Abgabe fertig

This commit is contained in:
2026-02-11 12:08:46 +01:00
parent 5a293a823a
commit 59ad560f36
38 changed files with 3419 additions and 8763 deletions

157
ES/Hansen_ES_CMA.py Normal file
View File

@@ -0,0 +1,157 @@
import numpy as np
from numpy.typing import NDArray
def felli(x: NDArray) -> float:
N = x.shape[0]
if N < 2:
raise ValueError("dimension must be greater than one")
exponents = np.arange(N) / (N - 1)
return float(np.sum((1e6 ** exponents) * (x ** 2)))
def escma(func, *, N=10, xmean=None, sigma=0.5, stopfitness=1e-14, stopeval=2000,
func_args=(), func_kwargs=None, seed=0,
bestEver=np.inf, noImproveGen=0, absTolImprove=1e-12, maxNoImproveGen=100, sigmaImprove=1e-12):
if func_kwargs is None:
func_kwargs = {}
if seed is not None:
np.random.seed(seed)
# Initialization (aus Parametern statt hart verdrahtet)
if xmean is None:
xmean = np.random.rand(N)
else:
xmean = np.asarray(xmean, dtype=float)
N = xmean.shape[0]
if stopeval is None:
stopeval = int(1e3 * N ** 2)
# Strategy parameter setting: Selection
lambda_ = 4 + int(np.floor(3 * np.log(N)))
mu = lambda_ / 2.0
# muXone recombination weights
weights = np.log(mu + 0.5) - np.log(np.arange(1, int(mu) + 1))
mu = int(np.floor(mu))
weights = weights / np.sum(weights)
mueff = np.sum(weights) ** 2 / np.sum(weights ** 2)
# Strategy parameter setting: Adaptation
cc = (4 + mueff / N) / (N + 4 + 2 * mueff / N)
cs = (mueff + 2) / (N + mueff + 5)
c1 = 2 / ((N + 1.3) ** 2 + mueff)
cmu = min(1 - c1,
2 * (mueff - 2 + 1 / mueff) / ((N + 2) ** 2 + 2 * mueff))
damps = 1 + 2 * max(0, np.sqrt((mueff - 1) / (N + 1)) - 1) + cs
# Initialize dynamic (internal) strategy parameters and constants
pc = np.zeros(N)
ps = np.zeros(N)
B = np.eye(N)
D = np.eye(N)
C = B @ D @ (B @ D).T
eigeneval = 0
chiN = np.sqrt(N) * (1 - 1 / (4 * N) + 1 / (21 * N ** 2))
# Generation Loop
counteval = 0
arx = np.zeros((N, lambda_))
arz = np.zeros((N, lambda_))
arfitness = np.zeros(lambda_)
gen = 0
# print(f' [CMA-ES] Start: lambda = {lambda_}, sigma ={round(sigma, 6)}, stopeval = {stopeval}')
while counteval < stopeval:
gen += 1
# Generate and evaluate lambda offspring
for k in range(lambda_):
arz[:, k] = np.random.randn(N)
arx[:, k] = xmean + sigma * (B @ D @ arz[:, k])
arfitness[k] = float(func(arx[:, k], *func_args, **func_kwargs)) # <-- allgemein
counteval += 1
# Sort by fitness and compute weighted mean into xmean
idx = np.argsort(arfitness)
arfitness = arfitness[idx]
arindex = idx
xold = xmean.copy()
xmean = arx[:, arindex[:mu]] @ weights
zmean = arz[:, arindex[:mu]] @ weights
# Stagnation check
fbest = arfitness[0]
if bestEver - fbest > absTolImprove:
bestEver = fbest
noImproveGen = 0
else:
noImproveGen += 1
if gen == 1 or gen % 50 == 0:
# print(f' [CMA-ES] Gen {gen}, best = {round(fbest, 6)}, sigma = {sigma:.3g}')
pass
if noImproveGen >= maxNoImproveGen:
# print(f' [CMA-ES] Abbruch: keine Verbesserung > {round(absTolImprove, 3)} in {maxNoImproveGen} Generationen.')
break
if sigma < sigmaImprove:
# print(f' [CMA-ES] Abbruch: sigma zu klein {sigma:.3g}')
break
# Cumulation: Update evolution paths
ps = (1 - cs) * ps + np.sqrt(cs * (2 - cs) * mueff) * (B @ zmean)
norm_ps = np.linalg.norm(ps)
hsig = norm_ps / np.sqrt(1 - (1 - cs) ** (2 * counteval / lambda_)) / chiN < (1.4 + 2 / (N + 1))
hsig = 1.0 if hsig else 0.0
pc = (1 - cc) * pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * (B @ D @ zmean)
# Adapt covariance matrix C
BDz = B @ D @ arz[:, arindex[:mu]]
C = (1 - c1 - cmu) * C \
+ c1 * (np.outer(pc, pc) + (1 - hsig) * cc * (2 - cc) * C) \
+ cmu * BDz @ np.diag(weights) @ BDz.T
# Adapt step-size sigma
sigma = sigma * np.exp((cs / damps) * (norm_ps / chiN - 1))
# Update B and D from C (Eigenzerlegung, O(N^2))
if counteval - eigeneval > lambda_ / ((c1 + cmu) * N * 10):
eigeneval = counteval
# enforce symmetry
C = (C + C.T) / 2.0
eigvals, B = np.linalg.eigh(C)
D = np.diag(np.sqrt(eigvals))
# Break, if fitness is good enough
if arfitness[0] <= stopfitness:
break
# Escape flat fitness, or better terminate?
if arfitness[0] == arfitness[int(np.ceil(0.7 * lambda_)) - 1]:
sigma = sigma * np.exp(0.2 + cs / damps)
# print(' [CMA-ES] stopfitness erreicht.')
# print("warning: flat fitness, consider reformulating the objective")
break
# print(f"{counteval}: {arfitness[0]}")
# Final Message
# print(f"{counteval}: {arfitness[0]}")
xmin = arx[:, arindex[0]]
bestValue = arfitness[0]
# print(f' [CMA-ES] Ende: Gen = {gen}, best = {round(bestValue, 6)}')
return xmin
if __name__ == "__main__":
xmin = escma(felli, N=10) # <-- Zielfunktion wird übergeben
print("Bestes gefundenes x:", xmin)
print("f(xmin) =", felli(xmin))

0
ES/__init__.py Normal file
View File

247
ES/gha1_ES.py Normal file
View File

@@ -0,0 +1,247 @@
from __future__ import annotations
from typing import List, Tuple
import numpy as np
from numpy.typing import NDArray
import winkelumrechnungen as wu
from ES.Hansen_ES_CMA import escma
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.gha1_approx import gha1_approx
from GHA_triaxial.utils import jacobi_konstante
from ellipsoid_triaxial import EllipsoidTriaxial
from utils_angle import wrap_mpi_pi
def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
-> Tuple[NDArray, NDArray, NDArray, float, float, NDArray]:
"""
Analytische ENU-Basis in ellipsoidische Koordinaten (β, ω) nach Karney (2025), S. 2
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param ell: Ellipsoid
:return: E_hat = Einheitsrichtung entlang wachsendem ω (East)
N_hat = Einheitsrichtung entlang wachsendem β (North)
U_hat = Einheitsnormale (Up)
En & Nn = Längen der unnormierten Ableitungen
R (XYZ) = Punkt in XYZ
"""
# Berechnungshilfen
omega = wrap_mpi_pi(omega)
cb = np.cos(beta)
sb = np.sin(beta)
co = np.cos(omega)
so = np.sin(omega)
# D = sqrt(a^2 - c^2)
D = np.sqrt(ell.ax*ell.ax - ell.b*ell.b)
# Sx = sqrt(a^2 - b^2 sin^2β - c^2 cos^2β)
Sx = np.sqrt(ell.ax*ell.ax - ell.ay*ell.ay*(sb*sb) - ell.b*ell.b*(cb*cb))
# Sz = sqrt(a^2 sin^2ω + b^2 cos^2ω - c^2)
Sz = np.sqrt(ell.ax*ell.ax*(so*so) + ell.ay*ell.ay*(co*co) - ell.b*ell.b)
# Karney Gl. (4)
X = ell.ax * co * Sx / D
Y = ell.ay * cb * so
Z = ell.b * sb * Sz / D
R = np.array([X, Y, Z], dtype=float)
# --- Ableitungen - Karney Gl. (5a,b,c)---
# E = ∂R/∂ω
dX_dw = -ell.ax * so * Sx / D
dY_dw = ell.ay * cb * co
dZ_dw = ell.b * sb * (so * co * (ell.ax*ell.ax - ell.ay*ell.ay) / Sz) / D
E = np.array([dX_dw, dY_dw, dZ_dw], dtype=float)
# N = ∂R/∂β
dX_db = ell.ax * co * (sb * cb * (ell.b*ell.b - ell.ay*ell.ay) / Sx) / D
dY_db = -ell.ay * sb * so
dZ_db = ell.b * cb * Sz / D
N = np.array([dX_db, dY_db, dZ_db], dtype=float)
# U = Grad(x^2/a^2 + y^2/b^2 + z^2/c^2 - 1)
U = np.array([X/(ell.ax*ell.ax), Y/(ell.ay*ell.ay), Z/(ell.b*ell.b)], dtype=float)
En = float(np.linalg.norm(E))
Nn = float(np.linalg.norm(N))
Un = float(np.linalg.norm(U))
N_hat = N / Nn
E_hat = E / En
U_hat = U / Un
E_hat -= float(np.dot(E_hat, N_hat)) * N_hat
E_hat = E_hat / max(np.linalg.norm(E_hat), 1e-18)
return E_hat, N_hat, U_hat, En, Nn, R
def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_hat_curr: NDArray, U_hat_curr: NDArray) -> float:
"""
Berechnet das Azimut in der lokalen Tangentialebene am aktuellen Punkt P_curr, gemessen
an der Bewegungsrichtung vom vorherigen Punkt P_prev nach P_curr.
:param P_prev: vorheriger Punkt
:param P_curr: aktueller Punkt
:param E_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param N_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param U_hat_curr: Einheitsnormalenvektor am Punkt P_curr
:return: Azimut in Radiant
"""
v = (P_curr - P_prev).astype(float)
vT = v - float(np.dot(v, U_hat_curr)) * U_hat_curr
vTn = max(np.linalg.norm(vT), 1e-18)
vT_hat = vT / vTn
sE = float(np.dot(vT_hat, E_hat_curr))
sN = float(np.dot(vT_hat, N_hat_curr))
return wrap_mpi_pi(float(np.arctan2(sE, sN)))
def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float, gamma0: float,
ell: EllipsoidTriaxial, maxSegLen: float = 1000.0, sigma0: float = None) -> Tuple[float, float, NDArray, float]:
"""
Berechnung der 1. GHA mithilfe der CMA-ES.
Die CMA-ES optimiert sukzessive einen Punkt, der maxSegLen vom vorherigen Punkt entfernt und zusätzlich auf der
geodätischen Linien liegt. Somit entsteht ein Geodäten ähnlicher Polygonzug auf der Oberfläche des dreiachsigen Ellipsoids.
:param beta_i: Beta Koordinate am Punkt i
:param omega_i: Omega Koordinate am Punkt i
:param alpha_i: Azimut am Punkt i
:param ds: Gesamtlänge
:param gamma0: Jacobi-Konstante am Startpunkt
:param ell: Ellipsoid
:param maxSegLen: maximale Segmentlänge
:param sigma0:
:return:
"""
# Startbasis
E_i, N_i, U_i, En_i, Nn_i, P_i = ENU_beta_omega(beta_i, omega_i, ell)
# Prediktor: dβ ≈ ds cosα / |N|, dω ≈ ds sinα / |E|
En_eff = max(En_i, 1e-9)
Nn_eff = max(Nn_i, 1e-9)
d_beta = ds * np.cos(alpha_i) / Nn_eff
d_omega = ds * np.sin(alpha_i) / En_eff
# optional: harte Schritt-Clamps (verhindert wrap-chaos)
d_beta = float(np.clip(d_beta, -0.2, 0.2)) # rad
d_omega = float(np.clip(d_omega, -0.2, 0.2)) # rad
# d_beta = ds * float(np.cos(alpha_i)) / Nn_i
# d_omega = ds * float(np.sin(alpha_i)) / En_i
beta_pred = beta_i + d_beta
omega_pred = wrap_mpi_pi(omega_i + d_omega)
xmean = np.array([beta_pred, omega_pred], dtype=float)
if sigma0 is None:
R0 = (ell.ax + ell.ay + ell.b) / 3
sigma0 = 1e-5 * (ds / R0)
def fitness(x: NDArray) -> float:
"""
Fitnessfunktion: Fitnesscheck erfolgt anhand der Segmentlänge und der Jacobi-Konstante.
Die Segmentlänge muss möglichst gut zum Sollwert passen. Die Jacobi-Konstante am Punkt x muss zur
Jacobi-Konstanten am Startpunkt passen, damit der Polygonzug auf derselben geodätischen Linie bleibt.
:param x: Koordinate in beta, lambda aus der CMA-ES
:return: Fitnesswert (f)
"""
beta = x[0]
omega = wrap_mpi_pi(x[1])
P = ell.ell2cart_karney(beta, omega) # in kartesischer Koordinaten
d = float(np.linalg.norm(P - P_i)) # Distanz zwischen
# maxSegLen einhalten
J_len = ((d - ds) / ds) ** 2
w_len = 1.0
# Azimut für Jacobi-Konstante
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta, omega, ell)
alpha_end = azimuth_at_ESpoint(P_i, P, E_j, N_j, U_j)
# Jacobi-Konstante
g_end = jacobi_konstante(beta, omega, alpha_end, ell)
J_gamma = (g_end - gamma0) ** 2
w_gamma = 10
f = float(w_len * J_len + w_gamma * J_gamma)
return f
xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0) # Aufruf CMA-ES
beta_best = xb[0]
omega_best = wrap_mpi_pi(xb[1])
P_best = ell.ell2cart_karney(beta_best, omega_best)
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta_best, omega_best, ell)
alpha_end = azimuth_at_ESpoint(P_i, P_best, E_j, N_j, U_j)
return beta_best, omega_best, P_best, alpha_end
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000, all_points: bool = False)\
-> Tuple[NDArray, float, NDArray] | Tuple[NDArray, float]:
"""
Aufruf der 1. GHA mittels CMA-ES
:param ell: Ellipsoid
:param beta0: Beta Startkoordinate
:param omega0: Omega Startkoordinate
:param alpha0: Azimut Startkoordinate
:param s_total: Gesamtstrecke
:param maxSegLen: maximale Segmentlänge
:param all_points: Alle Punkte ausgeben?
:return: Zielpunkt Pk, Azimut am Zielpunkt und Punktliste
"""
beta = float(beta0)
omega = wrap_mpi_pi(float(omega0))
alpha = wrap_mpi_pi(float(alpha0))
gamma0 = jacobi_konstante(beta, omega, alpha, ell) # Referenz-γ0
P_all: List[NDArray] = [ell.ell2cart_karney(beta, omega)]
alpha_end: List[float] = [alpha]
s_acc = 0.0
step = 0
nsteps_est = int(np.ceil(s_total / maxSegLen))
while s_acc < s_total - 1e-9:
step += 1
ds = min(maxSegLen, s_total - s_acc)
# print(f"[GHA1-ES] Step {step}/{nsteps_est} ds={ds:.3f} m s_acc={s_acc:.3f} m beta={beta:.6f} omega={omega:.6f} alpha={alpha:.6f}")
beta, omega, P, alpha = optimize_next_point(beta_i=beta, omega_i=omega, alpha_i=alpha, ds=ds, gamma0=gamma0,
ell=ell, maxSegLen=maxSegLen)
s_acc += ds
P_all.append(P)
alpha_end.append(wrap_mpi_pi(alpha))
if step > nsteps_est + 50:
raise RuntimeError("GHA1_ES: Zu viele Schritte vermutlich Konvergenzproblem / falsche Azimut-Konvention.")
Pk = P_all[-1]
alpha1 = float(alpha_end[-1])
if all_points:
return Pk, alpha1, np.array(P_all)
else:
return Pk, alpha1
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
s = 180000
# alpha0 = 3
alpha0 = wu.gms2rad([5, 0, 0])
beta = 0
omega = 0
P0 = ell.ell2cart(beta, omega)
point1, alpha1 = gha1_ana(ell, P0, alpha0=alpha0, s=s, maxM=100, maxPartCircum=32)
point1app, alpha1app = gha1_approx(ell, P0, alpha0=alpha0, s=s, ds=1000)
res, alpha, points = gha1_ES(ell, beta0=beta, omega0=-omega, alpha0=alpha0, s_total=s, maxSegLen=1000)
print(point1)
print(res)
print(alpha)
print(points)
# print("alpha1 (am Endpunkt):", res.alpha1)
print(res - point1)
print(point1app - point1, "approx")

182
ES/gha2_ES.py Normal file
View File

@@ -0,0 +1,182 @@
from typing import Tuple
import numpy as np
import plotly.graph_objects as go
from numpy.typing import NDArray
from GHA_triaxial.gha2_num import gha2_num
from GHA_triaxial.utils import sigma2alpha
from Hansen_ES_CMA import escma
from ellipsoid_triaxial import EllipsoidTriaxial
def Sehne(P1: NDArray, P2: NDArray) -> float:
"""
Berechnung der 3D-Distanz zwischen zwei kartesischen Punkten
:param P1: kartesische Koordinate Punkt 1
:param P2: kartesische Koordinate Punkt 2
:return: Bogenlänge s
"""
R12 = P2-P1
s = float(np.linalg.norm(R12))
return s
def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float = None, all_points: bool = False) -> Tuple[float, float, float, NDArray] | Tuple[float, float, float]:
"""
Berechnen der 2. GHA mithilfe der CMA-ES.
Die CMA-ES optimiert sukzessive den Mittelpunkt zwischen Start- und Zielpunkt. Der Abbruch der Berechnung erfolgt, wenn alle Segmentlängen <= maxSegLen sind.
Die Distanzen zwischen den einzelnen Punkten werden als direkte 3D-Distanzen berechnet und aufaddiert.
:param ell: Ellipsoid
:param P0: Startpunkt
:param Pk: Zielpunkt
:param maxSegLen: maximale Segmentlänge
:param all_points: Ergebnisliste mit allen Punkte, die wahlweise mit ausgegeben wird
:return: Richtungswinkel in RAD des Start- und Zielpunktes und Gesamtlänge
"""
P_left: NDArray = None
P_right: NDArray = None
def midpoint_fitness(x: tuple) -> float:
"""
Fitness für einen Mittelpunkt P_middle zwischen P_left und P_right auf dem triaxialen Ellipsoid:
- Minimiert d(P_left, P_middle) + d(P_middle, P_right)
- Erzwingt d(P_left,P_middle) ≈ d(P_middle,P_right) (echter Mittelpunkt im Sinne der Polygonkette)
:param x: enthält die Startwerte von u und v
:return: Fitnesswert (f)
"""
nonlocal P_left, P_right, ell
u, v = x
P_middle = ell.para2cart(u, v)
d1 = Sehne(P_left, P_middle)
d2 = Sehne(P_middle, P_right)
base = d1 + d2
# midpoint penalty (dimensionslos)
# relative Differenz, skaliert über verschiedene Segmentlängen
denom = max(base, 1e-9)
pen_equal = ((d1 - d2) / denom) ** 2
w_equal = 10.0
f = base + denom * w_equal * pen_equal
return f
R0 = (ell.ax + ell.ay + ell.b) / 3
if maxSegLen is None:
maxSegLen = R0 * 1 / (637.4*2) # 10km Segment bei mittleren Erdradius
sigma_uv_nom = 1e-3 * (maxSegLen / R0) # ~1e-5
points: list[NDArray] = [P0, Pk]
startIter = 0
level = 0
while True:
seg_lens = [Sehne(points[i], points[i+1]) for i in range(len(points)-1)]
max_len = max(seg_lens)
if max_len <= maxSegLen:
break
level += 1
new_points: list[NDArray] = [points[0]]
for i in range(len(points) - 1):
A = points[i]
B = points[i+1]
dAB = Sehne(A, B)
# print(dAB)
if dAB > maxSegLen:
# global P_left, P_right
P_left, P_right = A, B
Au, Av = ell.cart2para(A)
Bu, Bv = ell.cart2para(B)
u0 = (Au + Bu) / 2
v0 = Av + 0.5 * np.arctan2(np.sin(Bv - Av), np.cos(Bv - Av))
xmean = [u0, v0]
sigmaStep = sigma_uv_nom * (Sehne(A, B) / maxSegLen)
u, v = escma(midpoint_fitness, N=2, xmean=xmean, sigma=sigmaStep) # Aufruf CMA-ES
P_next = ell.para2cart(u, v)
new_points.append(P_next)
startIter += 1
maxIter = 10000
if startIter > maxIter:
raise RuntimeError("GHA2_ES: maximale Iterationen überschritten")
new_points.append(B)
points = new_points
# print(f"[Level {level}] Punkte: {len(points)} | max Segment: {max_len:.3f} m")
P_all = np.vstack(points)
totalLen = float(np.sum(np.linalg.norm(P_all[1:] - P_all[:-1], axis=1)))
if len(points) >= 3:
p0i = ell.point_onto_ellipsoid(P0 + 10.0 * (points[1] - P0) / np.linalg.norm(points[1] - P0))
sigma0 = (p0i - P0) / np.linalg.norm(p0i - P0)
alpha0 = sigma2alpha(ell, sigma0, P0)
p1i = ell.point_onto_ellipsoid(Pk - 10.0 * (Pk - points[-2]) / np.linalg.norm(Pk - points[-2]))
sigma1 = (Pk - p1i) / np.linalg.norm(Pk - p1i)
alpha1 = sigma2alpha(ell, sigma1, Pk)
else:
alpha0 = None
alpha1 = None
if all_points:
return alpha0, alpha1, totalLen, P_all
return alpha0, alpha1, totalLen
def show_points(points: NDArray, pointsES: NDArray, p0: NDArray, p1: NDArray):
"""
Anzeigen der Punkte
:param points: wahre Punkte der Linie
:param pointsES: Punkte der Linie aus ES
:param p0: wahrer Startpunkt
:param p1: wahrer Endpunkt
"""
fig = go.Figure()
fig.add_scatter3d(x=pointsES[:, 0], y=pointsES[:, 1], z=pointsES[:, 2],
mode='lines', line=dict(color="green", width=3), name="Numerisch")
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
mode='lines', line=dict(color="red", width=3), name="ES")
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
mode='markers', marker=dict(color="black"), name="P0")
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
mode='markers', marker=dict(color="black"), name="P1")
fig.update_layout(
scene=dict(xaxis_title='X [km]',
yaxis_title='Y [km]',
zaxis_title='Z [km]',
aspectmode='data'))
fig.show()
if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("Bursa1970")
beta0, lamb0 = (0.2, 0.1)
P0 = ell.ell2cart(beta0, lamb0)
beta1, lamb1 = (0.3, 0.2)
P1 = ell.ell2cart(beta1, lamb1)
alpha0, alpha1, s_num, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=1000, all_points=True)
points_num = []
for beta, lamb in zip(betas, lambs):
points_num.append(ell.ell2cart(beta, lamb))
points_num = np.array(points_num)
alpha0, alpha1, s, points = gha2_ES(ell, P0, P1)
print(s_num)
print(s)
print(alpha0)
print(alpha1)
print(s - s_num)
show_points(points, points_num, P0, P1)