Näherungslösung GHA 2
This commit is contained in:
111
GHA_triaxial/approx_gha2.py
Normal file
111
GHA_triaxial/approx_gha2.py
Normal file
@@ -0,0 +1,111 @@
|
||||
import numpy as np
|
||||
from numpy import arctan2
|
||||
from ellipsoide import EllipsoidTriaxial
|
||||
from panou import pq_ell
|
||||
from panou_2013_2GHA_num import gha2_num
|
||||
import plotly.graph_objects as go
|
||||
import winkelumrechnungen as wu
|
||||
from numpy.typing import NDArray
|
||||
from typing import Tuple
|
||||
|
||||
def sigma2alpha(sigma: NDArray, point: NDArray) -> float:
|
||||
"""
|
||||
Berechnung des Richtungswinkels an einem Punkt anhand der Ableitung zu den kartesischen Koordinaten
|
||||
:param sigma: Ableitungsvektor ver kartesischen Koordinaten
|
||||
:param point: Punkt
|
||||
:return: Richtungswinkel
|
||||
"""
|
||||
""
|
||||
p, q = pq_ell(ell, point)
|
||||
P = float(p @ sigma)
|
||||
Q = float(q @ sigma)
|
||||
|
||||
alpha = arctan2(P, Q)
|
||||
return alpha
|
||||
|
||||
def gha2(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]:
|
||||
"""
|
||||
Numerische Approximation für die zweite Hauptaufgabe
|
||||
:param ell: Ellipsoid
|
||||
:param p0: Startpunkt
|
||||
:param p1: Endpunkt
|
||||
:param ds: maximales Streckenelement
|
||||
:param all_points: Alle Punkte ausgeben?
|
||||
:return:
|
||||
"""
|
||||
points = np.array([p0, p1])
|
||||
while True:
|
||||
new_points = []
|
||||
|
||||
for i in range(len(points)-1):
|
||||
new_points.append(points[i])
|
||||
|
||||
pi = points[i] + 1/2 * (points[i+1] - points[i])
|
||||
pi = ell.cartonell(pi)
|
||||
|
||||
new_points.append(pi)
|
||||
|
||||
new_points.append(points[-1])
|
||||
points = np.array(new_points)
|
||||
|
||||
elements = np.array([np.linalg.norm(points[i] - points[i+1]) for i in range(len(points)-1)])
|
||||
|
||||
if np.average(elements) < ds:
|
||||
break
|
||||
|
||||
p0i = ell.cartonell(p0 + ds/100 * (points[1] - p0) / np.linalg.norm(points[1] - p0))
|
||||
sigma0 = (p0i - p0) / np.linalg.norm(p0i - p0)
|
||||
alpha0 = sigma2alpha(sigma0, p0)
|
||||
|
||||
p1i = ell.cartonell(p1 - ds/100 * (p1 - points[-2]) / np.linalg.norm(p1 - points[-2]))
|
||||
sigma1 = (p1 - p1i) / np.linalg.norm(p1 - p1i)
|
||||
alpha1 = sigma2alpha(sigma1, p1)
|
||||
|
||||
s = np.sum(np.array([np.linalg.norm(points[i] - points[i+1]) for i in range(len(points)-1)]))
|
||||
|
||||
if all_points:
|
||||
return alpha0, alpha1, s, np.array(points)
|
||||
else:
|
||||
return alpha0, alpha1, s
|
||||
|
||||
def show_points(points: NDArray, points_app: NDArray, p0: NDArray, p1: NDArray):
|
||||
fig = go.Figure()
|
||||
|
||||
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
|
||||
mode='lines', line=dict(color="green", width=3), name="Analytisch")
|
||||
fig.add_scatter3d(x=points_app[:, 0], y=points_app[:, 1], z=points_app[:, 2],
|
||||
mode='lines', line=dict(color="red", width=3), name="Approximiert")
|
||||
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
|
||||
mode='markers', marker=dict(color="black"), name="P0")
|
||||
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
|
||||
mode='markers', marker=dict(color="black"), name="P1")
|
||||
|
||||
fig.update_layout(
|
||||
scene=dict(xaxis_title='X [km]',
|
||||
yaxis_title='Y [km]',
|
||||
zaxis_title='Z [km]',
|
||||
aspectmode='data'))
|
||||
|
||||
fig.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
|
||||
|
||||
beta0, lamb0 = (0.2, 0.1)
|
||||
P0 = ell.ell2cart(beta0, lamb0)
|
||||
beta1, lamb1 = (0.7, 0.3)
|
||||
P1 = ell.ell2cart(beta1, lamb1)
|
||||
|
||||
alpha0_app, alpha1_app, s_app, points = gha2(ell, P0, P1, ds=1e-4, all_points=True)
|
||||
|
||||
alpha0, alpha1, s, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=5000, all_points=True)
|
||||
points_ana = []
|
||||
for beta, lamb in zip(betas, lambs):
|
||||
points_ana.append(ell.ell2cart(beta, lamb))
|
||||
points_ana = np.array(points_ana)
|
||||
|
||||
show_points(points_ana, points, P0, P1)
|
||||
print(f"Differenz s: {s_app - s} m")
|
||||
print(f"Differenz alpha0: {wu.rad2deg(alpha0_app - alpha0)}°")
|
||||
print(f"Differenz alpha1: {wu.rad2deg(alpha1_app - alpha1)}°")
|
||||
Reference in New Issue
Block a user