Näherungslösung GHA 2
This commit is contained in:
@@ -8,21 +8,22 @@ from math import comb
|
||||
import GHA_triaxial.numeric_examples_panou as ne_panou
|
||||
import GHA_triaxial.numeric_examples_karney as ne_karney
|
||||
from ellipsoide import EllipsoidTriaxial
|
||||
from typing import Callable
|
||||
from typing import Callable, Tuple, List
|
||||
from numpy.typing import NDArray
|
||||
|
||||
|
||||
def pq_ell(ell: EllipsoidTriaxial, x: float, y: float, z: float) -> tuple[np.ndarray, np.ndarray]:
|
||||
def pq_ell(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
|
||||
"""
|
||||
Berechnung von p und q in elliptischen Koordinaten
|
||||
Panou, Korakitits 2019
|
||||
:param x: x
|
||||
:param y: y
|
||||
:param z: z
|
||||
:param ell: Ellipsoid
|
||||
:param point: Punkt
|
||||
:return: p und q
|
||||
"""
|
||||
n = ell.func_n(x, y, z)
|
||||
x, y, z = point
|
||||
n = ell.func_n(point)
|
||||
|
||||
beta, lamb = ell.cart2ell(np.array([x, y, z]))
|
||||
beta, lamb = ell.cart2ell(point)
|
||||
B = ell.Ex ** 2 * cos(beta) ** 2 + ell.Ee ** 2 * sin(beta) ** 2
|
||||
L = ell.Ex ** 2 - ell.Ee ** 2 * cos(lamb) ** 2
|
||||
|
||||
@@ -49,7 +50,7 @@ def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
||||
:param ell: Ellipsoid
|
||||
:return: DGL-System
|
||||
"""
|
||||
def ODE(s: float, v: np.ndarray) -> np.ndarray:
|
||||
def ODE(s: float, v: NDArray) -> NDArray:
|
||||
"""
|
||||
DGL-System
|
||||
:param s: unabhängige Variable
|
||||
@@ -58,7 +59,7 @@ def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
||||
"""
|
||||
x, dxds, y, dyds, z, dzds = v
|
||||
|
||||
H = ell.func_H(x, y, z)
|
||||
H = ell.func_H(np.array([x, y, z]))
|
||||
h = dxds**2 + 1/(1-ell.ee**2)*dyds**2 + 1/(1-ell.ex**2)*dzds**2
|
||||
|
||||
ddx = -(h/H)*x
|
||||
@@ -68,7 +69,7 @@ def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
||||
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
|
||||
return ODE
|
||||
|
||||
def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, num: int) -> tuple[np.ndarray, float, list]:
|
||||
def gha1_num(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, num: int, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, List]:
|
||||
"""
|
||||
Panou, Korakitits 2019
|
||||
:param ell:
|
||||
@@ -76,12 +77,14 @@ def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
||||
:param alpha0:
|
||||
:param s:
|
||||
:param num:
|
||||
:param all_points:
|
||||
:return:
|
||||
"""
|
||||
phi, lam, _ = ell.cart2geod(point, "ligas3")
|
||||
x0, y0, z0 = ell.geod2cart(phi, lam, 0)
|
||||
p0 = ell.geod2cart(phi, lam, 0)
|
||||
x0, y0, z0 = p0
|
||||
|
||||
p, q = pq_ell(ell, x0, y0, z0)
|
||||
p, q = pq_ell(ell, p0)
|
||||
dxds0 = p[0] * sin(alpha0) + q[0] * cos(alpha0)
|
||||
dyds0 = p[1] * sin(alpha0) + q[1] * cos(alpha0)
|
||||
dzds0 = p[2] * sin(alpha0) + q[2] * cos(alpha0)
|
||||
@@ -93,7 +96,9 @@ def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
||||
_, werte = rk.rk4(ode, 0, v_init, s, num)
|
||||
x1, dx1ds, y1, dy1ds, z1, dz1ds = werte[-1]
|
||||
|
||||
p1, q1 = pq_ell(ell, x1, y1, z1)
|
||||
point1 = np.array([x1, y1, z1])
|
||||
|
||||
p1, q1 = pq_ell(ell, point1)
|
||||
sigma = np.array([dx1ds, dy1ds, dz1ds])
|
||||
P = float(p1 @ sigma)
|
||||
Q = float(q1 @ sigma)
|
||||
@@ -103,21 +108,23 @@ def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
||||
if alpha1 < 0:
|
||||
alpha1 += 2 * np.pi
|
||||
|
||||
return np.array([x1, y1, z1]), alpha1, werte
|
||||
if all_points:
|
||||
return point1, alpha1, werte
|
||||
else:
|
||||
return point1, alpha1
|
||||
|
||||
# ---------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
def pq_para(ell: EllipsoidTriaxial, x: float, y: float, z: float) -> tuple[np.ndarray, np.ndarray]:
|
||||
def pq_para(ell: EllipsoidTriaxial, point: NDArray) -> Tuple[NDArray, NDArray]:
|
||||
"""
|
||||
Berechnung von p und q in parametrischen Koordinaten
|
||||
Panou, Korakitits 2020
|
||||
:param x: x
|
||||
:param y: y
|
||||
:param z: z
|
||||
:param ell: Ellipsoid
|
||||
:param point: Punkt
|
||||
:return: p und q
|
||||
"""
|
||||
n = ell.func_n(x, y, z)
|
||||
u, v = ell.cart2para(np.array([x, y, z]))
|
||||
n = ell.func_n(point)
|
||||
u, v = ell.cart2para(point)
|
||||
|
||||
# 41-47
|
||||
G = sqrt(1 - ell.ex ** 2 * cos(u) ** 2 - ell.ee ** 2 * sin(u) ** 2 * sin(v) ** 2)
|
||||
@@ -131,12 +138,12 @@ def pq_para(ell: EllipsoidTriaxial, x: float, y: float, z: float) -> tuple[np.nd
|
||||
t1 = np.dot(n, q)
|
||||
t2 = np.dot(n, p)
|
||||
t3 = np.dot(p, q)
|
||||
if not (t1<1e-10 or t1>1-1e-10) and not (t2<1e-10 or t2>1-1e-10) and not (t3<1e-10 or t3>1-1e-10):
|
||||
if not (t1 < 1e-10 or t1 > 1-1e-10) and not (t2 < 1e-10 or t2 > 1-1e-10) and not (t3 < 1e-10 or t3 > 1-1e-10):
|
||||
raise Exception("Fehler in den normierten Vektoren")
|
||||
|
||||
return p, q
|
||||
|
||||
def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
||||
def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int) -> Tuple[NDArray, float]:
|
||||
"""
|
||||
Panou, Korakitits 2020, 5ff.
|
||||
:param ell:
|
||||
@@ -153,7 +160,7 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
||||
y_m = [y]
|
||||
z_m = [z]
|
||||
|
||||
p, q = pq_para(ell, x, y, z)
|
||||
p, q = pq_para(ell, point)
|
||||
|
||||
# 48-50
|
||||
x_m.append(p[0] * sin(alpha0) + q[0] * cos(alpha0))
|
||||
@@ -208,7 +215,8 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
||||
for c in reversed(c_m):
|
||||
z_s = z_s * s + c
|
||||
|
||||
p_s, q_s = pq_para(ell, x_s, y_s, z_s)
|
||||
p1 = np.array([x_s, y_s, z_s])
|
||||
p_s, q_s = pq_para(ell, p1)
|
||||
|
||||
# 57-59
|
||||
dx_s = 0
|
||||
@@ -234,10 +242,10 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
||||
if alpha1 < 0:
|
||||
alpha1 += 2 * np.pi
|
||||
|
||||
return np.array([x_s, y_s, z_s]), alpha1
|
||||
return p1, alpha1
|
||||
|
||||
|
||||
def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> tuple[np.ndarray, float]:
|
||||
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> Tuple[NDArray, float]:
|
||||
if s > np.pi / maxPartCircum * ell.ax:
|
||||
s /= 2
|
||||
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
|
||||
@@ -251,14 +259,14 @@ def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
||||
|
||||
return point_end, alpha_end
|
||||
|
||||
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> tuple[float, float, float]:
|
||||
x, y, z = ell.para2cart(u, v)
|
||||
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> Tuple[float, float, float]:
|
||||
point = ell.para2cart(u, v)
|
||||
beta, lamb = ell.para2ell(u, v)
|
||||
|
||||
p_para, q_para = pq_para(ell, x, y, z)
|
||||
p_para, q_para = pq_para(ell, point)
|
||||
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
||||
|
||||
p_ell, q_ell = pq_ell(ell, x, y, z)
|
||||
p_ell, q_ell = pq_ell(ell, point)
|
||||
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
|
||||
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
||||
|
||||
@@ -267,49 +275,42 @@ def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float
|
||||
|
||||
return beta, lamb, alpha_ell
|
||||
|
||||
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> tuple[float, float, float]:
|
||||
x, y, z = ell.ell2cart(beta, lamb)
|
||||
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> Tuple[float, float, float]:
|
||||
point = ell.ell2cart(beta, lamb)
|
||||
u, v = ell.ell2para(beta, lamb)
|
||||
|
||||
p_ell, q_ell = pq_ell(ell, x, y, z)
|
||||
p_ell, q_ell = pq_ell(ell, point)
|
||||
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
||||
|
||||
p_para, q_para = pq_para(ell, x, y, z)
|
||||
p_para, q_para = pq_para(ell, point)
|
||||
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
|
||||
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
||||
|
||||
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
|
||||
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
||||
print("Alpha Umrechnung fehlgeschlagen:", np.linalg.norm(sigma_para - sigma_ell))
|
||||
|
||||
return u, v, alpha_para
|
||||
|
||||
def func_sigma_ell(ell, x, y, z, alpha):
|
||||
p, q = pq_ell(ell, x, y, z)
|
||||
def func_sigma_ell(ell: EllipsoidTriaxial, point: NDArray, alpha: float) -> NDArray:
|
||||
p, q = pq_ell(ell, point)
|
||||
sigma = p * sin(alpha) + q * cos(alpha)
|
||||
return sigma
|
||||
|
||||
def func_sigma_para(ell, x, y, z, alpha):
|
||||
p, q = pq_para(ell, x, y, z)
|
||||
def func_sigma_para(ell: EllipsoidTriaxial, point: NDArray, alpha: float) -> NDArray:
|
||||
p, q = pq_para(ell, point)
|
||||
sigma = p * sin(alpha) + q * cos(alpha)
|
||||
return sigma
|
||||
|
||||
|
||||
def louville_constant(ell: EllipsoidTriaxial, p0: np.ndarray, alpha: float) -> float:
|
||||
def louville_constant(ell: EllipsoidTriaxial, p0: NDArray, alpha: float) -> float:
|
||||
beta, lamb = ell.cart2ell(p0)
|
||||
l = ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2
|
||||
# x, y, z = p0
|
||||
# t1, t2 = ell.func_t12(x, y, z)
|
||||
# l_cart = ell.ay**2 - (t1 * sin(alpha)**2 + t2 * cos(alpha)**2)
|
||||
# if abs(l - l_cart) > 1e-12:
|
||||
# # raise Exception("Louville constant fehlgeschlagen")
|
||||
# print("Diff zwischen constant:", abs(l - l_cart))
|
||||
return l
|
||||
|
||||
def louville_l2c(ell, l):
|
||||
def louville_l2c(ell: EllipsoidTriaxial, l: float) -> float:
|
||||
return sqrt((l + ell.Ee**2) / ell.Ex**2)
|
||||
|
||||
def louville_c2l(ell, c):
|
||||
def louville_c2l(ell: EllipsoidTriaxial, c: float) -> float:
|
||||
return ell.Ex**2 * c**2 - ell.Ee**2
|
||||
|
||||
|
||||
@@ -322,7 +323,7 @@ if __name__ == "__main__":
|
||||
# beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
|
||||
# P0 = ell.ell2cart(beta0, lamb0)
|
||||
#
|
||||
# P1_num, alpha1_num, _ = gha1_num(ell, P0, alpha0_ell, s, 100)
|
||||
# P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 100)
|
||||
# beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||
#
|
||||
# _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
||||
@@ -342,7 +343,7 @@ if __name__ == "__main__":
|
||||
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
|
||||
P0 = ell.ell2cart(beta0, lamb0)
|
||||
|
||||
P1_num, alpha1_num, _ = gha1_num(ell, P0, alpha0_ell, s, 5000)
|
||||
P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 5000)
|
||||
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||
|
||||
try:
|
||||
@@ -357,5 +358,3 @@ if __name__ == "__main__":
|
||||
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
|
||||
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
|
||||
print(diffs_karney)
|
||||
|
||||
pass
|
||||
|
||||
Reference in New Issue
Block a user