Näherungslösung GHA 2
This commit is contained in:
@@ -1,12 +1,10 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from numpy import sin, cos, arcsin, arccos, arctan2
|
|
||||||
from ellipsoide import EllipsoidTriaxial
|
from ellipsoide import EllipsoidTriaxial
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from panou import louville_constant, func_sigma_ell, gha1_ana
|
from panou import louville_constant, func_sigma_ell, gha1_ana
|
||||||
import plotly.graph_objects as go
|
import plotly.graph_objects as go
|
||||||
import winkelumrechnungen as wu
|
import winkelumrechnungen as wu
|
||||||
|
|
||||||
def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: int):
|
def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray]:
|
||||||
l0 = louville_constant(ell, p0, alpha0)
|
l0 = louville_constant(ell, p0, alpha0)
|
||||||
points = [p0]
|
points = [p0]
|
||||||
alphas = [alpha0]
|
alphas = [alpha0]
|
||||||
@@ -17,10 +15,9 @@ def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: in
|
|||||||
break
|
break
|
||||||
p1 = points[-1]
|
p1 = points[-1]
|
||||||
alpha1 = alphas[-1]
|
alpha1 = alphas[-1]
|
||||||
x1, y1, z1 = p1
|
sigma = func_sigma_ell(ell, p1, alpha1)
|
||||||
sigma = func_sigma_ell(ell, x1, y1, z1, alpha1)
|
|
||||||
p2 = p1 + ds_step * sigma
|
p2 = p1 + ds_step * sigma
|
||||||
p2, _, _, _ = ell.cartonell(p2)
|
p2 = ell.cartonell(p2)
|
||||||
ds_step = np.linalg.norm(p2 - p1)
|
ds_step = np.linalg.norm(p2 - p1)
|
||||||
|
|
||||||
points.append(p2)
|
points.append(p2)
|
||||||
@@ -30,7 +27,11 @@ def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: in
|
|||||||
alpha2 = alpha1 + (l0 - l2) / dl_dalpha
|
alpha2 = alpha1 + (l0 - l2) / dl_dalpha
|
||||||
alphas.append(alpha2)
|
alphas.append(alpha2)
|
||||||
s_curr += ds_step
|
s_curr += ds_step
|
||||||
|
|
||||||
|
if all_points:
|
||||||
return points[-1], alphas[-1], np.array(points)
|
return points[-1], alphas[-1], np.array(points)
|
||||||
|
else:
|
||||||
|
return points[-1], alphas[-1]
|
||||||
|
|
||||||
def show_points(points, p0, p1):
|
def show_points(points, p0, p1):
|
||||||
fig = go.Figure()
|
fig = go.Figure()
|
||||||
@@ -57,7 +58,7 @@ if __name__ == '__main__':
|
|||||||
P0 = ell.para2cart(0, 0)
|
P0 = ell.para2cart(0, 0)
|
||||||
alpha0 = wu.deg2rad(90)
|
alpha0 = wu.deg2rad(90)
|
||||||
s = 1000000
|
s = 1000000
|
||||||
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 60, maxPartCircum=32)
|
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=60, maxPartCircum=32)
|
||||||
P1_app, alpha1_app, points = gha1(ell, P0, alpha0, s, 5000)
|
P1_app, alpha1_app, points = gha1(ell, P0, alpha0, s, ds=5000, all_points=True)
|
||||||
show_points(points, P0, P1_ana)
|
show_points(points, P0, P1_ana)
|
||||||
print(np.linalg.norm(P1_app - P1_ana))
|
print(np.linalg.norm(P1_app - P1_ana))
|
||||||
|
|||||||
111
GHA_triaxial/approx_gha2.py
Normal file
111
GHA_triaxial/approx_gha2.py
Normal file
@@ -0,0 +1,111 @@
|
|||||||
|
import numpy as np
|
||||||
|
from numpy import arctan2
|
||||||
|
from ellipsoide import EllipsoidTriaxial
|
||||||
|
from panou import pq_ell
|
||||||
|
from panou_2013_2GHA_num import gha2_num
|
||||||
|
import plotly.graph_objects as go
|
||||||
|
import winkelumrechnungen as wu
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
def sigma2alpha(sigma: NDArray, point: NDArray) -> float:
|
||||||
|
"""
|
||||||
|
Berechnung des Richtungswinkels an einem Punkt anhand der Ableitung zu den kartesischen Koordinaten
|
||||||
|
:param sigma: Ableitungsvektor ver kartesischen Koordinaten
|
||||||
|
:param point: Punkt
|
||||||
|
:return: Richtungswinkel
|
||||||
|
"""
|
||||||
|
""
|
||||||
|
p, q = pq_ell(ell, point)
|
||||||
|
P = float(p @ sigma)
|
||||||
|
Q = float(q @ sigma)
|
||||||
|
|
||||||
|
alpha = arctan2(P, Q)
|
||||||
|
return alpha
|
||||||
|
|
||||||
|
def gha2(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]:
|
||||||
|
"""
|
||||||
|
Numerische Approximation für die zweite Hauptaufgabe
|
||||||
|
:param ell: Ellipsoid
|
||||||
|
:param p0: Startpunkt
|
||||||
|
:param p1: Endpunkt
|
||||||
|
:param ds: maximales Streckenelement
|
||||||
|
:param all_points: Alle Punkte ausgeben?
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
points = np.array([p0, p1])
|
||||||
|
while True:
|
||||||
|
new_points = []
|
||||||
|
|
||||||
|
for i in range(len(points)-1):
|
||||||
|
new_points.append(points[i])
|
||||||
|
|
||||||
|
pi = points[i] + 1/2 * (points[i+1] - points[i])
|
||||||
|
pi = ell.cartonell(pi)
|
||||||
|
|
||||||
|
new_points.append(pi)
|
||||||
|
|
||||||
|
new_points.append(points[-1])
|
||||||
|
points = np.array(new_points)
|
||||||
|
|
||||||
|
elements = np.array([np.linalg.norm(points[i] - points[i+1]) for i in range(len(points)-1)])
|
||||||
|
|
||||||
|
if np.average(elements) < ds:
|
||||||
|
break
|
||||||
|
|
||||||
|
p0i = ell.cartonell(p0 + ds/100 * (points[1] - p0) / np.linalg.norm(points[1] - p0))
|
||||||
|
sigma0 = (p0i - p0) / np.linalg.norm(p0i - p0)
|
||||||
|
alpha0 = sigma2alpha(sigma0, p0)
|
||||||
|
|
||||||
|
p1i = ell.cartonell(p1 - ds/100 * (p1 - points[-2]) / np.linalg.norm(p1 - points[-2]))
|
||||||
|
sigma1 = (p1 - p1i) / np.linalg.norm(p1 - p1i)
|
||||||
|
alpha1 = sigma2alpha(sigma1, p1)
|
||||||
|
|
||||||
|
s = np.sum(np.array([np.linalg.norm(points[i] - points[i+1]) for i in range(len(points)-1)]))
|
||||||
|
|
||||||
|
if all_points:
|
||||||
|
return alpha0, alpha1, s, np.array(points)
|
||||||
|
else:
|
||||||
|
return alpha0, alpha1, s
|
||||||
|
|
||||||
|
def show_points(points: NDArray, points_app: NDArray, p0: NDArray, p1: NDArray):
|
||||||
|
fig = go.Figure()
|
||||||
|
|
||||||
|
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
|
||||||
|
mode='lines', line=dict(color="green", width=3), name="Analytisch")
|
||||||
|
fig.add_scatter3d(x=points_app[:, 0], y=points_app[:, 1], z=points_app[:, 2],
|
||||||
|
mode='lines', line=dict(color="red", width=3), name="Approximiert")
|
||||||
|
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
|
||||||
|
mode='markers', marker=dict(color="black"), name="P0")
|
||||||
|
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
|
||||||
|
mode='markers', marker=dict(color="black"), name="P1")
|
||||||
|
|
||||||
|
fig.update_layout(
|
||||||
|
scene=dict(xaxis_title='X [km]',
|
||||||
|
yaxis_title='Y [km]',
|
||||||
|
zaxis_title='Z [km]',
|
||||||
|
aspectmode='data'))
|
||||||
|
|
||||||
|
fig.show()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
|
||||||
|
|
||||||
|
beta0, lamb0 = (0.2, 0.1)
|
||||||
|
P0 = ell.ell2cart(beta0, lamb0)
|
||||||
|
beta1, lamb1 = (0.7, 0.3)
|
||||||
|
P1 = ell.ell2cart(beta1, lamb1)
|
||||||
|
|
||||||
|
alpha0_app, alpha1_app, s_app, points = gha2(ell, P0, P1, ds=1e-4, all_points=True)
|
||||||
|
|
||||||
|
alpha0, alpha1, s, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=5000, all_points=True)
|
||||||
|
points_ana = []
|
||||||
|
for beta, lamb in zip(betas, lambs):
|
||||||
|
points_ana.append(ell.ell2cart(beta, lamb))
|
||||||
|
points_ana = np.array(points_ana)
|
||||||
|
|
||||||
|
show_points(points_ana, points, P0, P1)
|
||||||
|
print(f"Differenz s: {s_app - s} m")
|
||||||
|
print(f"Differenz alpha0: {wu.rad2deg(alpha0_app - alpha0)}°")
|
||||||
|
print(f"Differenz alpha1: {wu.rad2deg(alpha1_app - alpha1)}°")
|
||||||
@@ -1,108 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
from numpy import sin, cos, arcsin, arccos, arctan2
|
|
||||||
from ellipsoide import EllipsoidTriaxial
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
dbeta_dc = lambda ell, beta, lamb, alpha: -2 * ell.Ey**2 * sin(alpha)**2 * cos(beta) * sin(beta)
|
|
||||||
dlamb_dc = lambda ell, beta, lamb, alpha: -2 * ell.Ee**2 * cos(alpha)**2 * sin(lamb) * cos(lamb)
|
|
||||||
dalpha_dc = lambda ell, beta, lamb, alpha: (2 * sin(alpha) * cos(alpha) *
|
|
||||||
(ell.Ey**2 * cos(beta)**2 + ell.Ee**2 * sin(lamb)**2))
|
|
||||||
|
|
||||||
lamb2_sphere = lambda r, phi1, lamb1, a12, s: lamb1 + arctan2(sin(s/r) * sin(a12),
|
|
||||||
cos(phi1) * cos(s/r) - sin(s/r) * cos(a12))
|
|
||||||
phi2_sphere = lambda r, phi1, lamb1, a12, s: arcsin(sin(phi1) * cos(s/r) + cos(phi1) * sin(s/r) * cos(a12))
|
|
||||||
|
|
||||||
a12_sphere = lambda phi1, lamb1, phi2, lamb2: arctan2(cos(phi2) * sin(lamb2 - lamb1),
|
|
||||||
cos(phi1) * cos(phi2) -
|
|
||||||
sin(phi1) * cos(phi2) * cos(lamb2 - lamb1))
|
|
||||||
s_sphere = lambda r, phi1, lamb1, phi2, lamb2: r * arccos(sin(phi1) * sin(phi2) +
|
|
||||||
cos(phi1) * cos(phi2) * cos(lamb2 - lamb1))
|
|
||||||
|
|
||||||
louville = lambda beta, lamb, alpha: (ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 -
|
|
||||||
ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2)
|
|
||||||
|
|
||||||
def points_approx_gha2(r: float, phi1: np.ndarray, lamb1: np.ndarray, phi2: np.ndarray, lamb2: np.ndarray, num: int = None, step_size: float = 10000):
|
|
||||||
s_approx = s_sphere(r, phi1, lamb1, phi2, lamb2)
|
|
||||||
if num is not None:
|
|
||||||
step_size = s_approx / (num+1)
|
|
||||||
a_approx = a12_sphere(phi1, lamb1, phi2, lamb2)
|
|
||||||
|
|
||||||
points = [np.array([phi1, lamb1, a_approx])]
|
|
||||||
current_s = step_size
|
|
||||||
while current_s < s_approx:
|
|
||||||
phi_n = phi2_sphere(r, phi1, lamb1, a_approx, current_s)
|
|
||||||
lamb_n = lamb2_sphere(r, phi1, lamb1, a_approx, current_s)
|
|
||||||
points.append(np.array([phi_n, lamb_n, a_approx]))
|
|
||||||
current_s += step_size
|
|
||||||
points.append(np.array([phi2, lamb2, a_approx]))
|
|
||||||
return points
|
|
||||||
|
|
||||||
|
|
||||||
def num_update(ell: EllipsoidTriaxial, points, diffs):
|
|
||||||
for i, (beta, lamb, alpha) in enumerate(points):
|
|
||||||
dalpha = dalpha_dc(ell, beta, lamb, alpha)
|
|
||||||
if i == 0 or i == len(points) - 1:
|
|
||||||
grad = np.array([0, 0, dalpha])
|
|
||||||
else:
|
|
||||||
dbeta = dbeta_dc(ell, beta, lamb, alpha)
|
|
||||||
dlamb = dlamb_dc(ell, beta, lamb, alpha)
|
|
||||||
grad = np.array([dbeta, dlamb, dalpha])
|
|
||||||
|
|
||||||
delta = -diffs[i] * grad / np.dot(grad, grad)
|
|
||||||
points[i] += delta
|
|
||||||
return points
|
|
||||||
|
|
||||||
|
|
||||||
def gha2(ell: EllipsoidTriaxial, p1: np.ndarray, p2: np.ndarray, maxI: int):
|
|
||||||
beta1, lamb1 = ell.cart2ell(p1)
|
|
||||||
beta2, lamb2 = ell.cart2ell(p2)
|
|
||||||
points = points_approx_gha2(ell.ax, beta1, lamb1, beta2, lamb2, 5)
|
|
||||||
|
|
||||||
for j in range(maxI):
|
|
||||||
constants = [louville(point[0], point[1], point[2]) for point in points]
|
|
||||||
mean_constant = np.mean(constants)
|
|
||||||
diffs = constants - mean_constant
|
|
||||||
if np.mean(np.abs(diffs)) > 10:
|
|
||||||
points = num_update(ell, points, diffs)
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
for k in range(maxI):
|
|
||||||
|
|
||||||
|
|
||||||
last_diff_alpha = points[-2][-1] - points[-3][-1]
|
|
||||||
alpha_extrap = points[-2][-1] + last_diff_alpha
|
|
||||||
if abs(alpha_extrap - points[-1][-1]) > 0.0005:
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
pass
|
|
||||||
pass
|
|
||||||
return points
|
|
||||||
|
|
||||||
def show_points(ell: EllipsoidTriaxial, points):
|
|
||||||
points_cart = []
|
|
||||||
for point in points:
|
|
||||||
points_cart.append(ell.ell2cart(point[0], point[1]))
|
|
||||||
points_cart = np.array(points_cart)
|
|
||||||
|
|
||||||
fig = plt.figure()
|
|
||||||
ax = fig.add_subplot(111, projection='3d')
|
|
||||||
|
|
||||||
ax.plot(points_cart[:, 0], points_cart[:, 1], points_cart[:, 2])
|
|
||||||
ax.scatter(points_cart[:, 0], points_cart[:, 1], points_cart[:, 2])
|
|
||||||
|
|
||||||
ax.set_xlabel('X')
|
|
||||||
ax.set_ylabel('Y')
|
|
||||||
ax.set_zlabel('Z')
|
|
||||||
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
ell = EllipsoidTriaxial.init_name("Eitschberger1978")
|
|
||||||
p1 = np.array([4189000, 812000, 4735000])
|
|
||||||
p2 = np.array([4090000, 868000, 4808000])
|
|
||||||
p1, phi1, lamb1, h1 = ell.cartonell(p1)
|
|
||||||
p2, phi2, lamb2, h2 = ell.cartonell(p2)
|
|
||||||
points = gha2(ell, p1, p2, 10)
|
|
||||||
show_points(ell, points)
|
|
||||||
@@ -8,21 +8,22 @@ from math import comb
|
|||||||
import GHA_triaxial.numeric_examples_panou as ne_panou
|
import GHA_triaxial.numeric_examples_panou as ne_panou
|
||||||
import GHA_triaxial.numeric_examples_karney as ne_karney
|
import GHA_triaxial.numeric_examples_karney as ne_karney
|
||||||
from ellipsoide import EllipsoidTriaxial
|
from ellipsoide import EllipsoidTriaxial
|
||||||
from typing import Callable
|
from typing import Callable, Tuple, List
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
|
||||||
|
|
||||||
def pq_ell(ell: EllipsoidTriaxial, x: float, y: float, z: float) -> tuple[np.ndarray, np.ndarray]:
|
def pq_ell(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
|
||||||
"""
|
"""
|
||||||
Berechnung von p und q in elliptischen Koordinaten
|
Berechnung von p und q in elliptischen Koordinaten
|
||||||
Panou, Korakitits 2019
|
Panou, Korakitits 2019
|
||||||
:param x: x
|
:param ell: Ellipsoid
|
||||||
:param y: y
|
:param point: Punkt
|
||||||
:param z: z
|
|
||||||
:return: p und q
|
:return: p und q
|
||||||
"""
|
"""
|
||||||
n = ell.func_n(x, y, z)
|
x, y, z = point
|
||||||
|
n = ell.func_n(point)
|
||||||
|
|
||||||
beta, lamb = ell.cart2ell(np.array([x, y, z]))
|
beta, lamb = ell.cart2ell(point)
|
||||||
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
|
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
|
||||||
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
|
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
|
||||||
|
|
||||||
@@ -49,7 +50,7 @@ def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
|||||||
:param ell: Ellipsoid
|
:param ell: Ellipsoid
|
||||||
:return: DGL-System
|
:return: DGL-System
|
||||||
"""
|
"""
|
||||||
def ODE(s: float, v: np.ndarray) -> np.ndarray:
|
def ODE(s: float, v: NDArray) -> NDArray:
|
||||||
"""
|
"""
|
||||||
DGL-System
|
DGL-System
|
||||||
:param s: unabhängige Variable
|
:param s: unabhängige Variable
|
||||||
@@ -58,7 +59,7 @@ def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
|||||||
"""
|
"""
|
||||||
x, dxds, y, dyds, z, dzds = v
|
x, dxds, y, dyds, z, dzds = v
|
||||||
|
|
||||||
H = ell.func_H(x, y, z)
|
H = ell.func_H(np.array([x, y, z]))
|
||||||
h = dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
|
h = dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
|
||||||
|
|
||||||
ddx = -(h/H)*x
|
ddx = -(h/H)*x
|
||||||
@@ -68,7 +69,7 @@ def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
|||||||
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
|
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
|
||||||
return ODE
|
return ODE
|
||||||
|
|
||||||
def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, num: int) -> tuple[np.ndarray, float, list]:
|
def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, num: int, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, List]:
|
||||||
"""
|
"""
|
||||||
Panou, Korakitits 2019
|
Panou, Korakitits 2019
|
||||||
:param ell:
|
:param ell:
|
||||||
@@ -76,12 +77,14 @@ def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
|||||||
:param alpha0:
|
:param alpha0:
|
||||||
:param s:
|
:param s:
|
||||||
:param num:
|
:param num:
|
||||||
|
:param all_points:
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
phi, lam, _ = ell.cart2geod(point, "ligas3")
|
phi, lam, _ = ell.cart2geod(point, "ligas3")
|
||||||
x0, y0, z0 = ell.geod2cart(phi, lam, 0)
|
p0 = ell.geod2cart(phi, lam, 0)
|
||||||
|
x0, y0, z0 = p0
|
||||||
|
|
||||||
p, q = pq_ell(ell, x0, y0, z0)
|
p, q = pq_ell(ell, p0)
|
||||||
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
|
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
|
||||||
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
|
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
|
||||||
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
|
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
|
||||||
@@ -93,7 +96,9 @@ def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
|||||||
_, werte = rk.rk4(ode, 0, v_init, s, num)
|
_, werte = rk.rk4(ode, 0, v_init, s, num)
|
||||||
x1, dx1ds, y1, dy1ds, z1, dz1ds = werte[-1]
|
x1, dx1ds, y1, dy1ds, z1, dz1ds = werte[-1]
|
||||||
|
|
||||||
p1, q1 = pq_ell(ell, x1, y1, z1)
|
point1 = np.array([x1, y1, z1])
|
||||||
|
|
||||||
|
p1, q1 = pq_ell(ell, point1)
|
||||||
sigma = np.array([dx1ds, dy1ds, dz1ds])
|
sigma = np.array([dx1ds, dy1ds, dz1ds])
|
||||||
P = float(p1 @ sigma)
|
P = float(p1 @ sigma)
|
||||||
Q = float(q1 @ sigma)
|
Q = float(q1 @ sigma)
|
||||||
@@ -103,21 +108,23 @@ def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
|||||||
if alpha1 < 0:
|
if alpha1 < 0:
|
||||||
alpha1 += 2 * np.pi
|
alpha1 += 2 * np.pi
|
||||||
|
|
||||||
return np.array([x1, y1, z1]), alpha1, werte
|
if all_points:
|
||||||
|
return point1, alpha1, werte
|
||||||
|
else:
|
||||||
|
return point1, alpha1
|
||||||
|
|
||||||
# ---------------------------------------------------------------------------------------------------------------------
|
# ---------------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
def pq_para(ell: EllipsoidTriaxial, x: float, y: float, z: float) -> tuple[np.ndarray, np.ndarray]:
|
def pq_para(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
|
||||||
"""
|
"""
|
||||||
Berechnung von p und q in parametrischen Koordinaten
|
Berechnung von p und q in parametrischen Koordinaten
|
||||||
Panou, Korakitits 2020
|
Panou, Korakitits 2020
|
||||||
:param x: x
|
:param ell: Ellipsoid
|
||||||
:param y: y
|
:param point: Punkt
|
||||||
:param z: z
|
|
||||||
:return: p und q
|
:return: p und q
|
||||||
"""
|
"""
|
||||||
n = ell.func_n(x, y, z)
|
n = ell.func_n(point)
|
||||||
u, v = ell.cart2para(np.array([x, y, z]))
|
u, v = ell.cart2para(point)
|
||||||
|
|
||||||
# 41-47
|
# 41-47
|
||||||
G = sqrt(1 - ell.ex ** 2 * cos(u) ** 2 - ell.ee ** 2 * sin(u) ** 2 * sin(v) ** 2)
|
G = sqrt(1 - ell.ex ** 2 * cos(u) ** 2 - ell.ee ** 2 * sin(u) ** 2 * sin(v) ** 2)
|
||||||
@@ -136,7 +143,7 @@ def pq_para(ell: EllipsoidTriaxial, x: float, y: float, z: float) -> tuple[np.nd
|
|||||||
|
|
||||||
return p, q
|
return p, q
|
||||||
|
|
||||||
def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int) -> Tuple[NDArray, float]:
|
||||||
"""
|
"""
|
||||||
Panou, Korakitits 2020, 5ff.
|
Panou, Korakitits 2020, 5ff.
|
||||||
:param ell:
|
:param ell:
|
||||||
@@ -153,7 +160,7 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
|||||||
y_m = [y]
|
y_m = [y]
|
||||||
z_m = [z]
|
z_m = [z]
|
||||||
|
|
||||||
p, q = pq_para(ell, x, y, z)
|
p, q = pq_para(ell, point)
|
||||||
|
|
||||||
# 48-50
|
# 48-50
|
||||||
x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
|
x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
|
||||||
@@ -208,7 +215,8 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
|||||||
for c in reversed(c_m):
|
for c in reversed(c_m):
|
||||||
z_s = z_s * s + c
|
z_s = z_s * s + c
|
||||||
|
|
||||||
p_s, q_s = pq_para(ell, x_s, y_s, z_s)
|
p1 = np.array([x_s, y_s, z_s])
|
||||||
|
p_s, q_s = pq_para(ell, p1)
|
||||||
|
|
||||||
# 57-59
|
# 57-59
|
||||||
dx_s = 0
|
dx_s = 0
|
||||||
@@ -234,10 +242,10 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
|||||||
if alpha1 < 0:
|
if alpha1 < 0:
|
||||||
alpha1 += 2 * np.pi
|
alpha1 += 2 * np.pi
|
||||||
|
|
||||||
return np.array([x_s, y_s, z_s]), alpha1
|
return p1, alpha1
|
||||||
|
|
||||||
|
|
||||||
def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> tuple[np.ndarray, float]:
|
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> Tuple[NDArray, float]:
|
||||||
if s > np.pi / maxPartCircum * ell.ax:
|
if s > np.pi / maxPartCircum * ell.ax:
|
||||||
s /= 2
|
s /= 2
|
||||||
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
|
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
|
||||||
@@ -251,14 +259,14 @@ def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
|||||||
|
|
||||||
return point_end, alpha_end
|
return point_end, alpha_end
|
||||||
|
|
||||||
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> tuple[float, float, float]:
|
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> Tuple[float, float, float]:
|
||||||
x, y, z = ell.para2cart(u, v)
|
point = ell.para2cart(u, v)
|
||||||
beta, lamb = ell.para2ell(u, v)
|
beta, lamb = ell.para2ell(u, v)
|
||||||
|
|
||||||
p_para, q_para = pq_para(ell, x, y, z)
|
p_para, q_para = pq_para(ell, point)
|
||||||
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
||||||
|
|
||||||
p_ell, q_ell = pq_ell(ell, x, y, z)
|
p_ell, q_ell = pq_ell(ell, point)
|
||||||
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
|
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
|
||||||
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
||||||
|
|
||||||
@@ -267,49 +275,42 @@ def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float
|
|||||||
|
|
||||||
return beta, lamb, alpha_ell
|
return beta, lamb, alpha_ell
|
||||||
|
|
||||||
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> tuple[float, float, float]:
|
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> Tuple[float, float, float]:
|
||||||
x, y, z = ell.ell2cart(beta, lamb)
|
point = ell.ell2cart(beta, lamb)
|
||||||
u, v = ell.ell2para(beta, lamb)
|
u, v = ell.ell2para(beta, lamb)
|
||||||
|
|
||||||
p_ell, q_ell = pq_ell(ell, x, y, z)
|
p_ell, q_ell = pq_ell(ell, point)
|
||||||
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
||||||
|
|
||||||
p_para, q_para = pq_para(ell, x, y, z)
|
p_para, q_para = pq_para(ell, point)
|
||||||
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
|
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
|
||||||
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
||||||
|
|
||||||
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
|
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
|
||||||
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
||||||
print("Alpha Umrechnung fehlgeschlagen:", np.linalg.norm(sigma_para - sigma_ell))
|
|
||||||
|
|
||||||
return u, v, alpha_para
|
return u, v, alpha_para
|
||||||
|
|
||||||
def func_sigma_ell(ell, x, y, z, alpha):
|
def func_sigma_ell(ell: EllipsoidTriaxial, point: NDArray, alpha: float) -> NDArray:
|
||||||
p, q = pq_ell(ell, x, y, z)
|
p, q = pq_ell(ell, point)
|
||||||
sigma = p * sin(alpha) + q * cos(alpha)
|
sigma = p * sin(alpha) + q * cos(alpha)
|
||||||
return sigma
|
return sigma
|
||||||
|
|
||||||
def func_sigma_para(ell, x, y, z, alpha):
|
def func_sigma_para(ell: EllipsoidTriaxial, point: NDArray, alpha: float) -> NDArray:
|
||||||
p, q = pq_para(ell, x, y, z)
|
p, q = pq_para(ell, point)
|
||||||
sigma = p * sin(alpha) + q * cos(alpha)
|
sigma = p * sin(alpha) + q * cos(alpha)
|
||||||
return sigma
|
return sigma
|
||||||
|
|
||||||
|
|
||||||
def louville_constant(ell: EllipsoidTriaxial, p0: np.ndarray, alpha: float) -> float:
|
def louville_constant(ell: EllipsoidTriaxial, p0: NDArray, alpha: float) -> float:
|
||||||
beta, lamb = ell.cart2ell(p0)
|
beta, lamb = ell.cart2ell(p0)
|
||||||
l = ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2
|
l = ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2
|
||||||
# x, y, z = p0
|
|
||||||
# t1, t2 = ell.func_t12(x, y, z)
|
|
||||||
# l_cart = ell.ay**2 - (t1 * sin(alpha)**2 + t2 * cos(alpha)**2)
|
|
||||||
# if abs(l - l_cart) > 1e-12:
|
|
||||||
# # raise Exception("Louville constant fehlgeschlagen")
|
|
||||||
# print("Diff zwischen constant:", abs(l - l_cart))
|
|
||||||
return l
|
return l
|
||||||
|
|
||||||
def louville_l2c(ell, l):
|
def louville_l2c(ell: EllipsoidTriaxial, l: float) -> float:
|
||||||
return sqrt((l + ell.Ee**2) / ell.Ex**2)
|
return sqrt((l + ell.Ee**2) / ell.Ex**2)
|
||||||
|
|
||||||
def louville_c2l(ell, c):
|
def louville_c2l(ell: EllipsoidTriaxial, c: float) -> float:
|
||||||
return ell.Ex**2 * c**2 - ell.Ee**2
|
return ell.Ex**2 * c**2 - ell.Ee**2
|
||||||
|
|
||||||
|
|
||||||
@@ -322,7 +323,7 @@ if __name__ == "__main__":
|
|||||||
# beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
|
# beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
|
||||||
# P0 = ell.ell2cart(beta0, lamb0)
|
# P0 = ell.ell2cart(beta0, lamb0)
|
||||||
#
|
#
|
||||||
# P1_num, alpha1_num, _ = gha1_num(ell, P0, alpha0_ell, s, 100)
|
# P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 100)
|
||||||
# beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
# beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||||
#
|
#
|
||||||
# _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
# _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
||||||
@@ -342,7 +343,7 @@ if __name__ == "__main__":
|
|||||||
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
|
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
|
||||||
P0 = ell.ell2cart(beta0, lamb0)
|
P0 = ell.ell2cart(beta0, lamb0)
|
||||||
|
|
||||||
P1_num, alpha1_num, _ = gha1_num(ell, P0, alpha0_ell, s, 5000)
|
P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 5000)
|
||||||
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@@ -357,5 +358,3 @@ if __name__ == "__main__":
|
|||||||
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
|
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
|
||||||
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
|
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
|
||||||
print(diffs_karney)
|
print(diffs_karney)
|
||||||
|
|
||||||
pass
|
|
||||||
|
|||||||
@@ -4,9 +4,13 @@ import runge_kutta as rk
|
|||||||
import GHA_triaxial.numeric_examples_karney as ne_karney
|
import GHA_triaxial.numeric_examples_karney as ne_karney
|
||||||
import GHA_triaxial.numeric_examples_panou as ne_panou
|
import GHA_triaxial.numeric_examples_panou as ne_panou
|
||||||
import winkelumrechnungen as wu
|
import winkelumrechnungen as wu
|
||||||
|
from typing import Tuple
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
|
||||||
# Panou 2013
|
# Panou 2013
|
||||||
def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, epsilon=10**-12, iter_max=30):
|
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float,
|
||||||
|
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False
|
||||||
|
) -> Tuple[float, float, float]| Tuple[float, float, float, NDArray, NDArray]:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
:param ell: triaxiales Ellipsoid
|
:param ell: triaxiales Ellipsoid
|
||||||
@@ -17,6 +21,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
|||||||
:param n: Anzahl Schritte
|
:param n: Anzahl Schritte
|
||||||
:param epsilon:
|
:param epsilon:
|
||||||
:param iter_max: Maximale Anzhal Iterationen
|
:param iter_max: Maximale Anzhal Iterationen
|
||||||
|
:param all_points:
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@@ -25,7 +30,6 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
|||||||
def arccot(x):
|
def arccot(x):
|
||||||
return np.arctan2(1.0, x)
|
return np.arctan2(1.0, x)
|
||||||
|
|
||||||
|
|
||||||
def BETA_LAMBDA(beta, lamb):
|
def BETA_LAMBDA(beta, lamb):
|
||||||
|
|
||||||
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
|
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
|
||||||
@@ -60,7 +64,6 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
|||||||
G_beta_lamb = - LAMBDA_ * ell.Ey**2 * np.sin(2*beta)
|
G_beta_lamb = - LAMBDA_ * ell.Ey**2 * np.sin(2*beta)
|
||||||
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
|
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
|
||||||
|
|
||||||
|
|
||||||
return (BETA, LAMBDA, E, G,
|
return (BETA, LAMBDA, E, G,
|
||||||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||||||
E_beta, E_lamb, G_beta, G_lamb,
|
E_beta, E_lamb, G_beta, G_lamb,
|
||||||
@@ -244,15 +247,21 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
|||||||
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
|
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if all_points:
|
||||||
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||||||
|
else:
|
||||||
|
return alpha_1, alpha_2, s
|
||||||
|
|
||||||
if lamb_1 == lamb_2:
|
else: # lamb_1 == lamb_2
|
||||||
|
|
||||||
N = n
|
N = n
|
||||||
dbeta = beta_2 - beta_1
|
dbeta = beta_2 - beta_1
|
||||||
|
|
||||||
if abs(dbeta) < 10**-15:
|
if abs(dbeta) < 10**-15:
|
||||||
|
if all_points:
|
||||||
return 0, 0, 0, np.array([]), np.array([])
|
return 0, 0, 0, np.array([]), np.array([])
|
||||||
|
else:
|
||||||
|
return 0, 0, 0
|
||||||
|
|
||||||
lamb_0 = 0
|
lamb_0 = 0
|
||||||
|
|
||||||
@@ -369,7 +378,10 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
|||||||
else:
|
else:
|
||||||
s = np.trapz(integrand, dx=h)
|
s = np.trapz(integrand, dx=h)
|
||||||
|
|
||||||
|
if all_points:
|
||||||
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||||||
|
else:
|
||||||
|
return alpha_1, alpha_2, s
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
@@ -390,7 +402,6 @@ if __name__ == "__main__":
|
|||||||
# a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
|
# a1, a2, s = gha2_num(ell, beta1, lamb1, beta2, lamb2, n=5000)
|
||||||
# print(s)
|
# print(s)
|
||||||
|
|
||||||
|
|
||||||
# ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
# ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||||
# diffs_panou = []
|
# diffs_panou = []
|
||||||
# examples_panou = ne_panou.get_random_examples(4)
|
# examples_panou = ne_panou.get_random_examples(4)
|
||||||
@@ -421,8 +432,4 @@ if __name__ == "__main__":
|
|||||||
# diffs_karney = np.array(diffs_karney)
|
# diffs_karney = np.array(diffs_karney)
|
||||||
# print(diffs_karney)
|
# print(diffs_karney)
|
||||||
|
|
||||||
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
22
dashboard.py
22
dashboard.py
@@ -150,7 +150,6 @@ def figure_lines(fig, line, color):
|
|||||||
return fig
|
return fig
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
app.layout = html.Div(
|
app.layout = html.Div(
|
||||||
style={"fontFamily": "Arial", "padding": "5px", "width": "70%", "margin-left": "auto"},
|
style={"fontFamily": "Arial", "padding": "5px", "width": "70%", "margin-left": "auto"},
|
||||||
children=[
|
children=[
|
||||||
@@ -254,7 +253,6 @@ def fill_inputs_from_dropdown(selected_ell):
|
|||||||
if not selected_ell:
|
if not selected_ell:
|
||||||
return None, None, None
|
return None, None, None
|
||||||
|
|
||||||
|
|
||||||
ell = EllipsoidTriaxial.init_name(selected_ell)
|
ell = EllipsoidTriaxial.init_name(selected_ell)
|
||||||
ax = ell.ax
|
ax = ell.ax
|
||||||
ay = ell.ay
|
ay = ell.ay
|
||||||
@@ -408,14 +406,14 @@ def calc_and_plot(n1, n2,
|
|||||||
alpha_rad = wu.deg2rad(float(a_deg))
|
alpha_rad = wu.deg2rad(float(a_deg))
|
||||||
s_val = float(s)
|
s_val = float(s)
|
||||||
|
|
||||||
p1 = tuple(map(float, ell.ell2cart(beta_rad, lamb_rad)))
|
p1 = ell.ell2cart(beta_rad, lamb_rad)
|
||||||
out1 = []
|
out1 = []
|
||||||
|
|
||||||
if "analytisch" in method1:
|
if "analytisch" in method1:
|
||||||
# ana
|
# ana
|
||||||
(x2, y2, z2), alpha2 = gha1_ana(ell, p1, alpha_rad, s_val, 70)
|
p2_ana, alpha2 = gha1_ana(ell, p1, alpha_rad, s_val, 70)
|
||||||
p2_ana = (float(x2), float(y2), float(z2))
|
x2, y2, z2 = p2_ana
|
||||||
beta2, lamb2 = ell.cart2ell([x2, y2, z2])
|
beta2, lamb2 = ell.cart2ell(p2_ana)
|
||||||
|
|
||||||
# out1 += f"kartesisch: x₂={p2[0]:.5f} m, y₂={p2[1]:.5f} m, z₂={p2[2]:.5f} m; ellipsoidisch: {aus.gms("β₂", beta2, 5)}, {aus.gms("λ₂", lamb2, 5)},"
|
# out1 += f"kartesisch: x₂={p2[0]:.5f} m, y₂={p2[1]:.5f} m, z₂={p2[2]:.5f} m; ellipsoidisch: {aus.gms("β₂", beta2, 5)}, {aus.gms("λ₂", lamb2, 5)},"
|
||||||
out1.append(
|
out1.append(
|
||||||
@@ -430,8 +428,7 @@ def calc_and_plot(n1, n2,
|
|||||||
|
|
||||||
if "numerisch" in method1:
|
if "numerisch" in method1:
|
||||||
# num
|
# num
|
||||||
(x1, y1, z1), alpha1, werte = gha1_num(ell, p1, alpha_rad, s_val, 10000)
|
p2_num, alpha1, werte = gha1_num(ell, p1, alpha_rad, s_val, 10000, all_points=True)
|
||||||
p2_num = x1, y1, z1
|
|
||||||
beta2_num, lamb2_num = ell.cart2ell(p2_num)
|
beta2_num, lamb2_num = ell.cart2ell(p2_num)
|
||||||
|
|
||||||
out1.append(
|
out1.append(
|
||||||
@@ -448,7 +445,6 @@ def calc_and_plot(n1, n2,
|
|||||||
for x1, _, y1, _, z1, _ in werte:
|
for x1, _, y1, _, z1, _ in werte:
|
||||||
geo_line_num1.append([x1, y1, z1])
|
geo_line_num1.append([x1, y1, z1])
|
||||||
|
|
||||||
|
|
||||||
if "stochastisch" in method1:
|
if "stochastisch" in method1:
|
||||||
# stoch
|
# stoch
|
||||||
p2_stoch = "noch nicht implementiert.."
|
p2_stoch = "noch nicht implementiert.."
|
||||||
@@ -488,15 +484,14 @@ def calc_and_plot(n1, n2,
|
|||||||
alpha_1, alpha_2, s12, beta_arr, lamb_arr = gha2_num(
|
alpha_1, alpha_2, s12, beta_arr, lamb_arr = gha2_num(
|
||||||
ell,
|
ell,
|
||||||
np.deg2rad(float(beta21)), np.deg2rad(float(lamb21)),
|
np.deg2rad(float(beta21)), np.deg2rad(float(lamb21)),
|
||||||
np.deg2rad(float(beta22)), np.deg2rad(float(lamb22))
|
np.deg2rad(float(beta22)), np.deg2rad(float(lamb22)),
|
||||||
|
all_points=True
|
||||||
)
|
)
|
||||||
geo_line_num = []
|
geo_line_num = []
|
||||||
for beta, lamb in zip(beta_arr, lamb_arr):
|
for beta, lamb in zip(beta_arr, lamb_arr):
|
||||||
point = ell.ell2cart(beta, lamb)
|
point = ell.ell2cart(beta, lamb)
|
||||||
geo_line_num.append(point)
|
geo_line_num.append(point)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
out2.append(
|
out2.append(
|
||||||
html.Div([
|
html.Div([
|
||||||
html.Strong("Numerisch: "),
|
html.Strong("Numerisch: "),
|
||||||
@@ -504,7 +499,6 @@ def calc_and_plot(n1, n2,
|
|||||||
])
|
])
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
if "stochastisch" in method2:
|
if "stochastisch" in method2:
|
||||||
# stoch
|
# stoch
|
||||||
a_stoch = "noch nicht implementiert.."
|
a_stoch = "noch nicht implementiert.."
|
||||||
@@ -525,8 +519,6 @@ def calc_and_plot(n1, n2,
|
|||||||
fig = figure_lines(fig, geo_line_num, "#ff8c00")
|
fig = figure_lines(fig, geo_line_num, "#ff8c00")
|
||||||
fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2, "red")])
|
fig = figure_points(fig, [("P1", p1, "black"), ("P2", p2, "red")])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
return "", out2, fig
|
return "", out2, fig
|
||||||
|
|
||||||
return no_update, no_update, no_update
|
return no_update, no_update, no_update
|
||||||
|
|||||||
@@ -1,9 +1,10 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from numpy import sin, cos, arctan, arctan2, sqrt, pi, arccos
|
from numpy import sin, cos, arctan, arctan2, sqrt, pi, arccos
|
||||||
import winkelumrechnungen as wu
|
import winkelumrechnungen as wu
|
||||||
import ausgaben as aus
|
|
||||||
import jacobian_Ligas
|
import jacobian_Ligas
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
from typing import Tuple
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
|
||||||
|
|
||||||
class EllipsoidBiaxial:
|
class EllipsoidBiaxial:
|
||||||
@@ -162,18 +163,40 @@ class EllipsoidTriaxial:
|
|||||||
b = 1 / sqrt(2)
|
b = 1 / sqrt(2)
|
||||||
return cls(ax, ay, b)
|
return cls(ax, ay, b)
|
||||||
|
|
||||||
def func_H(self, x: float, y: float, z: float):
|
def func_H(self, point: NDArray) -> float:
|
||||||
|
"""
|
||||||
|
Berechnung H
|
||||||
|
Panou, Korakitis 2019 [43]
|
||||||
|
:param point: Punkt
|
||||||
|
:return: H
|
||||||
|
"""
|
||||||
|
x, y, z = point
|
||||||
return x ** 2 + y ** 2 / (1 - self.ee ** 2) ** 2 + z ** 2 / (1 - self.ex ** 2) ** 2
|
return x ** 2 + y ** 2 / (1 - self.ee ** 2) ** 2 + z ** 2 / (1 - self.ex ** 2) ** 2
|
||||||
|
|
||||||
def func_n(self, x: float, y: float, z: float, H: float = None):
|
def func_n(self, point: NDArray, H: float = None) -> NDArray:
|
||||||
|
"""
|
||||||
|
Berechnung normalen Vektor
|
||||||
|
Panou, Korakitis 2019 [9-12]
|
||||||
|
:param point: Punkt
|
||||||
|
:param H:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
if H is None:
|
if H is None:
|
||||||
H = self.func_H(x, y, z)
|
H = self.func_H(point)
|
||||||
sqrtH = sqrt(H)
|
sqrtH = sqrt(H)
|
||||||
|
x, y, z = point
|
||||||
return np.array([x / sqrtH,
|
return np.array([x / sqrtH,
|
||||||
y / ((1 - self.ee ** 2) * sqrtH),
|
y / ((1 - self.ee ** 2) * sqrtH),
|
||||||
z / ((1 - self.ex ** 2) * sqrtH)])
|
z / ((1 - self.ex ** 2) * sqrtH)])
|
||||||
|
|
||||||
def func_t12(self, x, y, z):
|
def func_t12(self, point: NDArray) -> Tuple[float, float]:
|
||||||
|
"""
|
||||||
|
Berechnung Wurzeln
|
||||||
|
Panou, Korakitis 2019 [9-12]
|
||||||
|
:param point: Punkt
|
||||||
|
:return: Wurzeln t1, t2
|
||||||
|
"""
|
||||||
|
x, y, z = point
|
||||||
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
|
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
|
||||||
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
|
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
|
||||||
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
|
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
|
||||||
@@ -184,7 +207,7 @@ class EllipsoidTriaxial:
|
|||||||
t1 = c0 / t2
|
t1 = c0 / t2
|
||||||
return t1, t2
|
return t1, t2
|
||||||
|
|
||||||
def ellu2cart(self, beta: float, lamb: float, u: float) -> np.ndarray:
|
def ellu2cart(self, beta: float, lamb: float, u: float) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Panou 2014 12ff.
|
Panou 2014 12ff.
|
||||||
Elliptische Breite+Länge sind nicht gleich der geodätischen
|
Elliptische Breite+Länge sind nicht gleich der geodätischen
|
||||||
@@ -201,7 +224,7 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
return np.array([x, y, z])
|
return np.array([x, y, z])
|
||||||
|
|
||||||
def cart2ellu(self, point: np.ndarray) -> tuple[float, float, float]:
|
def cart2ellu(self, point: NDArray) -> Tuple[float, float, float]:
|
||||||
"""
|
"""
|
||||||
Panou 2014 15ff.
|
Panou 2014 15ff.
|
||||||
:param point: Punkt in kartesischen Koordinaten
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
@@ -232,7 +255,7 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
return beta, lamb, u
|
return beta, lamb, u
|
||||||
|
|
||||||
def ell2cart(self, beta: float | np.ndarray, lamb: float | np.ndarray) -> np.ndarray:
|
def ell2cart(self, beta: float | NDArray, lamb: float | NDArray) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Panou, Korakitis 2019 2
|
Panou, Korakitis 2019 2
|
||||||
:param beta: elliptische Breite [rad]
|
:param beta: elliptische Breite [rad]
|
||||||
@@ -268,7 +291,7 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
return xyz
|
return xyz
|
||||||
|
|
||||||
def ell2cart_bektas(self, beta: float | np.ndarray, omega: float | np.ndarray):
|
def ell2cart_bektas(self, beta: float | NDArray, omega: float | NDArray) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Bektas 2015
|
Bektas 2015
|
||||||
:param beta:
|
:param beta:
|
||||||
@@ -281,14 +304,13 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
return np.array([x, y, z])
|
return np.array([x, y, z])
|
||||||
|
|
||||||
def ell2cart_karney(self, beta: float | np.ndarray, lamb: float | np.ndarray) -> np.ndarray:
|
def ell2cart_karney(self, beta: float | NDArray, lamb: float | NDArray) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Karney 2025 Geographic Lib
|
Karney 2025 Geographic Lib
|
||||||
:param beta:
|
:param beta:
|
||||||
:param lamb:
|
:param lamb:
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
e = sqrt(self.ax**2 - self.b**2) / self.ay
|
|
||||||
k = sqrt(self.ay**2 - self.b**2) / sqrt(self.ax**2 - self.b**2)
|
k = sqrt(self.ay**2 - self.b**2) / sqrt(self.ax**2 - self.b**2)
|
||||||
k_ = sqrt(self.ax**2 - self.ay**2) / sqrt(self.ax**2 - self.b**2)
|
k_ = sqrt(self.ax**2 - self.ay**2) / sqrt(self.ax**2 - self.b**2)
|
||||||
X = self.ax * cos(lamb) * sqrt(k**2*cos(beta)**2+k_**2)
|
X = self.ax * cos(lamb) * sqrt(k**2*cos(beta)**2+k_**2)
|
||||||
@@ -296,11 +318,12 @@ class EllipsoidTriaxial:
|
|||||||
Z = self.b * sin(beta) * sqrt(k**2 + k_**2 * sin(lamb)**2)
|
Z = self.b * sin(beta) * sqrt(k**2 + k_**2 * sin(lamb)**2)
|
||||||
return np.array([X, Y, Z])
|
return np.array([X, Y, Z])
|
||||||
|
|
||||||
def cart2ell(self, point, eps=1e-12, maxI = 100) -> tuple[float, float]:
|
def cart2ell(self, point: NDArray, eps: float = 1e-12, maxI: int = 100) -> Tuple[float, float]:
|
||||||
"""
|
"""
|
||||||
Panou, Korakitis 2019 3f. (num)
|
Panou, Korakitis 2019 3f. (num)
|
||||||
:param point:
|
:param point:
|
||||||
:param eps:
|
:param eps:
|
||||||
|
:param maxI:
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
x, y, z = point
|
x, y, z = point
|
||||||
@@ -344,7 +367,7 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
return beta, lamb
|
return beta, lamb
|
||||||
|
|
||||||
def cart2ell_panou(self, point: np.ndarray) -> tuple[float, float]:
|
def cart2ell_panou(self, point: NDArray) -> Tuple[float, float]:
|
||||||
"""
|
"""
|
||||||
Panou, Korakitis 2019 2f. (analytisch -> Näherung)
|
Panou, Korakitis 2019 2f. (analytisch -> Näherung)
|
||||||
:param point: Punkt in kartesischen Koordinaten
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
@@ -371,7 +394,7 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
# ---- Allgemeiner Fall -----
|
# ---- Allgemeiner Fall -----
|
||||||
|
|
||||||
t1, t2 = self.func_t12(x, y, z)
|
t1, t2 = self.func_t12(point)
|
||||||
|
|
||||||
num_beta = max(t1 - self.b ** 2, 0)
|
num_beta = max(t1 - self.b ** 2, 0)
|
||||||
den_beta = max(self.ay ** 2 - t1, 0)
|
den_beta = max(self.ay ** 2 - t1, 0)
|
||||||
@@ -401,7 +424,7 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
return beta, lamb
|
return beta, lamb
|
||||||
|
|
||||||
def cart2ell_bektas(self, point, eps=1e-12, maxI = 100) -> tuple[float, float]:
|
def cart2ell_bektas(self, point: NDArray, eps: float = 1e-12, maxI: int = 100) -> Tuple[float, float]:
|
||||||
"""
|
"""
|
||||||
Bektas 2015
|
Bektas 2015
|
||||||
:param point:
|
:param point:
|
||||||
@@ -430,7 +453,7 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
return phi, lamb
|
return phi, lamb
|
||||||
|
|
||||||
def geod2cart(self, phi: float | np.ndarray, lamb: float | np.ndarray, h: float) -> np.ndarray:
|
def geod2cart(self, phi: float | NDArray, lamb: float | NDArray, h: float) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Ligas 2012, 250
|
Ligas 2012, 250
|
||||||
:param phi: geodätische Breite [rad]
|
:param phi: geodätische Breite [rad]
|
||||||
@@ -444,7 +467,7 @@ class EllipsoidTriaxial:
|
|||||||
zG = (v * (1-self.ex**2) + h) * sin(phi)
|
zG = (v * (1-self.ex**2) + h) * sin(phi)
|
||||||
return np.array([xG, yG, zG])
|
return np.array([xG, yG, zG])
|
||||||
|
|
||||||
def cart2geod(self, point: np.ndarray, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> tuple[float, float, float]:
|
def cart2geod(self, point: NDArray, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> Tuple[float, float, float]:
|
||||||
"""
|
"""
|
||||||
Ligas 2012
|
Ligas 2012
|
||||||
:param mode: ligas1, ligas2, oder ligas3
|
:param mode: ligas1, ligas2, oder ligas3
|
||||||
@@ -513,7 +536,7 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
return phi, lamb, h
|
return phi, lamb, h
|
||||||
|
|
||||||
def para2cart(self, u: float | np.ndarray, v: float | np.ndarray) -> np.ndarray:
|
def para2cart(self, u: float | NDArray, v: float | NDArray) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Panou, Korakitits 2020, 4
|
Panou, Korakitits 2020, 4
|
||||||
:param u: Parameter u
|
:param u: Parameter u
|
||||||
@@ -526,7 +549,7 @@ class EllipsoidTriaxial:
|
|||||||
z = np.broadcast_to(z, np.shape(x))
|
z = np.broadcast_to(z, np.shape(x))
|
||||||
return np.array([x, y, z])
|
return np.array([x, y, z])
|
||||||
|
|
||||||
def cart2para(self, point: np.ndarray) -> tuple[float, float]:
|
def cart2para(self, point: NDArray) -> Tuple[float, float]:
|
||||||
"""
|
"""
|
||||||
Panou, Korakitits 2020, 4
|
Panou, Korakitits 2020, 4
|
||||||
:param point: Punkt in kartesischen Koordinaten
|
:param point: Punkt in kartesischen Koordinaten
|
||||||
@@ -551,31 +574,31 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
return u, v
|
return u, v
|
||||||
|
|
||||||
def ell2para(self, beta: float, lamb: float) -> tuple[float, float]:
|
def ell2para(self, beta: float, lamb: float) -> Tuple[float, float]:
|
||||||
cart = self.ell2cart(beta, lamb)
|
cart = self.ell2cart(beta, lamb)
|
||||||
return self.cart2para(cart)
|
return self.cart2para(cart)
|
||||||
|
|
||||||
def para2ell(self, u: float, v: float) -> tuple[float, float]:
|
def para2ell(self, u: float, v: float) -> Tuple[float, float]:
|
||||||
cart = self.para2cart(u, v)
|
cart = self.para2cart(u, v)
|
||||||
return self.cart2ell(cart)
|
return self.cart2ell(cart)
|
||||||
|
|
||||||
def para2geod(self, u: float, v: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> tuple[float, float, float]:
|
def para2geod(self, u: float, v: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> Tuple[float, float, float]:
|
||||||
cart = self.para2cart(u, v)
|
cart = self.para2cart(u, v)
|
||||||
return self.cart2geod(cart, mode, maxIter, maxLoa)
|
return self.cart2geod(cart, mode, maxIter, maxLoa)
|
||||||
|
|
||||||
def geod2para(self, phi: float, lamb: float, h: float) -> tuple[float, float]:
|
def geod2para(self, phi: float, lamb: float, h: float) -> Tuple[float, float]:
|
||||||
cart = self.geod2cart(phi, lamb, h)
|
cart = self.geod2cart(phi, lamb, h)
|
||||||
return self.cart2para(cart)
|
return self.cart2para(cart)
|
||||||
|
|
||||||
def ell2geod(self, beta: float, lamb: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> tuple[float, float, float]:
|
def ell2geod(self, beta: float, lamb: float, mode: str = "ligas3", maxIter: int = 30, maxLoa: float = 0.005) -> Tuple[float, float, float]:
|
||||||
cart = self.ell2cart(beta, lamb)
|
cart = self.ell2cart(beta, lamb)
|
||||||
return self.cart2geod(cart, mode, maxIter, maxLoa)
|
return self.cart2geod(cart, mode, maxIter, maxLoa)
|
||||||
|
|
||||||
def geod2ell(self, phi: float, lamb: float, h: float) -> tuple[float, float]:
|
def geod2ell(self, phi: float, lamb: float, h: float) -> Tuple[float, float]:
|
||||||
cart = self.geod2cart(phi, lamb, h)
|
cart = self.geod2cart(phi, lamb, h)
|
||||||
return self.cart2ell(cart)
|
return self.cart2ell(cart)
|
||||||
|
|
||||||
def point_on(self, point: np.ndarray) -> bool:
|
def point_on(self, point: NDArray) -> bool:
|
||||||
"""
|
"""
|
||||||
Test, ob ein Punkt auf dem Ellipsoid liegt.
|
Test, ob ein Punkt auf dem Ellipsoid liegt.
|
||||||
:param point: kartesische 3D-Koordinaten
|
:param point: kartesische 3D-Koordinaten
|
||||||
@@ -587,17 +610,17 @@ class EllipsoidTriaxial:
|
|||||||
else:
|
else:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def cartonell(self, point: np.ndarray) -> tuple[np.ndarray, float, float, float]:
|
def cartonell(self, point: NDArray) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Berechnung des Lotpunktes auf einem Ellipsoiden
|
Berechnung des Lotpunktes auf einem Ellipsoiden
|
||||||
:param point: Punkt in kartesischen Koordinaten, der gelotet werden soll
|
:param point: Punkt in kartesischen Koordinaten, der gelotet werden soll
|
||||||
:return: Lotpunkt in kartesischen Koordinaten, geodätische Koordinaten des Punktes
|
:return: Lotpunkt in kartesischen Koordinaten
|
||||||
"""
|
"""
|
||||||
phi, lamb, h = self.cart2geod(point, "ligas3")
|
phi, lamb, h = self.cart2geod(point, "ligas3")
|
||||||
x, y, z = self. geod2cart(phi, lamb, 0)
|
p = self. geod2cart(phi, lamb, 0)
|
||||||
return np.array([x, y, z]), phi, lamb, h
|
return p
|
||||||
|
|
||||||
def cartellh(self, point: np.ndarray, h: float) -> np.ndarray:
|
def cartellh(self, point: NDArray, h: float) -> NDArray:
|
||||||
"""
|
"""
|
||||||
Punkt auf Ellipsoid hoch loten
|
Punkt auf Ellipsoid hoch loten
|
||||||
:param point: Punkt auf dem Ellipsoid
|
:param point: Punkt auf dem Ellipsoid
|
||||||
@@ -635,7 +658,7 @@ if __name__ == "__main__":
|
|||||||
cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
|
cart_geod = ell.geod2cart(geod[0], geod[1], geod[2])
|
||||||
diff_geod3 = np.linalg.norm(point - cart_geod, axis=-1)
|
diff_geod3 = np.linalg.norm(point - cart_geod, axis=-1)
|
||||||
|
|
||||||
diff_list.append([v_deg, u_deg, diff_ell, diff_para, diff_geod3]) #
|
diff_list.append([v_deg, u_deg, diff_ell, diff_para, diff_geod3])
|
||||||
diffs_ell.append([diff_ell])
|
diffs_ell.append([diff_ell])
|
||||||
diffs_para.append([diff_para])
|
diffs_para.append([diff_para])
|
||||||
diffs_geod.append([diff_geod3])
|
diffs_geod.append([diff_geod3])
|
||||||
|
|||||||
Reference in New Issue
Block a user