Umstrukturierung

This commit is contained in:
2026-02-05 11:12:17 +01:00
parent 4e2491d967
commit 77c7a6f9ab
3 changed files with 173 additions and 229 deletions

View File

@@ -12,28 +12,6 @@ from numpy.typing import NDArray
from GHA_triaxial.utils import alpha_ell2para, pq_ell from GHA_triaxial.utils import alpha_ell2para, pq_ell
def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, num: int, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, List]:
"""
Panou, Korakitits 2019
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha0: Azimut im Startpunkt
:param s: Strecke
:param num: Anzahl Zwischenpunkte
:param all_points: Ausgabe aller Punkte?
:return: Zielpunkt, Azimut im Zielpunkt (, alle Punkte)
"""
phi, lam, _ = ell.cart2geod(point, "ligas3")
p0 = ell.geod2cart(phi, lam, 0)
x0, y0, z0 = p0
p, q = pq_ell(ell, p0)
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
v_init = np.array([x0, dxds0, y0, dyds0, z0, dzds0])
def buildODE(ell: EllipsoidTriaxial) -> Callable: def buildODE(ell: EllipsoidTriaxial) -> Callable:
""" """
Aufbau des DGL-Systems Aufbau des DGL-Systems
@@ -61,6 +39,28 @@ def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, nu
return ODE return ODE
def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, num: int, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, List]:
"""
Panou, Korakitits 2019
:param ell: Ellipsoid
:param point: Punkt in kartesischen Koordinaten
:param alpha0: Azimut im Startpunkt
:param s: Strecke
:param num: Anzahl Zwischenpunkte
:param all_points: Ausgabe aller Punkte?
:return: Zielpunkt, Azimut im Zielpunkt (, alle Punkte)
"""
phi, lam, _ = ell.cart2geod(point, "ligas3")
p0 = ell.geod2cart(phi, lam, 0)
x0, y0, z0 = p0
p, q = pq_ell(ell, p0)
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
v_init = np.array([x0, dxds0, y0, dyds0, z0, dzds0])
ode = buildODE(ell) ode = buildODE(ell)
_, werte = rk.rk4(ode, 0, v_init, s, num) _, werte = rk.rk4(ode, 0, v_init, s, num)

View File

@@ -1,40 +1,11 @@
import numpy as np import numpy as np
from ellipsoide import EllipsoidTriaxial from ellipsoide import EllipsoidTriaxial
import runge_kutta as rk import runge_kutta as rk
import GHA_triaxial.numeric_examples_karney as ne_karney
import GHA_triaxial.numeric_examples_panou as ne_panou
import winkelumrechnungen as wu
from typing import Tuple from typing import Tuple
from numpy.typing import NDArray from numpy.typing import NDArray
# Panou 2013 from utils_angle import arccot, cot, wrap_to_pi
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float,
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
"""
:param ell: triaxiales Ellipsoid
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
:param lamb_1: elllipsoidische Länge Punkt 1
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
:param lamb_2: elllipsoidische Länge Punkt 2
:param n: Anzahl Schritte
:param epsilon:
:param iter_max: Maximale Anzhal Iterationen
:param all_points:
:return:
"""
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
def arccot(x):
return np.arctan2(1.0, x)
def cot(a):
return np.cos(a) / np.sin(a)
def wrap_to_pi(x):
return (x + np.pi) % (2 * np.pi) - np.pi
def sph_azimuth(beta1, lam1, beta2, lam2): def sph_azimuth(beta1, lam1, beta2, lam2):
# sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß) # sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß)
@@ -108,6 +79,23 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
p_3, p_2, p_1, p_0, p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) p_33, p_22, p_11, p_00)
def buildODElamb():
def ODE(lamb, v):
beta, beta_p, X3, X4 = v
(BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
dbeta = beta_p
dbeta_p = p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
dX3 = X4
dX4 = (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
return np.array([dbeta, dbeta_p, dX3, dX4])
return ODE
def q_coef(beta, lamb): def q_coef(beta, lamb):
(BETA, LAMBDA, E, G, (BETA, LAMBDA, E, G,
@@ -130,49 +118,46 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
q_3, q_2, q_1, q_0, q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) q_33, q_22, q_11, q_00)
if lamb_1 != lamb_2: def buildODEbeta():
# def functions(): def ODE(beta, v):
# def f_beta(lamb, beta, beta_p, X3, X4): lamb, lamb_p, Y3, Y4 = v
# return beta_p
#
# def f_beta_p(lamb, beta, beta_p, X3, X4):
# (BETA, LAMBDA, E, G,
# p_3, p_2, p_1, p_0,
# p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
# return p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0
#
# def f_X3(lamb, beta, beta_p, X3, X4):
# return X4
#
# def f_X4(lamb, beta, beta_p, X3, X4):
# (BETA, LAMBDA, E, G,
# p_3, p_2, p_1, p_0,
# p_33, p_22, p_11, p_00) = p_coef(beta, lamb)
# return (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \
# (3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4
#
# return [f_beta, f_beta_p, f_X3, f_X4]
def buildODElamb():
def ODE(lamb, v):
beta, beta_p, X3, X4 = v
(BETA, LAMBDA, E, G, (BETA, LAMBDA, E, G,
p_3, p_2, p_1, p_0, q_3, q_2, q_1, q_0,
p_33, p_22, p_11, p_00) = p_coef(beta, lamb) q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
dbeta = beta_p dlamb = lamb_p
dbeta_p = p_3 * beta_p ** 3 + p_2 * beta_p ** 2 + p_1 * beta_p + p_0 dlamb_p = q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
dX3 = X4 dY3 = Y4
dX4 = (p_33 * beta_p ** 3 + p_22 * beta_p ** 2 + p_11 * beta_p + p_00) * X3 + \ dY4 = (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
(3 * p_3 * beta_p ** 2 + 2 * p_2 * beta_p + p_1) * X4 (3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
return np.array([dbeta, dbeta_p, dX3, dX4]) return np.array([dlamb, dlamb_p, dY3, dY4])
return ODE return ODE
N = n # Panou 2013
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float,
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
"""
:param ell: triaxiales Ellipsoid
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
:param lamb_1: elllipsoidische Länge Punkt 1
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
:param lamb_2: elllipsoidische Länge Punkt 2
:param n: Anzahl Schritte
:param epsilon:
:param iter_max: Maximale Anzhal Iterationen
:param all_points:
:return:
"""
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
if lamb_1 != lamb_2:
N = n
dlamb = lamb_2 - lamb_1 dlamb = lamb_2 - lamb_1
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2) alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
@@ -182,10 +167,6 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1) (_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph) beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
converged = False
iterations = 0
# funcs = functions()
ode_lamb = buildODElamb() ode_lamb = buildODElamb()
def solve_newton(beta_p0_init: float): def solve_newton(beta_p0_init: float):
@@ -307,11 +288,10 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
return alpha_1, alpha_2, s return alpha_1, alpha_2, s
else: # lamb_1 == lamb_2 else: # lamb_1 == lamb_2
N = n N = n
dbeta = beta_2 - beta_1 dbeta = beta_2 - beta_1
if abs(dbeta) < 10**-15: if abs(dbeta) < 1e-15:
if all_points: if all_points:
return 0, 0, 0, np.array([]), np.array([]) return 0, 0, 0, np.array([]), np.array([])
else: else:
@@ -319,68 +299,20 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
lamb_0 = 0 lamb_0 = 0
converged = False
iterations = 0
# def functions_beta():
# def g_lamb(beta, lamb, lamb_p, Y3, Y4):
# return lamb_p
#
# def g_lamb_p(beta, lamb, lamb_p, Y3, Y4):
# (BETA, LAMBDA, E, G,
# q_3, q_2, q_1, q_0,
# q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
# return q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
#
# def g_Y3(beta, lamb, lamb_p, Y3, Y4):
# return Y4
#
# def g_Y4(beta, lamb, lamb_p, Y3, Y4):
# (BETA, LAMBDA, E, G,
# q_3, q_2, q_1, q_0,
# q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
# return (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
# (3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
#
# return [g_lamb, g_lamb_p, g_Y3, g_Y4]
def buildODEbeta():
def ODE(beta, v):
lamb, lamb_p, Y3, Y4 = v
(BETA, LAMBDA, E, G,
q_3, q_2, q_1, q_0,
q_33, q_22, q_11, q_00) = q_coef(beta, lamb)
dlamb = lamb_p
dlamb_p = q_3 * lamb_p ** 3 + q_2 * lamb_p ** 2 + q_1 * lamb_p + q_0
dY3 = Y4
dY4 = (q_33 * lamb_p ** 3 + q_22 * lamb_p ** 2 + q_11 * lamb_p + q_00) * Y3 + \
(3 * q_3 * lamb_p ** 2 + 2 * q_2 * lamb_p + q_1) * Y4
return np.array([dlamb, dlamb_p, dY3, dY4])
return ODE
# funcs_beta = functions_beta()
ode_beta = buildODEbeta() ode_beta = buildODEbeta()
for i in range(iter_max): for i in range(iter_max):
iterations = i + 1
startwerte = [lamb_1, lamb_0, 0.0, 1.0] startwerte = [lamb_1, lamb_0, 0.0, 1.0]
# werte = rk.verfahren(funcs_beta, startwerte, dbeta, N, False)
beta_list, werte = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False) beta_list, werte = rk.rk4(ode_beta, beta_1, startwerte, dbeta, N, False)
beta_end = beta_list[-1] beta_end = beta_list[-1]
# beta_end, lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1] lamb_end, lamb_p_end, Y3_end, Y4_end = werte[-1]
d_lamb_end_d_lambda0 = Y3_end d_lamb_end_d_lambda0 = Y3_end
delta = lamb_end - lamb_2 delta = lamb_end - lamb_2
if abs(delta) < epsilon: if abs(delta) < epsilon:
converged = True
break break
if abs(d_lamb_end_d_lambda0) < 1e-20: if abs(d_lamb_end_d_lambda0) < 1e-20:
@@ -393,7 +325,6 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
lamb_0 = lamb_0 - step lamb_0 = lamb_0 - step
# werte = rk.verfahren(funcs_beta, [beta_1, lamb_1, lamb_0, 0.0, 1.0], dbeta, N, False)
beta_list, werte = rk.rk4(ode_beta, beta_1, np.array([lamb_1, lamb_0, 0.0, 1.0]), dbeta, N, False) beta_list, werte = rk.rk4(ode_beta, beta_1, np.array([lamb_1, lamb_0, 0.0, 1.0]), dbeta, N, False)
# beta_arr = np.zeros(N + 1) # beta_arr = np.zeros(N + 1)

13
utils_angle.py Normal file
View File

@@ -0,0 +1,13 @@
import numpy as np
def arccot(x):
return np.arctan2(1.0, x)
def cot(a):
return np.cos(a) / np.sin(a)
def wrap_to_pi(x):
return (x + np.pi) % (2 * np.pi) - np.pi