Breite, Länge
|
||||||
"""
|
"""
|
||||||
x, y, z = point
|
x, y, z = point
|
||||||
|
|
||||||
@@ -633,20 +648,20 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
def ell2para(self, beta: float, lamb: float) -> Tuple[float, float]:
|
def ell2para(self, beta: float, lamb: float) -> Tuple[float, float]:
|
||||||
"""
|
"""
|
||||||
Umrechung von elliptischen in parametrische Koordinaten (über kartesische Koordinaten)
|
Umrechung von ellipsoidischen in parametrische Koordinaten (über kartesische Koordinaten)
|
||||||
:param beta: elliptische Breite
|
:param beta: ellipsoidische Breite
|
||||||
:param lamb: elliptische Länge
|
:param lamb: ellipsoidische Länge
|
||||||
:return: parametrische Koordinaten
|
:return: parametrische Breite, Länge
|
||||||
"""
|
"""
|
||||||
cart = self.ell2cart(beta, lamb)
|
cart = self.ell2cart(beta, lamb)
|
||||||
return self.cart2para(cart)
|
return self.cart2para(cart)
|
||||||
|
|
||||||
def para2ell(self, u: float, v: float) -> Tuple[float, float]:
|
def para2ell(self, u: float, v: float) -> Tuple[float, float]:
|
||||||
"""
|
"""
|
||||||
Umrechung von parametrischen in elliptische Koordinaten (über kartesische Koordinaten)
|
Umrechung von parametrischen in ellipsoidische Koordinaten (über kartesische Koordinaten)
|
||||||
:param u: u
|
:param u: parametrische Breite
|
||||||
:param v: v
|
:param v: parametrische Länge
|
||||||
:return: elliptische Koordinaten
|
:return: ellipsoidische Breite, Länge
|
||||||
"""
|
"""
|
||||||
cart = self.para2cart(u, v)
|
cart = self.para2cart(u, v)
|
||||||
return self.cart2ell(cart)
|
return self.cart2ell(cart)
|
||||||
@@ -654,12 +669,12 @@ class EllipsoidTriaxial:
|
|||||||
def para2geod(self, u: float, v: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> Tuple[float, float, float]:
|
def para2geod(self, u: float, v: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> Tuple[float, float, float]:
|
||||||
"""
|
"""
|
||||||
Umrechung von parametrischen in geodätische Koordinaten (über kartesische Koordinaten)
|
Umrechung von parametrischen in geodätische Koordinaten (über kartesische Koordinaten)
|
||||||
:param u: u
|
:param u: parametrische Breite
|
||||||
:param v: v
|
:param v: parametrische Länge
|
||||||
:param mode: ligas1, ligas2, oder ligas3
|
:param mode: ligas1, ligas2, oder ligas3
|
||||||
:param maxIter: maximale Anzahl Iterationen
|
:param maxIter: maximale Anzahl Iterationen
|
||||||
:param maxLoa: Level of Accuracy, das erreicht werden soll
|
:param maxLoa: Level of Accuracy, das erreicht werden soll
|
||||||
:return: geodätische Koordinaten
|
:return: geodätische Breite, Länge, Höhe
|
||||||
"""
|
"""
|
||||||
cart = self.para2cart(u, v)
|
cart = self.para2cart(u, v)
|
||||||
return self.cart2geod(cart, mode, maxIter, maxLoa)
|
return self.cart2geod(cart, mode, maxIter, maxLoa)
|
||||||
@@ -667,41 +682,41 @@ class EllipsoidTriaxial:
|
|||||||
def geod2para(self, phi: float, lamb: float, h: float) -> Tuple[float, float]:
|
def geod2para(self, phi: float, lamb: float, h: float) -> Tuple[float, float]:
|
||||||
"""
|
"""
|
||||||
Umrechung von geodätischen in parametrische Koordinaten (über kartesische Koordinaten)
|
Umrechung von geodätischen in parametrische Koordinaten (über kartesische Koordinaten)
|
||||||
:param phi: u
|
:param phi: geodätische Breite
|
||||||
:param lamb: v
|
:param lamb: geodätische Länge
|
||||||
:param h: geodätische Höhe
|
:param h: geodätische Höhe
|
||||||
:return: parametrische Koordinaten
|
:return: parametrische Breite, Länge
|
||||||
"""
|
"""
|
||||||
cart = self.geod2cart(phi, lamb, h)
|
cart = self.geod2cart(phi, lamb, h)
|
||||||
return self.cart2para(cart)
|
return self.cart2para(cart)
|
||||||
|
|
||||||
def ell2geod(self, beta: float, lamb: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> Tuple[float, float, float]:
|
def ell2geod(self, beta: float, lamb: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> Tuple[float, float, float]:
|
||||||
"""
|
"""
|
||||||
Umrechung von elliptischen in geodätische Koordinaten (über kartesische Koordinaten)
|
Umrechung von ellipsoidischen in geodätische Koordinaten (über kartesische Koordinaten)
|
||||||
:param beta: elliptische Breite
|
:param beta: ellipsoidische Breite
|
||||||
:param lamb: eliptische Länge
|
:param lamb: ellipsoidische Länge
|
||||||
:param mode: ligas1, ligas2, oder ligas3
|
:param mode: ligas1, ligas2, oder ligas3
|
||||||
:param maxIter: maximale Anzahl Iterationen
|
:param maxIter: maximale Anzahl Iterationen
|
||||||
:param maxLoa: Level of Accuracy, das erreicht werden soll
|
:param maxLoa: Level of Accuracy, das erreicht werden soll
|
||||||
:return: geodätische Koordinaten
|
:return: geodätische Breite, Länge, Höhe
|
||||||
"""
|
"""
|
||||||
cart = self.ell2cart(beta, lamb)
|
cart = self.ell2cart(beta, lamb)
|
||||||
return self.cart2geod(cart, mode, maxIter, maxLoa)
|
return self.cart2geod(cart, mode, maxIter, maxLoa)
|
||||||
|
|
||||||
def geod2ell(self, phi: float, lamb: float, h: float) -> Tuple[float, float]:
|
def geod2ell(self, phi: float, lamb: float, h: float) -> Tuple[float, float]:
|
||||||
"""
|
"""
|
||||||
Umrechung von geodätischen in elliptische Koordinaten (über kartesische Koordinaten)
|
Umrechung von geodätischen in ellipsoidische Koordinaten (über kartesische Koordinaten)
|
||||||
:param phi: u
|
:param phi: geodätische Breite
|
||||||
:param lamb: v
|
:param lamb: geodätische Länge
|
||||||
:param h: geodätische Höhe
|
:param h: geodätische Höhe
|
||||||
:return: elliptische Koordinaten
|
:return: ellipsoidische Breite, Länge
|
||||||
"""
|
"""
|
||||||
cart = self.geod2cart(phi, lamb, h)
|
cart = self.geod2cart(phi, lamb, h)
|
||||||
return self.cart2ell(cart)
|
return self.cart2ell(cart)
|
||||||
|
|
||||||
def point_on(self, point: NDArray) -> bool:
|
def point_on(self, point: NDArray) -> bool:
|
||||||
"""
|
"""
|
||||||
Test, ob ein Punkt auf dem Ellipsoid liegt.
|
Test, ob ein Punkt auf dem Ellipsoid liegt
|
||||||
:param point: kartesische 3D-Koordinaten
|
:param point: kartesische 3D-Koordinaten
|
||||||
:return: Punkt auf dem Ellispoid?
|
:return: Punkt auf dem Ellispoid?
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -1,6 +1,17 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
def case1(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
|
def case1(E: float, F: float, G: float, pG: NDArray, pE: NDArray) -> Tuple[NDArray, NDArray]:
|
||||||
|
"""
|
||||||
|
Aufstellen des Gleichungssystem für den ersten Fall
|
||||||
|
:param E: Konstante E
|
||||||
|
:param F: Konstante F
|
||||||
|
:param G: Konstante G
|
||||||
|
:param pG: Punkt über dem Ellipsoid
|
||||||
|
:param pE: Punkt auf dem Ellipsoid
|
||||||
|
:return: inverse Jacobi-Matrix, Gleichungssystem
|
||||||
|
"""
|
||||||
j11 = 2 * E * pE[0]
|
j11 = 2 * E * pE[0]
|
||||||
j12 = 2 * F * pE[1]
|
j12 = 2 * F * pE[1]
|
||||||
j13 = 2 * G * pE[2]
|
j13 = 2 * G * pE[2]
|
||||||
@@ -23,7 +34,16 @@ def case1(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
|
|||||||
|
|
||||||
return invJ, fxE
|
return invJ, fxE
|
||||||
|
|
||||||
def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
|
def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray) -> Tuple[NDArray, NDArray]:
|
||||||
|
"""
|
||||||
|
Aufstellen des Gleichungssystem für den zweiten Fall
|
||||||
|
:param E: Konstante E
|
||||||
|
:param F: Konstante F
|
||||||
|
:param G: Konstante G
|
||||||
|
:param pG: Punkt über dem Ellipsoid
|
||||||
|
:param pE: Punkt auf dem Ellipsoid
|
||||||
|
:return: inverse Jacobi-Matrix, Gleichungssystem
|
||||||
|
"""
|
||||||
j11 = 2 * E * pE[0]
|
j11 = 2 * E * pE[0]
|
||||||
j12 = 2 * F * pE[1]
|
j12 = 2 * F * pE[1]
|
||||||
j13 = 2 * G * pE[2]
|
j13 = 2 * G * pE[2]
|
||||||
@@ -48,7 +68,16 @@ def case2(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
|
|||||||
|
|
||||||
return invJ, fxE
|
return invJ, fxE
|
||||||
|
|
||||||
def case3(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray):
|
def case3(E: float, F: float, G: float, pG: np.ndarray, pE: np.ndarray) -> Tuple[NDArray, NDArray]:
|
||||||
|
"""
|
||||||
|
Aufstellen des Gleichungssystem für den dritten Fall
|
||||||
|
:param E: Konstante E
|
||||||
|
:param F: Konstante F
|
||||||
|
:param G: Konstante G
|
||||||
|
:param pG: Punkt über dem Ellipsoid
|
||||||
|
:param pE: Punkt auf dem Ellipsoid
|
||||||
|
:return: inverse Jacobi-Matrix, Gleichungssystem
|
||||||
|
"""
|
||||||
j11 = 2 * E * pE[0]
|
j11 = 2 * E * pE[0]
|
||||||
j12 = 2 * F * pE[1]
|
j12 = 2 * F * pE[1]
|
||||||
j13 = 2 * G * pE[2]
|
j13 = 2 * G * pE[2]
|
||||||
|
|||||||
38
kugel.py
38
kugel.py
@@ -6,6 +6,12 @@ import winkelumrechnungen as wu
|
|||||||
|
|
||||||
|
|
||||||
def cart2sph(point: NDArray) -> Tuple[float, float, float]:
|
def cart2sph(point: NDArray) -> Tuple[float, float, float]:
|
||||||
|
"""
|
||||||
|
Umrechnung von kartesischen in sphärische Koordinaten
|
||||||
|
# TODO: Quelle
|
||||||
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
|
:return: Radius, Breite, Länge
|
||||||
|
"""
|
||||||
x, y, z = point
|
x, y, z = point
|
||||||
r = sqrt(x**2 + y**2 + z**2)
|
r = sqrt(x**2 + y**2 + z**2)
|
||||||
phi = arctan2(z, sqrt(x**2 + y**2))
|
phi = arctan2(z, sqrt(x**2 + y**2))
|
||||||
@@ -15,6 +21,14 @@ def cart2sph(point: NDArray) -> Tuple[float, float, float]:
|
|||||||
|
|
||||||
|
|
||||||
def sph2cart(r: float, phi: float, lamb: float) -> NDArray:
|
def sph2cart(r: float, phi: float, lamb: float) -> NDArray:
|
||||||
|
"""
|
||||||
|
Umrechnung von sphärischen in kartesische Koordinaten
|
||||||
|
# TODO: Quelle
|
||||||
|
:param r: Radius
|
||||||
|
:param phi: Breite
|
||||||
|
:param lamb: Länge
|
||||||
|
:return: Punkt in kartesischen Koordinaten
|
||||||
|
"""
|
||||||
x = r * cos(phi) * cos(lamb)
|
x = r * cos(phi) * cos(lamb)
|
||||||
y = r * cos(phi) * sin(lamb)
|
y = r * cos(phi) * sin(lamb)
|
||||||
z = r * sin(phi)
|
z = r * sin(phi)
|
||||||
@@ -22,7 +36,17 @@ def sph2cart(r: float, phi: float, lamb: float) -> NDArray:
|
|||||||
return np.array([x, y, z])
|
return np.array([x, y, z])
|
||||||
|
|
||||||
|
|
||||||
def gha1(R, phi0, lamb0, s, alpha0):
|
def gha1(R: float, phi0: float, lamb0: float, s: float, alpha0: float) -> Tuple[float, float]:
|
||||||
|
"""
|
||||||
|
Berechnung der 1. GHA auf der Kugel
|
||||||
|
# TODO: Quelle
|
||||||
|
:param R: Radius
|
||||||
|
:param phi0: Breite des Startpunktes
|
||||||
|
:param lamb0: Länge des Startpunktes
|
||||||
|
:param s: Strecke
|
||||||
|
:param alpha0: Azimut
|
||||||
|
:return: Breite, Länge des Zielpunktes
|
||||||
|
"""
|
||||||
s_ = s / R
|
s_ = s / R
|
||||||
|
|
||||||
lamb1 = lamb0 + arctan2(sin(s_) * sin(alpha0),
|
lamb1 = lamb0 + arctan2(sin(s_) * sin(alpha0),
|
||||||
@@ -33,7 +57,17 @@ def gha1(R, phi0, lamb0, s, alpha0):
|
|||||||
return phi1, lamb1
|
return phi1, lamb1
|
||||||
|
|
||||||
|
|
||||||
def gha2(R, phi0, lamb0, phi1, lamb1):
|
def gha2(R: float, phi0: float, lamb0: float, phi1: float, lamb1: float) -> Tuple[float, float, float]:
|
||||||
|
"""
|
||||||
|
Berechnung der 2. GHA auf der Kugel
|
||||||
|
# TODO: Quelle
|
||||||
|
:param R: Radius
|
||||||
|
:param phi0: Breite des Startpunktes
|
||||||
|
:param lamb0: Länge des Startpunktes
|
||||||
|
:param phi1: Breite des Zielpunktes
|
||||||
|
:param lamb1: Länge des Zielpunktes
|
||||||
|
:return: Azimut im Startpunkt, Azimut im Zielpunkt, Strecke
|
||||||
|
"""
|
||||||
s_ = arccos(sin(phi0) * sin(phi1) + cos(phi0) * cos(phi1) * cos(lamb1 - lamb0))
|
s_ = arccos(sin(phi0) * sin(phi1) + cos(phi0) * cos(phi1) * cos(lamb1 - lamb0))
|
||||||
s = R * s_
|
s = R * s_
|
||||||
|
|
||||||
|
|||||||
@@ -110,9 +110,11 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
"jupyter": {
|
||||||
|
"is_executing": true
|
||||||
|
},
|
||||||
"ExecuteTime": {
|
"ExecuteTime": {
|
||||||
"end_time": "2026-02-04T08:51:31.229813Z",
|
"start_time": "2026-02-04T10:52:53.553864Z"
|
||||||
"start_time": "2026-02-04T08:51:31.209338Z"
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
@@ -196,7 +198,7 @@
|
|||||||
],
|
],
|
||||||
"id": "2d061b2f6ef6a78e",
|
"id": "2d061b2f6ef6a78e",
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"execution_count": 20
|
"execution_count": null
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"metadata": {
|
"metadata": {
|
||||||
13
test.py
13
test.py
@@ -1,14 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy.special import factorial as fact
|
|
||||||
from math import comb
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import ellipsoide
|
import ellipsoide
|
||||||
from GHA_triaxial.panou import pq
|
|
||||||
|
|
||||||
ell = ellipsoide.EllipsoidTriaxial.init_name("Eitschberger1978")
|
ell = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
|
||||||
|
|
||||||
x, y, z = ell.para2cart(0.5, 0.7)
|
cart = ell.para2cart(0, np.pi/2)
|
||||||
|
print(cart)
|
||||||
x1 = pq(ell, x, y, z)
|
|
||||||
x2 = ell.p_q(x, y, z)
|
|
||||||
pass
|
|
||||||
21
utils.py
21
utils.py
@@ -1,21 +0,0 @@
|
|||||||
from numpy import arctan2
|
|
||||||
from numpy.typing import NDArray
|
|
||||||
|
|
||||||
from GHA_triaxial.panou import pq_ell
|
|
||||||
from ellipsoide import EllipsoidTriaxial
|
|
||||||
|
|
||||||
|
|
||||||
def sigma2alpha(ell: EllipsoidTriaxial, sigma: NDArray, point: NDArray) -> float:
|
|
||||||
"""
|
|
||||||
Berechnung des Richtungswinkels an einem Punkt anhand der Ableitung zu den kartesischen Koordinaten
|
|
||||||
:param ell: Ellipsoid
|
|
||||||
:param sigma: Ableitungsvektor ver kartesischen Koordinaten
|
|
||||||
:param point: Punkt
|
|
||||||
:return: Richtungswinkel
|
|
||||||
"""
|
|
||||||
p, q = pq_ell(ell, point)
|
|
||||||
P = float(p @ sigma)
|
|
||||||
Q = float(q @ sigma)
|
|
||||||
|
|
||||||
alpha = arctan2(P, Q)
|
|
||||||
return alpha
|
|
||||||
Reference in New Issue
Block a user